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Abstract 

Ultrasonic transducer arrays are generally composed of several piezoelectric elements arranged in 1D or 2D 

ways. Crosstalk is an undesirable phenomenon decreasing the performance of these devices. It generates parasitic 

displacements at the elements' radiating surfaces, which changes the directivity of the array. Furthermore, the 

transducer's displacement plays a critical role in terms of the focal area and transferred intensities. The objective of 

this paper is to characterize a piezoelectric array composed of seven-elements made of PZ 27 ceramic experimentally. 

It investigates the effects of the crosstalk phenomenon on the array's performance in particular. The results have 

shown that the array's elements vibrate mainly in thickness mode, but the displacement is not uniform along their 

length due to the contribution of a parasitic length mode. Moreover, the major parasitic displacements are obtained 

on the neighboring passive elements: about -7.3 dB, -11 dB, and -12 dB, on the first, the second, and the third 

elements, respectively. 
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1. Introduction 

Ultrasound array and phased array systems have been widely used in medical imaging applications, e.g. obstetrics, 

abdomen, ophthalmology and intravascular [1-3] and have already become the preferred imaging method in a variety of 

clinical situations. Thanks to its advantages, i.e. safety, low cost, portability, and high spatial resolution, this technique remains 

for more than 50 years, a promising technology compared to other ones (X-ray, Digital X-ray, and magnetic resonance 

imaging). The major purpose of the research in this area is the optimization of the transducer arrays' performance to obtain a 

high image resolution for more reliable and safe diagnostics. These efforts include the use of new materials, like single crystals 

(LiNbO3, PMN-PT, and PIMNT) [4-7] and piezo-composite materials for applications needing operating frequencies superior 

or equal to 30 MHz [8-10]. Similarly, silicon micro-machined transducers such as CMUT transducer arrays have been 

developed to replace conventional piezo-ceramic arrays, and thus electronic devices could be integrated on the same substrate 

[11-14]. Several works also focus on the understanding and minimization of the crosstalk phenomenon, which creates artifacts 

and decreases the quality of the obtained images [15-18]. In this context, several approaches have been adopted. The first one 
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proposes improvements at the level of design and manufacture of the transducer arrays. It investigates the geometry and 

dimensions of the kerf filling material [19-20] particularly, the optimization of the front matching layers [21-23] and the 

improvement of the Printed Circuit Board (PCB) are utilized to connect the transducer array elements [24-25]. The second 

method is based on corrective electrical excitations applied to the array's elements to minimize the parasitic displacements and 

thus reducing crosstalk [26-29]. The last approach concerns specific treatments realized on the excitation and reception signals 

to minimize crosstalk [17, 30]. Finally, to improve the sensitivity of the transducer arrays, several research works are dedicated 

to the minimization of the electrical impedance of the array's elements using multilayer technology [31-33]. In this situation, 

the elements are connected acoustically in series but electrically in parallel which leads to reduced electrical impedance.  

In several medical applications, therapeutic ultrasounds are based on single transducer and transducer arrays [34-35] with 

higher powers and mostly lower frequencies. Therefore, the optimal displacement generated by these transducers will play a 

critical role in terms of the focal area and transferred intensities. The aim of this paper is to characterize a transducer array 

composed of seven piezoelectric elements made of a conventional PZ 27 ceramic experimentally. It also points out the 

presence of a parasitical length mode coupled to the desired thickness one and it studies its effects on the physical behavior of 

the array, i.e. structure vibration and its radiation in water. Furthermore, this research work investigates the influence of the 

crosstalk phenomenon on the electroacoustical performance of the fabricated transducer array. The first section of this paper 

describes the transducer arrays utilized in medical imaging and presents the fabricated prototype briefly. It is also dedicated to 

the presentation of the experimental setups utilized to perform electrical (electrical impedance and crosstalk) and mechanical 

measurements (displacement and directivity pattern). In the second section, electrical impedance, displacement, and directivity 

pattern measurements are carried out in the case of a single piezoelectric element (elementary slender bar). The last section is 

dedicated to the experimental characterization of the fabricated seven-element transducer array. In this context, electrical 

impedance, crosstalk and displacement measurements are realized on each element of the transducer array vibrating in the air. 

The array is then tested in water and directivity pattern measurements are obtained using a PVDF hydrophone. 

2. Piezoelectric Transducer Arrays for Medical Imaging Applications 

2.1.   Structure description 

 
Fig. 1 Typical geometry of piezoelectric transducer array 

Linear and phased transducer arrays utilized in medical imaging are generally composed of N piezoelectric elements 

having a thickness T, a width W and a length L, spaced by a distance d = W + h (d corresponds to the array's pitch and h is the 

filling material's width) and aligned as illustrated in Fig. 1. The elements are polarized in the thickness direction (z-axis) and 

are bonded to each other by a non-conductive resin. The thickness T depends on the desired operating frequency, which is 

approximately equal to a half of the wavelength in the piezoelectric material. To avoid the parasitic grating lobes, the width W 

must respect the Nyquist criterion d < λw/2 (λw wavelength in the propagation medium: water in medical imaging) at the 

operating frequency. 

To obtain a dominant thickness mode the ratio W / T must be less than or equal to 0.5. Finally, the length L is usually 

taken much greater than T and W (approximately 10). The transducer array elements are also equipped with front and back 
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matching layers to minimize the mismatching problem which creates a prolonged ringing after pulse excitation. Generally, the 

acoustic impedance of a conventional transducer is matched to one of the propagation media by one or two matching layers on 

its front face and a thick backing layer on its back face. 

2.2.   Fabricated prototype and experimental setups 

(1) Seven-element transducer array 

 
Fig. 2 Dice and fill technique 

To fabricate easily our prototype, we opted for the classical dice and fill technique explained in Fig. 2. The procedure 

starts with a piezoelectric plate (T = 3.3 mm, Wp = 7 cm and Lp = 7 cm) polarized in the thickness direction (Ferroperm, 

Kvistgaard, Denmark). The sample is then cut into elements using a diamond saw (Struers, Champigny Sur Marne, France) 

having a thickness (a = 0.5 mm) for a regular space between the elements (d = 1.2 mm) respecting the Nyquist criterion. The 

gap between the elements is then filled with a non-conductive resin PLEXCIL (ESCIL, Chassieu, France). 

 

Fig. 3 The fabricated seven-element transducer array 

This process is realized in vacuum conditions to minimize the presence of undesirable air bubbles between the elements. 

The structure is cut again to remove the undesirable ceramic parts. Finally, the transducer array obtained is mounted in the 

middle of a rigid Printed Circuit Board to facilitate the electrical connections and the manipulation of the prototype. Fig. 3 

shows the manufactured transducer array (LMCPA, Maubeuge, France) composed of seven piezoelectric elements made of 

PZ27 Ferroperm ceramic having the following dimensions: T = 3.3 mm, W = 0.7 mm, L = 37 mm and d = 1.2 mm. 
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In our case, the fabricated transducer array is only composed of piezoelectric elements bonded to each other by a 

non-conductive acrylic resin, PLEXCIL (ESCIL, Chassieu, France). The matching layers are not taken into account to 

facilitate the fabrication of the prototype. This kind of transducer arrays is manufactured at the beginning to study particularly 

the mechanical crosstalk due to the filling material and the acoustical crosstalk caused by water. This would make testing our 

crosstalk correction methods easier [26]. To study the electroacoustical behavior of the fabricated prototype, electrical and 

mechanical measurements are realized on both single element slender bar (elementary transducer) and transducer array using 

different experimental setups. 

(2) Displacement measurements 

The displacement at the surface of the transducers (single element and transducer array) is measured using the 

experimental setup shown in Fig. 4. The latter is composed of low-frequency generators (Agilent 33250A) utilized to excite the 

single element / array elements. Displacement at different points is achieved using a Polytech psv400 Laser Vibrometer 

(Polytec, Châtillon, France) automatically controlled by a computer. The computer is also used for the acquisition of the 

experimental signals and to obtain the displacement profile. 

 

Fig. 4 Displacement measurement set-up 

(3) Electrical impedance and crosstalk measurements 

The electrical impedance measurements are realized on both transducers, i.e. single element and transducer array using an 

impedance analyzer WK Wayne Kerr 6540A (Wayne Kerr Electronics, West Sussex, UK). Crosstalk measurements are 

performed on the transducer array using the experimental set-up shown in Fig. 5. In this case, the central element "1" is excited 

by a Burst Generator (Agilent 33250A) delivering an electrical signal V1. The neighboring elements “2”, “-2”, “3”, “-3”, “4” 

and “-4” are connected individually to a digital oscilloscope displaying the parasitic signal generated on each element (Vi, i = 

2,-2, 3,-3, 4, -4). 

The crosstalk level C (dB) is then deduced using the relation (1). 

Vi
C(dB) 20Log

V1

 
  

 
 (1) 

 

Fig. 5 Schematic description of the crosstalk measurement 
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 (4) Directivity pattern measurement 

The studied transducer (single element or transducer array) is also tested in tap water (filtered but non-degassed) at its 

resonance frequency Fr (maximum signal received by the hydrophone). This experiment allowed us to determine the far-field 

directivity pattern of both single element Frs = 448 kHz and transducer array Fra = 476 kHz. As illustrated in Fig. 6, the system 

is composed of a water tank (80  80  60 cm
3
) in which the emitter (single element or transducer array) and a fabricated 

polymer polyvinylidenfluoride (PVDF) hydrophone (ISEN, Lille, France) are placed at the far-field distance. Both emitter and 

receiver are aligned manually in the x, y and z directions, whereas the alignment in the φ direction and the rotation θ of the 

Hydrophone around the transducer are obtained automatically using a LabVIEW program. Low-Frequency Generator (LFG) is 

used to excite the emitter (single element or array's central element “1”) by applying a sine signal with 40 pulses and 10 Vp-p 

amplitude. The pulse duration Tp = 1/ Fr depends on the signal's frequency, i.e. Tps = 2.23 µs for the single element (at Frs = 448 

kHz) and Tpr = 2.1 µs for the transducer array (at Fra = 476 kHz). The electrical mismatch between the LFG and the emitter are 

not taken into account (no matching network is utilized). The emitted acoustic signal is then received by the Hydrophone and 

transmitted to a Filter / Amplifier (Rockland 442 HI / LO Filter), to filter the low and high-frequency noise and amplify the 

electrical signal before acquisition on the Oscilloscope (hp54600B). Finally, the signal is transmitted to the computer via a 

GPIB connection, for signal processing and directivity pattern computation. 

 
Fig. 6 Schematic description of the directivity pattern measurement 

3. Characterization of Single-element Transducer (Slender Bar) 

3.1.   Impedance measurement 

Firstly, the electrical impedance of a single element which is similar to the transducer array elements (Thickness * Width 

* Length = 3.3 * 0.7 * 37 mm
3
) is measured between 200 kHz and 1.8 MHz. Fig. 7 compares the experimental electrical 

impedance with which obtained numerically using 2D and 3D Finite Elements Models (FEM) developed in the ATILA code. 

2D and 3D models are composed respectively of isoparametric quadratic and hexahedral elements respecting the λ / 4 criterion. 

Only half of the domain is meshed due to symmetry. As expected, the curves computed using 2D and 3D FEM are similar. In 

both cases, the thickness vibration modes (fundamental thickness mode and its harmonic) are observed at the same resonance 

and anti-resonance frequencies. Nevertheless, the curve obtained using 3D FEM shows parasitic modes depending on the 

element length. Their effect on the element behavior will be discussed later. In addition to this, the numerical results are in 

good agreement with the experimental one. In both cases, two thickness modes are observed and parasitic length modes are 

also obtained. The noticed shift in the resonance and anti-resonance frequencies are certainly due to the PZ27 parameters 

utilized in the numerical models. 
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Fig. 7 Electrical impedance magnitude measured and computed using 

2D and 3D FE 

3.2.   Displacement measurements 

(1) Displacement in the middle of the element 

To determine the mechanical resonant frequency (maximum of displacement) is corresponding to the fundamental 

thickness mode, the experimental set-up presented previously in Fig. 4 is utilized to measure the displacement in the middle of 

the piezoelectric element. Fig. 8 shows the normalized displacement magnitude in the frequency domain. As expected the 

maximum of displacement is obtained at approximately 454 kHz which corresponds also to the electrical resonance frequency 

(minimum of impedance observed in Fig. 7). The latter is chosen as operating frequency for the next displacement and 

directivity pattern measurements. 

 

Fig. 8 Normalized displacement amplitude measured in the middle of 

the element 

(2) Displacement along the width (positions x1, x2, and x3) 

To observe the evolution of the displacement along the width of the slender bar (x-axis), measurements are realized 

systematically at different points x1 (black points), x2 (blue points) and x3 (green points) for a given position “y”. The results 

 

Fig. 9 Displacement amplitude along the width of the element (x-axis) 
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obtained are shown in Fig. 9. It is observed that for a fixed position “y” the displacement remains practically the same wherever 

the position “x” is, i.e. the displacement varies very little along the width of the element. On the other hand, it can be noticed 

that the displacement is not the same along the element's length (y-axis). 

(3) Displacement along the length (y-axis) 

 

Fig. 10 Displacement amplitude along the piezoelectric element's 

length (y-axis) 

The measurement of the displacement at different points along the transducer's length (y-axis) allowed us to obtain the 

curve shown in Fig. 10. The experiment is made relatively far from the edges to avoid their parasitic effects (y position varies 

from 4.5 mm to 32.5 mm). This figure indicates that the displacement measured at the surface of the element is not uniformed. 

As expected the obtained thickness mode is coupled to a parasitic length mode. In the area far from the transducer's edges, i.e. 

between yi and yj, the displacement's curve is quasi-sinusoidal. Consequently, the approximate expression of the resulting 

displacement (in the z-direction) can be written as [36]: 

z 0 1
L

2πy
u (y) A A cos

λ

 
   

 
 (2) 

where A0 represents the amplitude of the thickness mode (about 18 nm). It corresponds to the displacement's average value 

between yi and yj. A1 and λL are respectively the amplitude (about 6 nm) and the wavelength (about 4.5 mm) of the length 

mode. The presence of this parasitic mode is due to the transducer's finite length (37 mm). To evaluate the influence of this 

undesirable mode and its impact on the 2D approximation, directivity pattern measurements are carried out in the water. 

3.3.   Directivity pattern measurements 

(1) Measurement precautions 

To measure the transducer's radiation in water and obtain its directivity pattern with a minimum of errors, some conditions 

should be respected. First of all, at the emission level, it must be ensured that a suitable number of cycles is chosen to avoid the 

perturbation of the useful signal by the echoes reflected on the edges of the tank. Furthermore, the number of signals must be 

relatively important to obtain a quasi-permanent regime (40 cycles in our case). The distance D between the transmitter and 

the receiver must also be acceptable to satisfy the far-field conditions. This distance must respect the following relation: 

2

w

W
D

λ
  (3) 

where W represents the element's width and λw the wavelength obtained in water (for medical imaging applications) at the 

resonant frequency (448 kHz). 

As a result, we chose a distance between the transmitter and receiver of 13 cm to fulfill this condition. Special attention 

must also be paid to the transducer itself, it is important to realize a shielding around it to prevent the perturbation of the useful 
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signal (measured by the hydrophone) by the excitation signal. In our case, a simple layer of aluminum foil connected to the 

ground (Faraday cage) allowed us to overcome this problem. Fig. 11 shows the signals obtained before and after shielding. It is 

observed that the parasitic signal has been widely reduced. The last influencing parameter is the acoustic coupling substance 

introduced between the transducer and the water to ensure optimal transfer of the acoustic signal. In our study, we opted for the 

use of oil as an acoustic coupling substance which is introduced between the transducer and a protecting plastic film (Mylar) in 

contact with water. 

  
(a) Without shielding (b) With shielding 

Fig. 11 Signal measured using a PVDF hydrophone 

(2) Directivity pattern 

The measurement system exposed previously in Fig. 6, which is used to determine the far-field directivity pattern of the 

single element, for an angle θ varying from 0° to 60° by a step of 2°. The measurement is made at the frequency of 448 kHz 

corresponding to the maximum amplitude of the signal received by the hydrophone. The result obtained is shown in Fig. 12 in 

comparison with that determined by analytical and numerical (2D FE) calculations [37]. The analytical directivity is computed 

using the following relation: 

0

kW
sin( cos(θ))

2F (θ) sin(θ)
kW

cos(θ)
2

  (4) 

 
Fig. 12 Directivity pattern measured and computed using analytical and numerical methods 
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In this case, the acoustical source i.e. a single piezoelectric element of finite width W (0.7 mm) is considered mounted in 

a soft baffle and the displacement is uniform at its radiating surface. Furthermore, the situation of radiation in far-field is also 

respected. More details can be found in [38]. From Fig. 12 it is easily observed that the directivities obtained by measurement, 

analytical and numerical computations are similar, apart from a few differences in amplitude, certainly due to the contribution 

of the parasitic length mode mentioned previously (Fig. 10). This allows us to conclude that the effect of the parasitic length 

mode on the single element's directivity pattern can be neglected. 

4. Characterization of the Seven-element Transducer Array 

In this section, the fabricated transducer array (Fig. 3) is fully characterized using the experimental setups described 

previously in subsection 2.2. Indeed, the electrical impedance, the displacement, and the crosstalk are measured on each 

element of the transducer array. Moreover, the directivity pattern of the transducer array is measured and compared to the 

single element one. 

4.1.   Electrical impedance measurements 

Electrical impedance measurements are realized on the transducer array elements to check the quality of the fabrication 

process, i.e. the symmetry of the transducer array. Each element is connected to an impedance analyzer while its neighboring 

elements are grounded. The results obtained are shown in Fig. 13. After the analysis of Fig. 13(a), two thickness modes are 

observed, i.e. a fundamental thickness mode around the frequency Fr = 500 kHz and its harmonic around the frequency Fr = 

1.55 MHz. 

From Fig. 13 (b), it can be seen that the impedance curves of the elements “2” and “-2”, “3” and “-3”, “4” and “-4” are 

similar (less than 1% of difference), which indicates a good symmetry and validates the fabrication process. From the same 

figure, several parasitic vibrations are observed around the resonant frequency (minimum of impedance) making it difficult to 

distinguish contrary to the case of the single element (Fig. 7). These parasitic vibrations correspond to the undesired 

interactions between the array elements (crosstalk), which change the behavior of the individual elements. 

  
(a) Fundamental thickness resonant mode and its harmonic (b) Fundamental thickness resonant mode 

Fig. 13 Electrical impedance magnitude measured on the transducer array elements “1”, “2”, “-2”, “3”, “-3”, “4” and “-4” 

4.2.   Displacement measurements 

The experimental set-up presented in Fig. 4 is utilized to measure the displacement at the surface of the array elements.  

Measurements are first realized in the middle of the elements to determine their resonant frequency (maximum of 

displacement). In this case, each element is excited by a sinusoidal signal having a magnitude 10 V and a frequency varying 

from 400 kHz to 600 kHz while its neighboring elements are grounded. The experimental normalized displacement amplitudes 

are given in Fig. 14. The latter indicates the presence of strong crosstalk between elements, i.e. several displacement 

maximums are observed in the frequency band 450 kHz - 550 kHz which makes the result very different from an element to the  
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Fig. 14 Normalized displacement amplitude obtained on the transducer array elements 

other. Nevertheless, as expected the curves of the element “2” and “-2”, “3” and “-3”, “4” and “-4” are relatively similar due to 

the array symmetry. In the case of the central element “1”, a maximum of displacement is observed at the frequency 481 kHz, 

which is considered as the operating frequency for the rest of experiments. 

To observe the mechanical behavior of the transducer array (structure vibration) when the central element “1” is excited at 

the resonance frequency 481 kHz and its neighboring elements are grounded, displacement measurements are realized at the 

radiating surface of the array. Fig. 15(a) shows the displacement obtained at different points of the surface, i.e. 41 points along 

the length and 27 along the width of the transducer array. It is observed from this figure that the driven element “1” vibrates 

mainly in thickness mode but the displacement is not completely the same in all points (the displacement is not uniform), due 

to the parasitic length mode discussed previously in subsection 3.2. Furthermore, the presence of parasitic displacements on the 

passive elements “2, -2”, “3, -3” and “4, -4” indicates the importance of the interactions between the array elements (crosstalk). 

In addition to this, due to the limited number of elements in the transducer array (seven elements), the parasitic displacement 

measured on the third elements “4” and “-4” is significant compared to the one obtained on the elements “2, -2” and “3, -3”. In 

other words, the edge effects are not negligible. To quantify the crosstalk effects, the displacements measured at different 

points Pi (i=1,...41) along the length of the excited element “1” and its neighboring elements “2”, “3” and “4” are compared in 

Fig. 15(b). As said previously, a dominant thickness mode is obtained for the element “1” and significant parasitic 

displacements are observed on its passive neighboring elements, i.e. about 25% of the displacement amplitude on the element 

“2” and “3” and 40% on the element “4” due to the edge effects. 

  
(a) Displacement at the surface of the transducer array (b) Normalized displacement amplitude obtained on the elements 

“1”, “2”, “3” and “4” (points indexed from P1 to P41) 

Fig. 15 Displacement measured at the surface of the array when the element “1” is driven at its resonant frequency 481 kHz 
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To observe the evolution of the displacement along the width of each element of the transducer array, measurements are 

also realized in three points x1, x2, and x3 situated at the position y0= L/3 (L element length) to avoid edge effects. The results 

obtained in the frequency domain are plotted in Fig. 16. It is seen that the displacement remains practically the same wherever 

the position “x” is, i.e. the displacement varies very little along the width of the element. Nevertheless, significant differences 

can be observed for specific frequencies e.g. 513 kHz. In this case, differences about 20%, 25% and 10% are obtained for the 

elements “2”, “3”, “4” respectively. In addition to this, it can be noticed that the displacement curves are a little different from 

that obtained previously in the middle of the array elements i.e. y = L/2 (Fig. 14). However, for the central element “1” a 

maximum of displacement is obtained at the frequency 481 kHz as in the case of the measurements are done in the middle of 

the elements. 

 
Fig. 16 Displacement amplitude measured along the width of the elements (points x1, 

x2, x3) at the frequency 481 kHz 

4.3.   Directivity pattern measurements 

 
Fig. 17 Transducer array's experimental and numerical directivity patterns 

compared to the single element one 

The directivity pattern of the seven-element transducer array is measured when the central element “1” is driven at the 

frequency 481 kHz and its neighboring elements are grounded. Measurements are carried out using the experimental set-up 

described previously in Fig. 6, between 0° and 60° at intervals of 2°. The experimental results are then compared to those 

obtained numerically using 2D Finite Elements Method (Fig. 17) [27]. According to Fig. 17 it is clear that the experimental 

directivity pattern is similar to that predicted numerically (2D FE). In both cases, the curves present a main lobe in the 

directions ± 20° and other side lobes in the directions ± 55°. Moreover, the experimental directivity pattern of a single element, 
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which can be considered as the ideal case, has also been added to Fig. 17. Regarding the results, it is clear that the directivity 

pattern of the transducer array is strongly disturbed by the interactions between the array elements (crosstalk). Some 

differences between experimental and numerical results can be noted because the fabricated device is not perfectly matched to 

the model structure in terms of symmetry and material properties. 

4.4.   Crosstalk measurements 

In the previous electrical and mechanical experiments (electrical impedance, displacement and directivity pattern 

measurements) strong interactions are observed between the transducer array elements. The objective of this subsection is thus 

to evaluate the crosstalk level in the fabricated prototype using the relation (1). The measurements are realized utilizing the 

experimental set-up shown in Fig. 5. In this case, the central element “1” is excited in transient domain by a three-cycle 

sinusoidal signal at the frequency of 500 kHz with a magnitude of 10 V. The parasitic signals measured on the neighboring 

elements “2”, “3”, “4” and the corresponding crosstalk levels are displayed in Fig. 18. This latter shows clearly the presence of 

significant parasitic signals on these passive elements. Consequently, high levels of crosstalk are obtained i.e. about -7.3 dB, 

-11 dB and -12 dB on the first, second and third neighboring elements respectively. 

  
(a) Signals measured on the elements “1” (excited), “2”, 

“3” and “4” 

(b) Crosstalk signals measured on the elements “2”, “3” 

and “4” 

Fig. 18 Excitation and crosstalk signals measured on the elements “1”, “2”, “3” and “4” 

5. Conclusions 

In this paper, a fabricated piezoelectric transducer array is characterized experimentally by electrical and mechanical 

measurements. To better understand the transducer array's behavior and to facilitate the interpretation of the obtained results, 

experiments are first performed in the case of a single piezoelectric element (slender bar) considered as a reference case. The 

manufactured seven-element transducer array is then characterized in one hand by electrical impedance measurements to 

check its symmetry and validate the fabrication process. On the other hand, displacement measurements are realized at the 

transducer's radiating surface to determine its thickness resonant frequency considered as the operating frequency and to 

observe its mechanical behavior. As expected, the results have shown that the structure vibrates mainly in thickness mode, but 

the displacement is not uniform along the length of the elements due to the contribution of the parasitic length mode. 

Furthermore, important parasitic displacements are obtained on the neighboring passive elements because of the crosstalk 

phenomenon. Consequently, high levels of crosstalk are measured, i.e. about -7.3 dB, -11 dB, and -12 dB, on the first, the 

second and the third neighboring elements respectively. Finally, the effects of the undesirable displacements (crosstalk) on the 

array's radiation in water, is observed in the obtained directivity pattern in comparison with that of the reference case (single 

element). 
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