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Abstract 

With the increasing incidence and prevalence of chronic brain injury patients and the current financial 

constraints in healthcare budgets, there is a need for a more intelligent way to realise the current practice of 

neuro-rehabilitation service provision.  Brain-computer Interface (BCI) systems have the potential to address this 

issue to a certain extent only if carefully designed research can demonstrate that these systems are accurate, safe, 

cost-effective, are able to increase patient/carer satisfaction and enhance their quality of life. Therefore, one of the 

objectives of the proposed study was to examine whether participants (patients with brain injury and a sample of 

reference population) were able to use a low cost BCI system (Emotiv EPOC) to interact with a computer and to 

communicate via spelling words. Patients participated in the study did not have prior experience in using BCI 

headsets so as to measure the user experience in the first-exposure to BCI training. To measure emotional arousal of 

participants we used an ElectroDermal Activity Sensor (Qsensor by Affectiva). For the signal processing and feature 

extraction of imagery controls the Cognitive Suite of Emotiv's Control Panel was used. Our study reports the key 

findings based on data obtained from a group of patients and a sample reference population and presents the 

implications for the design and development of a BCI system for communication and control.  The study also 

evaluates the performance of the system when used practically in context of an acute clinical environment. 
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1. Brain—Machine Interface: Closer to Therapeutic Reality?  

Brain Computer Interface (BCI) systems are considered one of the innovations that can potentially change the 

management of disability for the human race. Global interest in the use of BCI in neurorehabilitation and the ethical challenges 

stemming from that encompasses a diverse group of professionals [1]. BCI systems establish a direct link between a brain and a 

computer by transforming some measurable neurophysiological signals into computer commands for devices such as computers, 

switches or prostheses [2-6] without the use of any motor control by users [7- 8]. The clinical use of BCI consists mainly of 

application to patients with substantial deficits in communication and motor function [4, 9-10]. Studies have shown that the use 

                                                           
*
 
Corresponding author. E-mail address: msakel@nhs.net

   

  
Tel.: +886-5-6315368; Fax: +886-5-6314486

 



International Journal of Engineering and Technology Innovation, vol. 5, no. 3, 2015, pp. 165-177 

Copyright ©  TAETI 

166 

of BCI systems aid faster recoveries in patients with both mental and physical traumas when compared to those who undergo 

traditional rehabilitation methods [11-12]. In BCI systems signals from the brain can be measured by detecting an electric field 

(electro-encephalo-graphy-EEG, electro-cortico-graphy –EcoG etc.) or  a magnetic field (magneto-encephalo-graphy - MEG), 

functional magnetic resonance imaging (fMRI) and several other ways [13-14]. Amongst the various methods EEG has proven 

to be a better choice for use in the clinical environment and in real-time systems due to its portability and lower cost [15]. 

Several studies indicate that patients with severe motor disabilities require alternative means of communication and surface 

EEG signals can be used effectively to interact with the outside world by operating external devices [6, 16- 18].Thus BCI has 

importance particularly in the context of the rehabilitation of severely limited patients. One of the objectives of our study was to 

investigate the viability of low cost BCI systems to assist neurologically disabled patients, we have chosen an EEG based BCI 

system for our study which is relatively inexpensive and non-invasive. 

Consumer-grade non-invasive BCI systems are available in user-friendly styles such as baseball caps [19] headbands [20] 

and headsets [21] and provide both an easy setup process and freedom of postures for users; this makes the application of BCI 

systems in both healthcare and the entertainment industry much easier than ever. In this paper, we will investigate the use of a 

consumer-grade BCI system as an assistive technology device for   communication and control for patients with neurological 

conditions. The study was part of a collaborative research program between the University of Kent and East Kent Hospitals’ 

University NHS Foundation Trust, both in the UK. Participants involved in this HCI research study were patients on the 

neuro-rehabilitation unit at the Kent and Canterbury Hospital. Study participants had been diagnosed with a range of 

neurological conditions (e.g. Acute Brain Injury, Multiple Sclerosis, Motor Neuron Disease, Cerebral Palsy, Stroke). An 

equivalent number of healthy participants were recruited as controls. 

The remainder of the paper has been organised as follows: Participant demographics and apparatuses used in the system 

are described in Section 2 followed by a description of the experimental procedure in Section 3. Section 4 reports the results. 

Section 5 concludes the paper. 

Table 1 Demographics of participants 

Participant Gender Age Neurological Condition 

Patient 1 (P1) Female 74 Right Brain Stroke 

P2 Male 67 Multiple Sclerosis 

P3 Male 48 Multiple Sclerosis 

P4 Female 22 Cerebral Hemorrhage 

P5 Male 45 Multiple Sclerosis 

Control 1 (C1) Male 37 - 

C2 Male 27 - 

C3 Male 26 - 

C4 Male 25 - 

C5 Male 43 - 

2. Participants and apparatuses  

The study was piloted with two participants; data from these two pilot sessions was not included in the analysis. Ten 

participants took part in the usability sessions; five controls and five patients with neurological conditions with different kinds 

of lesion(s) e.g. discrete & diffuse, static vs progressive & diagnostic diversity e.g. MS, Stroke.  The inclusion criterion for 

patients was that the patient must not have had prior experience in using BCI headsets so as to measure the user experience in the 

first-exposure to BCI training and to evaluate the learnability and usability of these BCI systems. Participant Demographics are 

listed in Table 1. The research was conducted after approval from the ethics committee of the University of Kent. 
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Fig. 1 A BCI application system adapted from [22] 

Although various types of systems exist, Fig. 1 shows a typical non-invasive EEG BCI system which was used in the study. 

The system consists of several core components with specific functions [22]: 

 Signal recording to capture the EEG 

 Signal processing, which removes noise and artefacts from the EEG 

 Feature extraction, which identifies EEG features relevant to the context of application 

 Classification, which involves training a computer algorithm with a subset of the extracted features and using the trained 

classifier to classify the rest of the data. This component provides an interpretation of the raw EEG signals 

 Activation of the chosen application, e.g. a radio, television, video player 

 Feedback to the user, which in turn reinforces the process. The implementation of a BCI system in a particular context (e.g. in    

neurorehabilitation) normally involves both an application and a user interface. While a BCI system transforms EEG signals 

into an appropriate output to control the selected application (e.g. electronic devices or computers), the activation of the 

application converts these control signals into feedback (i.e. stimuli such as audio, visual or haptic), through a user interface. 

The usability sessions involved measuring emotional arousal of participants with ElectroDermal Activity Sensors 

manufactured by Affectiva, the Qsensor [23] is shown in Fig. 2(a). The Qsensor is comprised of electrodes for measuring 

temperature, electro dermal conductance (in microsiemens), and an accelerometer (measuring acceleration in G) with sampling 

rates of 2,4,8,16, and 32 Hz. The dimensions of the wrist-worn band are 14.7mm  × 56.6mm × 31.8mm (h ×l × w) and weighing 

22.7grams. The EEG  was  measured by the  Emotiv EPOC EEG headset [24] with 16 sensors as shown in Fig. 2(b). The 

Cognitive Suite of Emotiv's Control Panel software was used for the signal processing and feature extraction of imagery 

controls that were used in the session for navigating to the right, navigating to the left, and the action of pushing as shown in Fig. 

2(c). Video logging of the training session was conducted using Techsmith Morae's Recorder [25]. 
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 (a)Qsensor (b) Epoch Headset (c) Video Logging of BCI Training 

   

 
Measures of Emotional 

Arousal 
Brainwave Activity 

Accuracy levels of training the BCI system to 
navigate left, right and to push 

Fig. 2 Experimental apparatus used in the usability sessions 

Typing Screen with Horizontal Navigation Configuration Screen for Though Control 

 

 
 

 

Alphabet arranged in order of frequency of 
occurrence. Back space and space keys depicted with 

"<" and "_" symbols. 

Configuration set to thought control by default; 
facial expression used to validate if patients fail to 

initiate any typing control with imagery. 

Fig. 3 Brainwave typing interfaces 

3. Procedures 

The study and the Informed Consent Form (ICF) received approval from the Ethics committee of the University of Kent. 

All patients were screened for eligibility; e.g. patients with epilepsy and user of other neuro-stimulators or pacemakers were 

ruled out. Participants were tested individually. The procedure for conducting the usability evaluation sessions for the BCI 

system is depicted in Fig. 4. Sessions started with a brief overview of the study's objectives and obtaining informed consent. 

Following that, the Qsensor bracelet was setup with Electro Dermal Activity (EDA) sensors placed on the inner part of the 

participant's wrist. Time was allocated for the EDA sensors to warm up until the indicator showed a blinking green light. The 

demographic questionnaire was presented to participants; patients who needed assistance in completing the demographic 

questionnaire were presented with each question verbally and they either answered directly or via their caregiver; responses 

were noted accordingly. After completion of questionnaire, the fitting of EPOC headset proceeded by hydrating the 16 sensors 

and adjusting the placement of the sensors on the participant's scalp. The Emotiv Control Panel's Headset Setup panel was used 

to ensure that sufficient quality of readings were obtained from all 16 sensors. The fit was adjusted so that the rectangular 



International Journal of Engineering and Technology Innovation, vol. 5, no. 3, 2015, pp. 165-177 

Copyright ©  TAETI 

169 

compartments at the front ends of the headband sat comfortably just superior and posterior the participant's ears.  The headset 

was tilted so that the two lowest, front-most sensors were symmetric on the forehead and positioned 5 – 6 cm above the 

participant's eyebrows.  The headset was fine-tuned by gently sliding the headset in small increments until an ideal fit had been 

achieved and measured by observing the sensor readings on Emtoiv's control panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Experimental procedures 

Video logging of the screen interaction was conducted using Morae Recorder [24]. Participants started with the Cognitive 

suite of the Emotiv control panel to train the device to recognise their EEG patterns during periods when they were imagining 

right and left movements and the 'push' action button as depicted in Fig. 2(c). The training started with training on patterns for 

a neutral state of mind, followed by the 'Push' action, then 'Right' or 'Left' depending on the handedness of the participant. When 

the accuracy level of the first command, 'push' reached the 95-100% the participant proceeded to the next step to test controlling 

an application with this command. The command was to 'Push' the maximize button on a virtual video player launched with the 

Emotiv EmoKey application. Following that, training resumed with the navigation buttons, 'Right' and 'Left'. When the training 

time reached 30minutes or the accuracy reached 50% for both navigation directions, the participants proceeded to the typing 

application. The Mind Keyboard (an Emotive app) was used for this phase of the experimental evaluation and the participants 

were requested to type the five-letter word 'hello' by navigating horizontally in the alphabet listing with the 'right' and 'left' 

imagery movements and selecting the letter with the 'PUSH' command. Interfaces for this segment of the BCI usability 

evaluation is depicted in Fig. 3. 

 

Procedure      
0:00  Briefing - Overview of the study and the session 
0:02 Consent form 
0:05 Qsensor Setup; Adjusting the wristband; Check for the blinking green light 
0:07 Demographic Questionnaire 
0:10 Launching Morae Recorder; test recording for 15sec; Start recording  
0:12 Wearing the Epoc headset; fitting/adjusting 16 sensors 
0:15 Launch Control Panel 
0:16 Create User Profile; Add User 
0:17 Engine Status; check that all sensors have green readings 
0:25 Training 

 Training Neutral state of mind 
 Add action Push then train; min 50% (skip to EmoKey if 80+%) 
 Add action Left then train; min 50% 
 Add action Right then train; min 50% 

0:45 Save profile 
0:50 Launch MindKeyboard 

 Select profile from config tab 
 Open the keyboard tab 
 Ask participant to Navigate Left & Right 
 Ask participant to type hello 

1:10 Open EmoKey; Load Mapping push; Open app (video player);  
 Connect to Control Panel 
 Ask Participant to think "push" to activate key press 
 Ask participant to repeat the action 3 times to ensure that activation of the 'push' button did not occur by 

chance 
1:15 End; Switch off headset  + Remove Qsensor 
1:17 SUS survey & 12pt scale 

 Close Morae 

 Save & Close the Emotiv sw 

1:25  Debriefing 

1:30   End 
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4. Results and Discussion  

In this section we present the key findings of the research project with a discussion of the measurements examined for 

patients and controls and their implications for the design and development of BCI systems for communication and control. 

4.1. Proficiency with assistive technology 

Participants recruited for this study had a range of neurological conditions. The research study's sample is described with 

IDs of C1-C5 for controls and P1-P5 for patients with neurological disorders. Table 2 lists the self-reported comfort-level of 

participants with technology in general. Participants in the Patients' group ranged in age between 22 and 74 years (Mean = 51.2 

years; Standard Deviation = 20.4 years). Participants in the control group ranged in age between 26 and 43 years of age (Mean 

= 31.6 years; Standard Deviation = 7.99 years).  Participants were requested to self-report their comfort level of technology on 

a scale ranging from 1 to 5 with values of one indicating 'uncomfortable using technology' and five indicating 'very comfortable'. 

Since the training of BCI control depends on imagery of navigation in the right and left directions, the participants were 

requested to indicate their handedness. All participants in the control group and two participants in the patients' group were 

right-handed, and consequently started the imagery training in the right direction. Three participants with neurological disorders 

were left-handed and started their imagery training in the left direction. No significant differences in self-reported 

comfort-levels with technology were found between the two experimental groups; thus the sample was believed to be 

homogenous with regards to proficiency with technology.  

Table 2 Technology background of participants 

P/C Session Date Comfort Level Handedness 

P1 Jul 16, 2012 3 Right-handed 
P2 Aug 3, 2012 3 Right-handed 
P3 Aug 3, 2012 3 Left-handed 
P4 Aug 6, 2012 2 Left-handed 
P5 Aug 7, 2012 5 Left-handed 

 M= 3.2 (SD = 1.1)  
C1 Jul 12, 2012 3 Right-handed 
C2 Jul 12, 2012 3 Right-handed 
C3 Jul 17, 2012 4 Right-handed 
C4 Jul 17, 2012 5 Right-handed 
C5 20 Jul, 2012 3 Right-handed 

 M= 3.6 (SD = 0.89)  

Participants' backgrounds with technology ownership and usage of assistive technology were examined. Participants in 

the control group all reported owning at least one computer, using the Internet daily and regularly using a word processor for 

typing. None of the reference population reported using assistive technologies for reading or writing.  In contrast, participants in 

the patient group all reported owning a computer, less than half reported using the Internet on a daily basis or using a word 

processor for written correspondence. Two out of the five participants reported using assistive technologies for reading and 

writing.  Details are shown in Table 3. 

Table 3 Assistive Technology Usage 

Participant I own a computer 
I use the internet 

daily 

I use a word processor to complete 

most of my written correspondence 

I use assistive technology for my 

writing/reading 

vP1 Yes No No No 

P2 Yes Yes Yes Yes 

P3 Yes No No No 

P4 Yes No No Yes 

P5 Yes Yes Yes No 

C1-C5 Yes Yes Yes No 
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4.2. User experience in BCI control 

The user experience was examined with quantitative measures of emotional arousal detected by EDA sensors which 

monitor body temperature in Celsius, and movement using a 3-axis accelerometer. Spikes in EDA signals were synchronized 

with events in the video logs during the training and control sessions. Although regular patterns of emotional arousal were not 

found across participants, spikes in emotional arousal were found to be linked with frustration levels in difficult training levels 

and with failure in controlling the typing program to type the word in the experimental session. A sample of the EDA readings 

(microsiemens) is depicted in Fig. 5. 

 

Fig. 5 Emotional Arousal Sensor Readings (EDA, Temperature, Accelerometer) 

4.3. Usability measures of subjective satisfaction 

The SUS survey (Appendix A) was used to measure the subjective satisfaction in the first exposure to interactive 

technologies. Results ranged from 27.5 to 60 in the control group and from 62.5 to 87.5 in the patients' group. Overall, 

participants with neurological conditions reported a higher perceived usability than controls (M=73 and SD=9.91 for patients; 

M=46.50 and SD=12.94 for controls). Another survey of subjective satisfaction (Appendix B) was used to examine the 

participants' perceived usability of the BCI device in controlling a typing application, controlling a virtual 'Push' button in a 

video application. The product evaluation survey completed by the study participants consisted of 12 items with the following 

choices of responses: 1 = strongly disagree, 2 = somewhat disagree, 3 = neither agree nor disagree, 4 = somewhat agree, 5 = 

strongly agree. 

Table 4 shows the variations between the perceived usability of the BCI system between controls (Cs) and the patients (Ps) 

on questions #1-5; patients perceived the BCI device as easier to use, more helpful as an assistive technology, and were more 

comfortable in using the headset than controls. Table 5 lists the self-reported subjective ratings for perceived safety and 

aesthetics' scales. Interestingly, the perceived ease of use, safety, and aesthetics were higher in the patient population but the 

perceived negative image of using the BCI headset was stronger in the non-disabled group (scale #8). Patients involved in the 

study indicated that they are aware of the degenerative condition and the image reflected in wearing such headsets is not 

perceived as a concern as long as the benefit gained from such device is sought with continued control and easier 

communication. The final segment of the survey examined the perceived usefulness of the BCI system. The patient group 

exhibited more positive views regarding the BCI device when compared to the controls apart from the ease of use. However, it 

was noted that patients indicated that this scale applies to their current state of health and is perceived to change as their level of 

control deteriorates. Accessibility of the device as indicated in question #12 was a key factor in the enthusiasm exhibited by 

participants in this study as shown in the significant differences between the patient and control groups on the final scale. 
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Table 4 Perceived Usability of Operating the BCI System 

# 1 2 3 4 

Survey 

Question 

I could easily 
complete the task 

with the device 

The device 
helped me to 
complete the 

task 

It was easy to 
understand how to 
operate the device 

The device was 
comfortable to 

use 

M for Cs 1.80 1.60 4.60 3.40 

SD for Cs 0.45 0.55 0.55 0.55 

M for Ps 3.20 4.40 4.00 4.40 

SD for Ps 0.84 0.55 1.22 0.89 

Table 5 Perceived Safety, Aesthetical Quality, Reflective Image of BCI Headsets 

# 5 6 7 8 

Survey 

Question 

Using the 

device was easy 

Using the 

device felt 

safe 

Aesthetically, I like 

the overall look of the 

device 

As a "disability product, 

this device would draw 

unwanted attention. 

M for Cs 2.60 3.60 4.00 3.00 

SD for Cs 0.89 0.89 0.00 0.71 

M for Ps 3.60 4.60 4.60 2.60 

SD for Ps 1.14 0.55 0.55 1.14 

Table 6 Perceived Requirements Matching of the BCI system 

# 9 10 11 12 

Survey 

Question 

I think the idea behind 

how the device is meant 

to operate provides a 

good solution to 

problems I encounter in 

everyday life 

It was easier to 

complete the tasks 

with the device than 

it was when using 

my existing 

equipment 

Compared to other 

products to 

complete the 

tasks, the actual 

functionality of 

this product is 

better. 

I would be 

happy to use 

this device if it 

were made 

available to me. 

M for Cs 2.25 2.20 1.80 2.80 

SD for Cs 1.50 1.30 0.84 0.45 

M for Ps 3.60 1.60 2.80 4.60 

SD for Ps 1.67 0.55 0.84 0.55 

4.4. Performance measure – Controlling Video-player button    

In this section, we describe the performance measures on controlling the video-player button. Sessions ranged in duration 

between 65 minutes to 98 minutes. All participants were able to train on the 'Push' command with accuracy ranging between 

80-99%. All participants were able to press a virtual button on a video-player application. The button was the maximize-screen 

button on the video player. Participants were requested to repeat the action 3 times to ensure that the control was not initiated 

inadvertently by imaging a similar movement and the video log was checked to confirm that all actions were in sync with the 

'Push' button in the Emotiv Cognitive Suite. The action was set with one rule in the EmoKey application. The trigger condition 

for the action was detecting the imagery pattern of 'Push' for duration of more than 0.2s. 

4.5. Performance measure – Typing Accuracy     

None of the participants were able to complete the task of typing the five-letter word “hello”. Participants in the control 

group exhibited more control in navigating the horizontal keypad but were not able to effectively use it to complete the typing 

task. Sample words that were typed at the end of the session were 'hhhe' and 'heee l' where the participants attempted to fix the 

words using the backspace button and retyping the letter several times. Participants in the patients' group exhibited lower 
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accuracy in training in general, and the right-left navigation in particular when compared to controls. It was observed that 

training became increasingly complex for both groups as participants advanced from single to double commands and accuracy 

levels remained at low levels despite allocating the same amount of time for training the system to recognize imagery 

movements in the right and left directions. An example is the patient's session depicted in Fig. 6 in which accuracy for 'Push' was 

97%, 'Left' was 0% and 'Right' was 7%. This patient's performance on the typing task resulted in controlling the horizontal 

keypad's movement in the right direction with difficulty; however, this participant was not able to reach the letters for 

completing the word in the task. Given the small number of patients and their conditions it is possible that the lower accuracy for 

the ‘Left’ and ‘Right’ buttons is not an inherent feature of the device but rather due to capabilities and limitations of the 

individual patients. 

 

Fig. 6 Example of a participant's training accuracy levels in the typing task 

5. Results and Discussion Conclusions and Future Considerations     

From the results and discussion we can conclude that the proposed BCI system was acceptable by all the neurological 

patients who participated in the study and they perceived it safe to use. One of the limitations of our study was the sample size 

and this was due to the difficulty to find real patients who would voluntarily take part in the experiments. Patients participated 

in our study were self-selected and enthusiastic with high motivation and interest in technology. The patient group (M=73; 

SD=9.91) generally perceived the BCI device quite positively compared to the control group (M=46.50; SD=12.94). In terms of 

tasks performance, all participants in both groups were able to complete the first task successfully.  However, none of them were 

able to complete the typing task. Participants in the control group exhibited more control in navigating the horizontal keypad but 

were not able to effectively use it to complete the typing task. Participants from the patients group exhibited lower accuracy in 

training in general, and the right-left navigation in particular when compared to controls. It was observed all participants in the 

patient group were able to achieve high accuracy levels in the first phase of the training (i.e. the single command). 

It has been reported that consumer-grade BCI systems currently face challenges in producing clear EEG signals for 

control [26, 27]. In such systems, EEG signals can be easily contaminated by various noise sources such as power line 

interferences and the  presence of unwanted  physiological signals  etc.[28]; this is particularly an issue if there is contamination 

(e.g. hair, sweat) at the  skin-electrodes-scalp interface.  A drop in signal quality can lead to a deterioration in the application’s  

performance and this is likely to have been a contributing factor for the lower performance in the spelling task. It has been 

reported that currently available consumer-grade BCI systems are not suitable for accuracy-critical applications, instead only 

being appropriate for applications such as computer games or home appliances [26].  
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To improve the accuracy of the BCI system we evaluated, in future we would like to follow the directions recently 

introduced by researchers by incorporating: (1) hybrid signals [29] and (2) adaptive feedback training [30].  First, hybrid signals 

composed of two high level parameters such as brain signals (EEG) and other features like facial expressions or eye movements 

and in such systems accuracy of the task can be improved by adopting complementary classification [31]. Secondly studies have 

shown that [32] by using user adaptation during training, higher accuracy can be achieved in reduced training time. Long-term 

training can make users tired and affect user’s mental states and eventually degrade the accuracy of a task. It was observed in our 

study that training became increasingly complex for both patients and control groups as participants advanced from single to 

double (and triple) commands and accuracy remained low. In future we hope to improve the training by incorporating an 

adaptive scheme.   Nevertheless, our current study reported in this paper showed the general acceptance of the consumer-grade 

BCI device amongst neurological patients. With the suggested improvement, we hope to achieve higher accuracy in future.  Our 

research demonstrated that when carefully designed the proposed off-the-shelf consumer grade BCI system can be acceptable to 

the patients. We propose future studies to utilise patient-reported outcome measures (PROM) to ascertain usability of BCI 

devices. 
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APPENDIX A – SUS SURVEY [33] 
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APPENDIX B – USABILITY QUESTIONNAIRE  

The product evaluation survey completed by the study participants consisted of 12 items with the following choices of 

responses: 1 = strongly disagree, 2 = somewhat disagree, 3 = neither agree nor disagree, 4 = somewhat agree, 5 = strongly agree.  

The items were as follows: 

Item 
Strongly 
disagree 

Somewhat 
disagree 

Neither agree 
nor disagree 

Somewhat 
agree 

Strongly 
agree 

I could easily complete the task 
with the device 

     

The device helped me to complete 
the tasks 

     

It was easy to understand how to 
operate the device 

     

The device was comfortable to use      

Using the device was easy      

Using the device felt safe 
 

     

Aesthetically, I like the overall look 
of the device 

     

As a “disability” product, this 
device would draw unwanted 

attention 
     

I think the idea behind how the 
device is meant to operate 
provides a good solution to 

problems I encounter in everyday 
life 

     

It was easier to complete the tasks 
with the device than it was when 

using my existing equipment. 
     

Compared to other products to 
complete the tasks, the actual 
functionality of this product is 

better 

     

I would be happy to use this device 
if it were made available to me 

     

 


