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Abstract 

Previous studies on Artificial Neural Network (ANN)-based automatic berthing showed considerable increases 

in performance by training ANNs with a set of berthing datasets. However, the berthing performance deteriorated 

when an extrapolated initial position was given. To overcome the extrapolation problem and improve the training 

performance, recent developments in Deep Learning (DL) are adopted in this paper. Recent activation functions, 

weight initialization methods, input data-scaling methods, a higher number of hidden layers, and Batch 

Normalization (BN) are considered, and their effectiveness has been analyzed based on loss functions, berthing 

performance histories, and berthing trajectories. Finally, it is shown that the use of recent activation and weight 

initialization method results in faster training convergence and a higher number of hidden layers. This leads to a 

better berthing performance over the training dataset. It is found that application of the BN can overcome the 

extrapolated initial position problem. 
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1. Introduction 

When a ship approaches a port or harbor, which is called a “berth operation,” slow speeds cause nonlinear characteristics 

in a ship’s motion, and the ship undergoes sudden changes in its rudder angle and engine revolutions per second (RPS). For this 

reason, unlike ship navigation, where ships sail almost at a constant speed, the ship berthing problem is a challenging one. In 

order to overcome these difficulties, many intelligent control algorithms have been proposed, and one of them is the Artificial 

Neural Network (ANN) or simply the Neural Network (NN). With the rapid development of Deep Learning (DL), systems 

based on neural networks have drastically increased and demonstrate extraordinary performance. Therefore, many studies on 

the application of neural networks to ship berthing systems have been conducted. 

Im and Hasegawa [1] proposed the “Parallel Neural Network,” which makes the neural network focus on each task by 

changing the ordinary neural network architecture. Im and Hasegawa [2] attempted to use another neural network to identify 

ship motions so that the neural network system could cope with wind disturbances. Im [3] proposed an algorithmic method 

using a neural network to allow ships to berth safely, even when they approached from unusual directions. Bae et al. [4] 

compared two neural networks with different input configurations and showed that both input configurations led to a similar 

performance. Ahmed and Hasegawa [5] used a virtual window concept and nonlinear programming method to generate 

teaching data consistently. Im and Nguyen [6] tried solving the problem in which a neural network trained with a ship berthing 

dataset at one port can only be used at that particular port but not at others. The researchers adopted a head-up coordinate 

system instead of a north-up coordinate system, and the head-up coordinate system allowed the neural network trained with a 

ship berthing dataset at one port to be used at another port as well. 
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However, although many studies on ANN-based automatic berthing have been conducted to date, they have missed to 

address several important issues. First, they neither considerd to use recent activation functions nor mentioned about weight 

initialization methods. Second, they used an inefficient optimizer, although, there are other optimizers with higher 

performance that have been proposed and verified. Third, there are no consistent method for input data scaling, and some 

previous studies scaled their input data in inefficient ways. Fourth, no regularization methods can prevent the overfitting 

problem have been considered. Fifth, owing to the overfitting problem caused by the lack of a regularization method, poor 

berthing performance occurred when neural networks were given extrapolated initial positions. Therefore, most of the previous 

studies showed berthing trajectories with initial positions from training datasets and interpolated or slightly extrapolated initial 

positions only. 

In this paper, recent activation functions, weight initialization methods, optimizers, input scaling methods, neural 

networks with a higher number of hidden layers, and Batch Normalization (BN) proposed by Loffe and Szegedy [23] are 

introduced and applied to neural network models. Their effectiveness is verified based on the loss functions, berthing 

performance histories and berthing trajectories. 

2. Mathematical Model of Ship Maneuvering 

To build a mathematical model of ship maneuvering, a definition of a coordinate system and principal particulars of a ship 

are first presented in Fig. 1 and Table 1, respectively. And then, a mathematical model of ship maneuvering and modeling of a 

propeller and rudder are presented in the following two subsections. 

 

Fig. 1 Coordinate system 

where x  and y  are the actual positions of the ship in meters, and   and   are the normalized positions of ,x y  by the length 

of the ship. 

Table 1 Principal particulars of a target ship 

HULL 

Length overall OAL  [m] 188.0 

Length between perpendiculars L  [m] 175.0 

Breath B  [m] 25.4 

Draft d  [m] 8.50 

Block coefficient BC  0.559 

RUDDER 

Height RH  7.70 

Area ratio / ( )RA Ld  1/45.8 

Aspect ratio   1.827 

PROPELLER 

Diameter D  [m] 6.5 

Pitch ratio /P D  1.055 

Expanded area ratio  0.730 



International Journal of Engineering and Technology Innovation, vol. 10, no. 1, 2020, pp. 75-90 

 

77 

2.1.   Mathematical model for ship-maneuvering problem 

In the ship-maneuvering problem, a planar motion includes only surge, sway and yaw motions, which are considered out 

of six-degree-of-freedom motions. The basic equations of motion for ship maneuvering can be expressed as follows: 

( ) surgem u vr F 
 

(1) 

( ) swaym v ur F 
 

(2) 

z yawI r M
 

(3) 

where m  is the mass, and , ,u v r  are the velocities in the surge, sway, yaw directions, respectively. zI  is the moment of 

inertia with respect to the z-axis, and , ,surge sway yawF F F  are the surge and sway forces and yaw moment, respectively. The dot 

represents the time derivative. The right terms in Eqs. (1)-(3) can be dealt with using the established procedure from Newman 

[24], and Eqs. (1)-(3) can be expressed as Eqs. (4)-(6). 

( ) ( )x ym m u m m vr X   
 

(4) 

( ) ( )y xm m v m m ur Y   
 

(5) 

( )z z GI J r N x Y  
 

(6) 

where , ,x y zm m J  are the added mass in the surge and sway directions and the added moment of inertia, respectively. ,X Y  

are the hydrodynamic forces, and N  is the hydrodynamic moment. Gx  is the distance from the midship to the center of 

gravity. The hydrodynamic forces and moment are generally expressed as Eqs. (7)-(9), which were proposed by the 

Maneuvering Modeling Group (MMG). 

H P R W TX X X X X X    
 

(7) 

H P R W TY Y Y Y Y Y    
 

(8) 

H P R W TN N N N N N    
 (9) 

where subscripts , , , ,H P R W T  refer to the hull, propeller, rudder, wind and tug, respectively. However, due to this paper 

focuses on the application of recent developments in DL; the external forces such as the wind and tug are not considered. 

A ship’s maneuvering displacements and velocities can be calculated numerically by integrating Eq. (10)-(12) using the 

Runge–Kutta 4
th

-order method. 
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2.2   Modeling of propeller and rudder 

Owing to the kinematics of the mechanical system of the rudder and engine, time delays between commands of operation 

and the resultant mechanical response may occur. The equations from Shon [13] to consider this physical time-delay effect are 

used here. First, the equation to consider the time-delay effect for the propeller RPS is Eq. (13). 
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 * / nn n n T   (13) 

where n  is the RPS, n  is a derivative of RPS with respect to time, and 
*n  is the target RPS. 

nT  is a time-delaying constant 

for the RPS, and this variable is set to 15 s in this paper. Next, equations to consider the time-delay effect for a rudder are Eqs. 

(14)-(15). 

* *

max( ) / ;  | | | |E ET T          (14) 

* *

max max( )| |; | |> | |Esign T          (15) 

where 
*  is the target rudder angle, 

ET  is the time-delaying constant for the rudder, and max  is the maximum angular velocity 

of the rudder. In this paper, 
ET  is set to 2.5 s, and max  is set to 3.0°/s. 

3. Artificial Neural Network and Important Factors in Training the Network 

3.1.   Artificial neural network 

The basic architecture of the neural network used in this paper is illustrated in Fig. 2,   is x /L, and   is y /L, in which 

,x y  are the relative positions of the ship from the target berthing point, and L  is the LBP of the ship. , ,u v r  are the 

velocities of the ship in the surge, sway, and yaw directions, respectively, and   is the heading angle of the ship. In the output 

layer, arg arg,t et t etn  are the target rudder angle and target RPS, respectively. This input layer configuration has been used in 

several papers such as those of Im and Hasegawa [1] and Ahmed and Hasegawa [5]. The number of hidden layers and the size 

of the neural network will be addressed in Section 3.5. 

 

 

(a) (b) 

Fig. 2 Basic architecture of neural network, and concept of imaginary line 

The imaginary line shown in Fig. 2 is used as a guideline during berthing. It is known that as the imaginary line provides 

the additional input variables of 
1d  and 

2d , which can improve the berthing performance by the neural network. The angle 

between the x-axis and the imaginary line is set to 20° in this paper. 

For the teaching data preparation, the patterns of the berthing trajectories, rudder angle, and RPS control from Nguyen 

and Im [14] and Bae et al. [4] are referred. The teaching dataset used in this paper is shown in Fig. 3, where the red crosses are 

the initial positions in the teaching data, the target berthing facility is drawn in blue, and the orange straight line is the 

imaginary line.  



International Journal of Engineering and Technology Innovation, vol. 10, no. 1, 2020, pp. 75-90 

 

79 

 

Fig. 3 Teaching dataset 

The end of the berthing operation is defined as a status meeting and the following three conditions according to Ahmed 

and Hasegawa [15]. First, the aim is to berth at a distance of around the length of 1.5 times farer than where the ship is from the 

berthing facility. Second, the relative heading angle to the berthing facility should be smaller than 30°. Third, the velocity of 

the ship should be slower than 0.2 m/s. 

The overall flowchart for the automatic ship berthing with a neural network is shown in Fig. 4, the left side of the dotted 

line is the preparation step for the neural network model, and the right side is a processing loop with the trained neural network. 

In this paper, building and training the neural networks are carried out with the open-source software library Tensorflow 

developed by the Google Brain Team. 

 

Fig. 4 Flowchart for ANN-based ship berthing system 

3.2.   Activation function and weight initialization 

Choosing both an appropriate activation function and weight initialization method is quite important in building a neural 

network. The training performance and training speed can be greatly affected by these two parameters.  

For the activation function, many previous studies such as those of Im [3], Bae et al. [4], Ahmed and Hasegawa [5], and 

Lee and Lee et al. [26] used the sigmoid function. However, it is known that the sigmoid function intrinsically has some 

disadvantages in training neural networks. According to Nwankpa et al. [25], the drawbacks of the sigmoid function are sharp 

damp gradients during backpropagation, gradient saturation, slow convergence, and nonzero-centered output. Thus, many 

studies have been carried out to develop better activation functions to overcome the problems of the sigmoid function. The 

activation functions that are popularly used these days are the tangent hyperbolic and Rectified Linear Unit (ReLu) functions 

proposed by Nair and Hinton [7]. The tangent hyperbolic function solves the problem of the limitation in the gradient update 

direction that exists in the sigmoid function, and results in a faster training speed. The ReLu function avoids the gradient 

vanishing problem and lowers the complexity of the calculations as its derivative function is relatively simple. The equations 

for the sigmoid, tangent hyperbolic, and ReLu functions are shown in Eqs. (16)-(18): 

 ( ) 1/ 1 xsigmoid x e   (16) 
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e e








 (17) 

( ) ; 0

( ) 0;

relu x x        x

relu x  otherwise

 


  

(18) 

For the weight initialization method, the normal distribution with a mean of zero and a standard deviation of 0.01 was 

mostly used. Later, however, many studies showed that the weight initialization method can greatly affect the training 

performance, and many other weight initialization methods have been proposed. Among the proposed methods, the two most 

popular at present are the Xavier initialization (also called the Glorot initialization) by Glorot and Bengio [16] and the He 

initialization by He et al. [17]. According to Glorot and Bengio [16], the Xavier initialization results in good training 

performance with the sigmoid and tanh functions. According to He et al. [17], the He initialization is very compatible with the 

ReLu function. The equations for the Xavier and He initialization methods are based on a normal distribution where a mean 

value is set to zero and variance is set to Eq. (19) for the Xavier initialization and Eq. (20) for the He initialization. 

 2

Xavier in out2 / n n    (19) 

2

He in2 / n   (20) 

where inn  and outn  represent the numbers of the previous and next layer’s nodes.  

3.3.   Optimizer 

In previous studies, such as those of Im and Hasegawa[1], Im and Hasegawa [2], Im [3], Ahmed and Hasegawa [5], and 

Im and Nguyen [6] adopted the Levenberg–Marquardt approach proposed by Levenberg [9]. However, according to Bazzi et al. 

[10], who analyzed the training performance of several popular optimizers including Levenberg–Marquardt, the Root Mean 

Square Propagation (RMSProp) method proposed by Tieleman and Hinton [11] is faster and computationally more efficient, 

and requires fewer hyperparameters than Levenberg–Marquardt. Furthermore, Kingma and Ba [12] showed that the Adam 

optimizer proposed by Kingma and Ba [12], which is a combination of RMSprop and Momentum proposed by Rumelhart et al. 

[19], outperforms RMSprop. Therefore, Adam is adopted as an optimizer in this paper. The learning rate of the Adam is set to 

1e-3, which results in a robust training performance in general. For the loss function to be minimized by Adam, the Mean 

Square Error (MSE) is used. 

3.4.   Input data scaling 

Table 2 List of input data-scaling methods 

Scaling #1 0 to 1 Min-Max Scaling Scales inputs to range of 0 to 1 

Scaling #2 -1 to 1 Min-Max Scaling Scales inputs to range of -1 to 1 

Scaling #3 Standard Scaling Standardizes inputs by removing mean and scaling to unit variance 

Because the input data of a ship berthing dataset for neural network contains variables of different units, the weights are 

likely to be updated in an unstable way during training when input data scaling is not applied because of the different scales of 

each input variable. However, among the previous studies on ANN-based automatic berthing, some did not employ a scaling 

method for their input data, and some applied a scaling method on some input variables only. A few of the studies scaled the 

input data to between 0 and 1. The commonly used input data-scaling methods are presented in Table 2 and Eqs. (21)-(23). 

 

( min( )) / (max( ) min( ))x x X X X   
 (21) 

( 2 min( )) / (max( ) min( ))x x X X X    
 (22) 
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( ( )) / ( )x x mean X std X  
 (23) 

where x  is the sampled data, x  is the scaled sampled data, and X  is a set of data. 

3.5.   Number of hidden layers 

The number of hidden layers has a close relationship with the neural network model’s system capacity. It is commonly 

known that if a neural network model has a large number of hidden layers; it has a large capacity to understand the complexity 

of a given training dataset and to have a complex system. However, simply using many hidden layers does not guarantee the 

neural network’s good performance. Numbers of hidden layers of 5, 10, 20, 30, and 40 are considered and investigated in 

Section 4. The hidden layer size is also an important factor in the neural network architecture, but in order to build a neural 

network model for a complex system, the number of hidden layers is more influential. Generally, the hidden layer size is set to 

2
n
. n is 5 for simple systems, 6 for a slightly complex systems, and 8–9 for complex systems. In this paper, the hidden layer size 

is set to 2
6
. 

3.6.   Overfitting prevention 

Algorithm 1 Batch Normalization 

Input: Values of x  over a mini-batch: 
1 ... m{ };x  Parameters to be learned: ,   

Output:  ,BN ( )}ii
y x   

1

1 m

i

i

x
m




                       // mini-batch mean 

2 2

1

1
( )

m

i

i

x
m

  


       // mini-batch variance 

2
ˆ

ix
x







 





                     // normalize 

γ,
ˆγx BN ( )i i iy x     // scale and shift 

Overfitting may occur when a neural network is trained with a given training dataset over many epochs because the 

weights become too fit to the given dataset only. Then, the performance of the neural network fails with new input data. In an 

automatic berthing using a neural network, if overfitting occurs, the neural network will show poor berthing performance when 

a new initial position is given. The poor performance with the overfitting issue occurs more clearly when new input data is 

extrapolated rather than interpolated by the neural network. In previous studies on ANN-based automatic berthing, no 

regularization methods to prevent overfitting were considered. Some papers such as Bae et al. [4] showed that poor berthing 

performance occurs owing to an extrapolated initial position. In order to deal with the poor performance caused by the 

extrapolation, the BN is adopted. The advantages of the BN are as follows. It allows for a higher learning rate, reduces the 

dependence of initial weights, and provides a regularization effect to prevent overfitting. The pseudocode of BN is shown in 

Algorithm 1. Where   is a small value of about 10
-6

 to prevent division by zero. 

4. Application of Recent Developments in Deep Learning to Automatic Berthing 

In this section, the effects of activation functions, weight initialization methods, input data-scaling methods, numbers of 

hidden layers, and the BN that were introduced in the previous section are investigated in terms of the neural network’s training 

performance and berthing performance. 
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As to the activation functions and weight initialization methods, nine different neural network models with nine 

combinations from three activation functions of the sigmoid, tangent hyperbolic (tanh), and ReLu; and three weight 

initialization methods of the normal distribution, Xavier, and He are built. In order to show the training progress over epochs, 

a loss function history graph is presented in Fig. 5. Details of the training models are listed in Table 3 for better reproducibility. 

 

Fig. 5 Loss function histories with respect to activation and weight initialization methods 

Table 3 Details of training models with respect to activation and weight initialization methods 

Hidden 

layer 

size 

Number of 

hidden layers 

Optimizer, 

learning rate 

Number of 

epochs 

Batch 

size 

Activation 

function 
Weight initialization 

Input 

data-scaling 

method 

2
6
 10 

Adam,  

1e-3 
1000 2

7
 

sigmoid, 

tanh, ReLu 

normal distribution, 

Xavier, He 

-1 to 1 Min-Max 

Scaling 

The number of hidden layers is set to 10 to make use of Deep Neural Networks (DNNs). The effect of the number of 

hidden layers is investigated later in this section. The batch size is set to 2
7 
because this is usually set to 2

n
, where n is generally 

5 to the minimum and 10 to the maximum. 

In Fig. 5, the models with weight initialization by normal distribution led to a slow training speed and poor convergence. 

The models using the sigmoid function show a slow training speed as well. It is shown that the traditional activation function 

and weight initialization method are inefficient in terms of training the DNN for automatic ship berthing. The best combination 

of the activation function and weight initialization method is ReLu-He. He et al. [17] claimed that the ReLu function is very 

compatible with He weight initialization. 

For the input data-scaling methods, the effect of each input data-scaling method is analyzed with a loss function history. 

The loss function history is shown in Fig. 6, and details of the training models with respect to the input data-scaling method are 

listed in Table 4. 

Table 4 Details of training models with respect to activation and weight initialization methods 

Hidden 

layer size 

Number of 

hidden layers 

Optimizer, 

learning rate 

Number of 

epochs 

Batch 

size 

Activation 

function 

Weight 

initialization 
Input data-scaling method 

2
6
 10 

Adam,  

1e-3 
1000 2

7
 ReLu He 

No Scaling, 

x y-Only Scaling, 

0 to 1 Min-Max Scaling, 

-1 to 1 Min-Max Scaling, 

Standard Scaling 

Where the training model with No Scaling means that the input data of  1 2, , , , , , ,x y u v r d d , where ,x y  are the actual 

,x y  coordinates of the ship from the berthing facility, are used for the neural network. The training model with the x y-Only 

Scaling means that the input data of  1 2, , , , , , ,u v r d d    are used for the model. 
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In Fig. 6, the significance of application of the input data-scaling method is clearly seen by its training speed and 

convergence. Standard Scaling shows the fastest training speed and best convergence with the least oscillation, while No 

Scaling resulted in poor training performance. 

 

Fig. 6 Loss function histories with respect to input data-scaling methods 

Next, the effect of the number of hidden layers is analyzed based on the loss function history and berthing performance 

history with initial positions from the training dataset. The berthing performance history is obtained as in Algorithm 2. 

Algorithm 2 Procedure for obtaining berthing performance history 

Set a period for a berthing performance test  

Set initial positions of the ship for a berthing performance test initP  

Initialize an array to store berthing performance history perfArr  

for epoch = 1, 2, ... do 

Train the neural network with a given training dataset 

if epoch % performance testPeriod = 0 then 

Test the neural network with initP  

Measure the distance between the target berthing point and the arrival position of the ship 

Store the distance value in perfArr  

end if 

end for 

return perfArr  

The loss function history and berthing performance history with initial positions of the ship from the training dataset with 

respect to the number of hidden layers are shown in Fig. 7. Details of the training models are listed in Table 5. In Fig. 7(a), 

n_hidden_layer of 5 and 10 result in the most stable training, whereas the others show somewhat unstable training with 

fluctuations. In Fig. 7(b), the y-axis of the distance represents the distance gap between the target berthing point and arrival 

position of the ship, as shown in Algorithm 2. Thus, when the distance is zero, this indicates the highest value and thus the 

highest performance. The edges of the shaded areas in Fig. 7(b) represent the actual data. It is shown that the training model 

with the n_hidden_layer of 10 shows the highest performance, and an unnecessarily complex neural network model with many 

hidden layers decreases the performance. 

Table 5 Details of training models with respect to number of hidden layers 

Hidden 

layer size 

Number of 

hidden layers 

Optimizer, learning 

rate 

Number of 

epochs 
Batch size 

Activation 

function 

Weight 

initialization 

Input data-scaling 

method 

2
6
 5, 10, 20, 30, 40 Adam, 1.0e-3 1000 2

7
 ReLu He Standard Scaling 

performance testPeriod
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(a) Loss function histories 

 

(b) Berthing performance histories with initial positions from training dataset 

Fig. 7 Loss function and berthing performance histories with respect to number of hidden layers 

Finally, to verify the model’s universal berthing performance, the effect of using the BN to prevent overfitting and to 

improve the neural network’s performance is analyzed by the loss function history and berthing performance history with 

initial positions from the training dataset and a set of new initial positions that are not included in the training dataset. The set 

of new initial positions is shown in Fig. 8, where the red crosses are the initial positions in the teaching data and the blue ships 

represent the new initial positions. 

 

Fig. 8 Set of new initial positions for berthing performance history to verify universal berthing performance 

Table 6 Details of training models when BN is used 

hidden 

layer 

size 

number of 

hidden layers 

optimizer, 

learning rate 

number of 

epochs 

batch 

size 

activation 

function 

weight 

initialization 

input 

data-scaling 

method 

use of 

BN 

2
6
 10 

Adam,  

1e-3 
1000 2

7
 ReLu He Standard Scaling 

True, 

False 

The loss function and berthing performance histories, and details of the training models with respect to the use of the BN, 

are shown in Fig. 9 and Table 6, respectively. In Fig. 9(a), it can be seen that the BN prevents overfitting and stabilizes the 
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training process. The performances in Fig. 9(b) show that the model with BN outperforms the model without BN not only for the 

initial positions from the training dataset but also for the new initial positions that are not included in the training dataset. 

 

(a) Loss function histories 

 

(b) Berthing performance histories 

Fig. 9 Loss function and berthing performance histories when BN is used 

 
Algorithm 3 Trained model selection algorithm for neural networks for automatic ship berthing 

Initialize an array to store harmonic mean values 
hmArr  

Set the berthing performance history data with the initial positions from the training dataset X  

Set the berthing performance history data with the new initial positions out of the training dataset Y  

for each x X  and y Y  then 

Concatenate X  and Y  XY  

   min( ) / max( ) min( )x x XY XY XY      // 0 to 1 Min-max Scaling 

   min( ) / max( ) min( )y y XY XY XY     

   2 /hm x y x y       // harmonic mean 

Store hm  in hmArr  

end for 

Index of the best model is arg max( )hmArr  

return argmax( )hmArr  
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Although the trained model with the BN shows good and stable performance over epochs, it is ideal to select the 

best-trained model of them all. In order to select the best-trained model, a trained model selection algorithm for neural network 

models for automatic berthing using the harmonic mean is proposed. The trained model selection algorithm is shown in 

Algorithm 3. 

We adopted the harmonic mean to penalize cases where the gap between the berthing performances with the initial 

positions from and out of the training dataset is high, meaning that the model is overfit to the given training dataset and has a 

poor universal berthing performance. It has been shown that the use of the recent activation functions, weight initialization 

method, and input data-scaling methods resulted in faster training speeds and better convergence of the loss function. In 

addition, the BN improved the actual berthing performance for universal use and stabilized the training process. With the 

trained model selection algorithm, the two best-trained models were selected for the final simulation in Section 5. One is from 

the trained models with the BN, and the other is from the trained models without the BN. The significance of the BN 

application is shown and discussed in the next section. 

5. Simulation and Results Discussion 

In this section, the berthing trajectories by two different trained models with and without the BN are presented to show 

how the BN improves the neural network for ship berthing and solves the extrapolation problem. First, berthing trajectories 

with the initial positions from the training dataset are presented. And then, the berthing trajectories with interpolated and 

extrapolated initial positions are presented next, respectively. In the berthing simulations in this section, the initial u  is set to 

1.5, and the initial n  is set to 0.5 for all cases. 

To validate if the two trained neural network models perform efficiently when initial positions from a training dataset are 

given, berthing trajectories with initial positions from a training dataset are presented in Fig. 10. As expected from the berthing 

performance history in Fig. 9(b), similar berthing performance and trajectories are shown with the initial positions from the 

training dataset as shown in Fig. 10(a)-(i), meaning that both trained models are trained well for the given training dataset. 

   

(a) ( , ,   ): (7, 7, 250°) (b) ( , ,   ): (9, 7, 210°) (c) ( , ,   ): (11, 7, 250°) 

   

(d) ( , ,   ): (7, 5, 220°) (e) ( , ,   ): (9, 5, 220°) (f) ( , ,   ): (11, 5, 250°) 

Fig. 10 Berthing trajectories with initial positions from training dataset (red: with BN, blue: without BN) 
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To validate if the two trained neural network models perform efficiently when interpolated initial positions are given, 

berthing trajectories with the interpolated initial positions are presented in Fig. 11. It can be observed that when the interpolated 

initial positions are given, both trained models showed successful berthing performances with similar berthing trajectories as 

shown in Fig. 11(a)-(f) 

In the following simulations, the trained models are given three types of extrapolated initial positions. The types of 

extrapolated initial positions differ by the magnitude of extrapolation. 

Berthing trajectories with the first type of extrapolated initial position are shown in Fig. 12. It can be observed that although 

the trained model without the BN shows good berthing performance in a few cases such as Fig. 12(a)-(b), it also shows poor 

performance as shown in Fig. 12(c)-(d), while the model with the BN performs successfully in all the cases. In addition, it can be 

seen that the two trained models control quite differently to reach the target berthing point, as seen in Fig. 12(e)-(f). 

   

(g) ( , ,   ): (7, 3, 270°) (h) ( , ,   ): (9, 3, 270°) (i) ( , ,   ): (11, 3, 270°) 

Fig. 10 Berthing trajectories with initial positions from training dataset (red: with BN, blue: without BN) (continued) 

   

(a) ( , ,   ): (6, 6, 220°) (b) ( , ,   ): (8, 6, 240°) (c) ( , ,   ): (10, 6, 240°) 

   

(d) ( , ,   ): (6, 4, 240°) (e) ( , ,   ): (8, 4, 250°) (f) ( , ,   ): (10, 4, 240°) 

Fig. 11 Berthing trajectories with interpolated initial positions (red: with BN, blue: without BN) 
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(a) ( , ,   ): (8, 2, 280°) (b) ( , ,   ): (8, 8, 240°) (c) ( , ,   ): (12, 4, 260°) 

   

(d) ( , ,   ): (10, 2, 270°)  (e) ( , ,   ): (10, 8, 240°) (f) ( , ,   ): (12, 6, 250°) 

Fig. 12 Berthing trajectories with extrapolated initial positions, Type 1 (red: with BN, blue: without BN) 

   

(a) ( , ,   ): (14, 2, 280°) (b) ( , ,   ): (14, 4, 260°) (c) ( , ,   ): (8, 10, 210°) 

   

(d) ( , ,   ): (10, 10, 230°) (e) ( , ,   ): (12, 10, 250°) (f) ( , ,   ): (14, 6, 250°) 

Fig. 13 Berthing trajectories with extrapolated initial positions, Type 2 (red: with BN, blue: without BN) 



International Journal of Engineering and Technology Innovation, vol. 10, no. 1, 2020, pp. 75-90 

 

89 

Next, berthing trajectories with the second type of extrapolated initial position are shown in Fig. 13. As the more 

extrapolated initial positions are given in the cases in Fig. 13, the trained model without the BN suffers from the extrapolation 

issue even more as shown in Fig. 13(a)-(e). The only case where the trained model without the BN performs well is when it 

berths in a straight line as shown in Fig. 13(f). 

Finally, berthing trajectories with the third type of extrapolated initial position are shown in Fig. 14, in which the 

extrapolation of initial positions is the greatest in order to clearly see the effect of the BN. In Fig. 14. The model without the BN 

performs poorly overall owing to the extrapolation problem. The effectiveness of application of the BN is clear, as the BN 

improves the neural network model for more general use. 

6. Conclusion 

We showed that with the application of recent activation functions, weight initialization methods, input data-scaling 

methods, and a higher number of hidden layers, faster training speed and better training convergence can be achieved. In order 

to observe the progress of the berthing performance over epochs and select the best-trained model, the algorithm for obtaining 

the berthing performance history and the model selection algorithm were proposed as Algorithms 2 and 3, respectively. Last, 

the use of the BN can stabilize the training process and solve the extrapolation problem by preventing overfitting. A neural 

network model with the BN was able to perform successfully, not only with interpolated and slightly extrapolated initial 

positions but also with greatly extrapolated initial positions. This makes the neural network models more universal for 

automatic berthing. 
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(a) ( , ,   ): (18, 4, 270°) (b) ( , ,   ): (14, 6, 260°) (c) ( , ,   ): (18, 6, 230°) 

   

(d) ( , ,   ): (8, 14, 180°) (e) ( , ,   ): (10, 14, 190°) (f) ( , ,   ): (14, 14, 210°) 

Fig. 14 Berthing trajectories with extrapolated initial positions, Type 3 (red: with BN, blue: without BN) 
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