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Abstract 

Implementing non-conventional finishing methods in the aircraft industry by the abrasive flow machining 

(AFM) process depends on the production quality at optimal conditions. The optimal set of the process variables in  

metal-matrix-composite (MMC) for a varying reinforcement percentage removes the obstructions and errors in the 

AFM process. In order to achieve this objective, the resultant output functions of the overall process using every 

clustering level of variables in a model are configured by using genetic programming (GP). These functions forecast 

the data to vary the percent of silicon carbide particles (SiCp) particles without experimentation obtaining the output 

functions for material removing rates and surface roughness changes of Al-MMCs machined with the AFM process 

by using GP. The obtained genetic optimal global models are simulated and, the results show a higher degree of 

accuracy up to 99.97% as compared to the other modeling techniques. 
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1. Introduction 

Limited product finishing/polishing technologies are available for achieving the excellent surface finish of composites 

and challenging to reach internal passages like polishing through chemicals and abrasive flow machining (AFM) [1]. AFM is a 

state-of-the-art finishing / polishing process for the products of intricate shapes, internal sections, the intersection of holes, 

slots, concave or convex edges, etc., [2]. Accelerating the abrasion medium formed by abrasive particles in a polymer to carry 

it into channels along with oil for maintaining the viscosity increases the material removal rate (MRR) and surface finish (Ra) 

[3]. 

AFM was introduced and successfully developed in 1960. In traditional machining, such as honing, grinding, lapping, etc.,  

composites are hard to machine efficiently when direct tool contact leaves cutting marks and burrs on components [4-5]. 

Generally, the samples prepared by the electric discharge machining (EDM) process got spoiled at their surfaces and were 

significantly improved by AFM process [6]. AFM successfully polished composite material surfaces, which had machining the 

difficulties from traditional methods by producing consistent and predictable results efficiently and economically [7].  

The experimental investigations into rotational magnetic field abrasion flowing  (RMAFM) machining of alloys proves  

the improvement of their finishing efficiency by the simultaneous rotational and down movements of the flow medium [8]. 

Ultrasonic based on MAFM develops the vibration perpendicular to flow medium direction has improved the surface 

characteristics as well as operating conditions like driving force, power, applied voltage, working gap, etc., [9]. Various factors 
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and their impact on the responses of AFM in alloys are studied by using the response surface (RSM) and Taguchi design (TD) 

methods. TD was applied to optimize the variables of AFM samples having the slots prepared by wire-EDM [10-11]. TD was 

also employed in detecting most influencing factors and optimizing Ra characteristics of alloys finished by MAFM involving 

multiple input factors [12]. RSM based experiments was employed to assess the sliding wear of an inferior vs. a superior 

surface finish using the "Slip line theory of plasticity" which resulted in optimum operating conditions and material properties 

[13]. Numerical models were generated to forecast the machining outputs as a function of operating input attributes [14]. The 

mathematical expressions in the turning operation of AISI1019 carbon steel were generated by using an RSM and Box-Cox 

transformation technique [15]. The neural network (NN)  modeling technique in the AFM processes produced results could be 

validated with the results of the achieved optimal set via genetic algorithms [16]. 

Genetic programming (GP) is an automatic process run by a computer to develop the programs by the Darwinian principle 

of the natural selection called "Survival of the fittest". GP carefully solved the various problems having specific outputs. GP 

predicted the actual outputs from the extensive trial data of the inputs and outputs obtained by experimentation [17]. Fig. 1 

shows the various phases of GP. The discipulus software evolves the most excellent program by mapping multiple inputs onto 

a single output data by a set of programs that reproduce from hundreds to thousands of iterations with each other [18]. GP is an 

active, productive, and fast-growing method. It is also successfully used in divergent problems. GP succeeds in outperforming 

the best human developed solutions [19]. GP has been successfully employed in solving problems of different fields , such as 

engineering methods, data modeling, time-series forecast, factor optimization, forecasting of manufacturing control processes, 

etc., [20].  

1 
Randomly generate computer programs (population) on 

which computerized evolution takes place. 
4 

The above steps will be repeated till it writes a program 

that performs the assigned task such that GP keeps 

developing its child programs by using the sport 

winning programs that are stimulated by biology. 
    

2 

The tournament is conducted by selecting randomly four 

programs from the population to measure best 

performance by 4 programs for the task chosen at 

developing stage of GP. 

5 

The mutation (transformation) process may change an 

instruction of a game winner to a new child program, 

and crossover process may swap the instructions of the 

two game winning programs. 
    

3 

The tournament is repeated between two programs to 

select one performing the task best, which is called the 

winner program. From two tournaments and 4 programs, 

two new child (winner) programs would replace loser 

programs of two tournament by the crossover and 

mutation transformation. 

6 

GP uses direct manipulation of binary machine code for 

evolving linear GP program which changes the best 

evolved models into C, Java programs etc. from 

machine code. 

 

Fig. 1 Steps involved in Genetic Programming 

In the recent literature survey, several researchers have worked on optimizing input attributes using TD, RSM, NN 

techniques, but mathematical models (MM) are only available for metals and MMCs having a fixed percent of SiCp. Hard 

material composites polished through the AFM have a broad range of applications in the small-scale aerospace industries, 

which demands constant improvement. Linear Regression, ANN, ANOVA, Fuzzy logic controllers, and RSM that develops 

MMs produce significant errors up to three digits and omit the non-linearity portion of the experimentation process, whereas 

only GP can reduce error to 2
nd

 decimal positions.  

In this study, GP is employed in Al/SiCp MMC with Al base material reinforced with varying percent of SiCp particles to 

generate MMs for their quality characteristics of machining responses. This work is to obtain MM at higher accuracy (with 

least or no error) in forecasting the output data avoiding experimentation work in future. GP approach yielded the best MM for 

reducing the surface roughness and increasing the MRR of the AFM process which shows 99.2 to 99.6% accuracy level 

[21-22]. 
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2. Materials and Methods 

The experimental setup is designed to accommodate the changes in the process inputs and to withstand the pump pressure 

up to 10 MPa in the EN8 hydraulic cylinders having an ID of 85 mm, 240 mm stroke, and lubricant oil (SAE 68). Nylon fixture 

is employed for supporting the work-piece because of the easy machinability to cut slots irrespective of their form and size. 

Converging the fixture passage gradually reduces the vibrations on a work-piece while passing the abrasive media smoothly 

(refer Fig. 2). After a required number of cycles, the work-piece is taken out, and is placed in the slots. Two movable plates are 

fixed, which can be moved up and down such that the fixture grasps firmly to prevent the outflow of the media. The  

work-piece material is chosen as MMC with aluminium when a base material and particles of SiCp varying in 20, 40, and 60% 

are as shown in Table 1. 

Table 1 Units and levels of control parameters 

Symbol Parameters and their Units 
Levels 

1
st
  2

nd
  3

rd
  

V0 Extrusion pressure (MPa) 3.5 5 7 

V1 Oil in Media (%) 10 12.5 15 

V2 Mesh Number 100 150 220 

V3 Concentration of abrasives (weightage % of abrasives) 50 55 60 

V4 Workpiece material (% of SiCp in Al/SiCp) 20 40 60 

V5 Number of cycles 100 200 300 

2.1.   Experimental methodology 

The experiments carried out on the work piece are made of Al/SiCp MMCs having input factors namely, V0 to V5 , to find 

the outputs such as MRR and ΔRa. Abrasives in liquid silicon media is used for polishing of work-pieces. Various levels of 

input factors have been selected based on a literature review as shown in Table 1 for the AFM process. The work-piece uses 

Al/SiCp MMCs with varying SiCp percent (20, 40 and 60) having aluminium as a base metal. GP requires a vast number of trial 

data to train, validate the output program, and are tabulated in Tables 2 and 3. The Surface roughness (Ra) is determined prior 

to and subsequent to the finishing operation at every trial by the profilometer (refer to Table 4). Similarly, MRR is measured by 

the difference of the initial and final weight of the sample, and time taken is tabulated in Table 5. MRR is calculated by:  

  

(a) Downward stroke (b) Upward stoke 

Fig. 2 The working principle of abrasive flow machine [23] 
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 -  initial weight final weight
MRR

Time
  (1) 

Table 2 The experimental and GP predicted values of MRR at R
2
 = 99.5% 

 

V0 V1 V2 V3 V4 V5 
Material Removal Rate 

Error 
Linear 

regression 
Error ANOVA Error 

Experimental GP 

3.5 10 100 50 20 100 1.91 1.90 0.01 1.885 0.025 157.7 1.39175 

3.5 12.5 100 50 40 200 2.32 2.317 0.003 2.72425 0.05575 3.30175 0.90925 

3.5 15 100 50 60 300 5.01 4.98 0.03 3.5635 1.4165 3.22925 1.48125 

3.5 15 150 55 20 200 2.11 2.14 0.03 2.1125 0.0875 6.49125 1.49725 

3.5 10 150 55 40 300 2.52 2.541 0.021 2.969 0.241 3.60725 1.15225 

3.5 12.5 150 55 60 100 5.01 5.03 0.02 2.97125 1.40875 3.67225 1.25025 

3.5 12.5 220 60 20 100 2.52 2.47 0.05 1.79885 0.64115 6.26025 1.23375 

3.5 15 220 60 40 100 2.53 2.57 0.04 2.3591 0.5009 3.75375 1.45525 

3.5 10 220 60 60 200 4.21 4.32 0.11 3.2156 1.3144 3.98525 1.13425 

5 12.5 150 60 20 100 2.54 2.57 0.03 3.52525 0.83525 5.34425 1.37475 

5 15 150 60 40 200 6.64 6.635 0.005 4.3645 1.2255 3.91475 1.589 

5 10 150 60 60 300 7.95 7.93 0.02 5.221 0.689 8.229 1.264 

5 10 220 50 20 200 3.23 3.31 0.08 3.8866 0.7366 9.214 0.753 

5 12.5 220 50 40 300 7.98 7.95 0.03 4.72585 2.38415 3.983 1.80175 

5 15 220 50 60 100 4.54 4.575 0.035 4.7281 0.0681 9.78175 1.49 

5 15 100 55 20 300 3.43 3.402 0.028 4.1175 0.5075 6.03 1.626 

5 10 100 55 40 100 6.46 6.55 0.09 4.137 2.673 5.056 0.744 

5 12.5 100 55 60 200 4.51 4.48 0.03 4.97625 0.02375 7.204 1.75275 

7 15 220 55 20 100 9.76 9.77 0.01 5.8571 3.4729 6.26275 1.592 

7 10 220 55 40 200 3.98 4 0.02 6.7136 2.8136 11.352 1.671 

7 12.5 220 55 60 300 8.68 8.67 0.01 7.55285 1.19715 5.651 1.18575 

7 12.5 100 60 20 200 9.12 9.197 0.077 6.10525 3.47475 9.86575 1.47475 

7 15 100 60 40 300 4.13 4.22 0.09 6.9445 2.5145 10.59475 1.808 

7 10 100 60 60 100 8.18 8.164 0.016 6.964 1.396 5.938 1.274 

7 10 150 50 20 300 9.01 9.023 0.013 6.467 2.713 9.454 1.312 

7 12.5 150 50 40 100 4.32 4.38 0.06 6.46925 2.23925 10.322 1.35975 

7 15 150 50 60 200 8.34 8.29 0.05 7.3085 0.9415 5.67975 1.705 

Table 3 The experimental and GP predicted values of ∆Ra at R
2
 = 99.5% 

V0 V1 V2 V3 V4 V5 
Surface Roughness Ra Error 

Linear 

Regression 
Error ANOVA Error 

Experimental GP 

3.5 10 100 50 20 100 0.4 0.401 0.001 0.45885 0.05885 0.61953 0.21953 

3.5 12.5 100 50 40 200 0.75 0.748 0.002 0.70815 0.04185 0.8111475 0.0611475 

3.5 15 100 50 60 300 0.9 0.9012 0.0012 0.95745 0.05745 0.850265 0.049735 

3.5 15 150 55 20 200 0.7 0.6912 0.00 0.53105 0.16895 0.9603825 0.2603825 

3.5 10 150 55 40 300 0.75 0.7611 0.0111 0.79235 0.04235 0.8892875 0.1392875 

3.5 12.5 150 55 60 100 0.58 0.5711 0.0111 0.74195 0.16195 0.478155 0.101845 

3.5 12.5 220 60 20 100 0.6 0.621 0.021 0.41379 0.18621 0.8411225 0.2411225 

3.5 15 220 60 40 100 0.5 0.51 0.01 0.56319 0.06319 0.57644 0.07644 

3.5 10 220 60 60 200 0.8 0.7912 0.0088 0.82449 0.02449 0.758045 0.041955 

5 12.5 150 60 20 100 0.63 0.6324 0.0024 0.72275 0.09275 1.026425 0.396425 

5 15 150 60 40 200 0.98 0.971 0.009 0.97205 0.00795 1.20695 0.22695 

5 10 150 60 60 300 1.13 1.1243 0.0057 1.23335 0.10335 1.1956 0.0656 

5 10 220 50 20 200 0.92 0.9112 0.0088 0.85194 0.06806 1.26105 0.34105 

5 12.5 220 50 40 300 1.1 1.123 0.023 1.10124 0.00124 1.306025 0.206025 

5 15 220 50 60 100 1.13 1.142 0.012 1.05084 0.07916 0.9645 0.1655 

5 15 100 55 20 300 0.98 0.9625 0.0175 0.93825 0.04175 1.464725 0.484725 

5 10 100 55 40 100 0.9 0.887 0.013 0.89985 0.00015 1.009875 0.109875 

5 12.5 100 55 60 200 1.18 1.1921 0.0121 1.14915 0.03085 1.16565 0.01435 

7 15 220 55 20 100 0.9 0.912 0.088 1.13269 0.23269 1.410415 0.510415 

7 10 220 55 40 200 1.43 1.421 0.009 1.39399 0.03601 1.741425 0.311425 

7 12.5 220 55 60 300 1.7 1.756 0.056 1.64329 0.05671 1.73761 0.03761 

7 12.5 100 60 20 200 1.15 1.1612 0.0088 1.231 0.081 1.843645 0.693645 
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Table 3 The experimental and GP predicted values of ∆Ra at R
2
 = 99.5% (continued) 

V0 V1 V2 V3 V4 V5 
Surface Roughness Ra Error 

Linear 

Regression 
Error ANOVA Error 

Experimental GP 

7 15 100 60 40 300 1.55 1.521 0.029 1.4803 0.0697 2.02013 0.47013 

7 10 100 60 60 100 1.6 1.621 0.021 1.4419 0.1581 1.55894 0.04106 

7 10 150 50 20 300 1.3 1.31 0.01 1.36185 0.06185 1.95241 0.65241 

7 12.5 150 50 40 100 1.4 1.413 0.013 1.31145 0.08855 1.534645 0.134645 

7 15 150 50 60 200 1.52 1.534 0.014 1.56075 0.04075 1.43538 0.08462 

Table 4 L27 orthogonal array, ∆Ra after each experimental factors 

Exp. No. A B C D E F ΔRa1µm ΔRa2µm ΔRa3 µm Mean ΔRa 

1 3.5 10 100 50 20 100 0.30 0.30 0.60 0.4 

2 3.5 12.5 100 50 40 200 0.80 0.90 0.60 0.75 

3 3.5 15 100 50 60 300 0.68 1.20 0.82 0.9 

4 3.5 15 150 55 20 200 0.64 0.90 0.56 0.7 

5 3.5 10 150 55 40 300 0.69 0.86 0.70 0.75 

6 3.5 12.5 150 55 60 100 0.72 0.42 0.60 0.58 

7 3.5 12.5 220 60 20 100 0.50 0.77 0.53 0.6 

8 3.5 15 220 60 40 100 0.44 0.58 0.48 0.5 

9 3.5 10 220 60 60 200 0.82 0.91 0.67 0.8 

10 5 12.5 150 60 20 100 0.80 0.38 0.71 0.63 

11 5 15 150 60 40 200 1.04 0.70 1.20 0.98 

12 5 10 150 60 60 300 1.20 1.05 1.14 1.13 

13 5 10 220 50 20 200 1.22 0.54 1.00 0.92 

14 5 12.5 220 50 40 300 1.45 0.25 1.50 1.1 

15 5 15 220 50 60 100 1.35 0.74 1.30 1.13 

16 5 15 100 55 20 300 0.97 0.67 1.25 0.98 

17 5 10 100 55 40 100 0.90 0.64 1.16 0.9 

18 5 12.5 100 55 60 200 1.55 0.54 1.45 1.18 

19 7 15 220 55 20 100 1.17 0.33 1.20 0.9 

20 7 10 220 55 40 200 1.45 1.14 1.70 1.43 

21 7 12.5 220 55 60 300 1.90 1.00 2.20 1.7 

22 7 12.5 100 60 20 200 1.3 0.70 1.45 1.15 

23 7 15 100 60 40 300 1.25 2.00 1.40 1.55 

24 7 10 100 60 60 100 1.66 0.69 1.87 1.6 

25 7 10 150 50 20 300 1.50 0.69 1.71 1.3 

26 7 12.5 150 50 40 100 1.06 1.93 1.21 1.4 

27 7 15 150 50 60 200 1.70 1.04 1.82 1.52 

Table 5 L27 orthogonal array, MRR after each experimental factors 
 

Exp. No. A B C D E F MRR
1
10

-6
g/s MRR

2
10

-6
g/s MRR

3
10

-6
g/s Mean  

1 1 1 1 1 1 1 2.20 1.90 1.63 1.91 

2 1 2 1 1 2 2 2.32 2.17 2.45 2.32 

3 1 3 1 1 3 3 5.01 4.78 5.25 5.01 

4 1 3 2 2 1 2 2.11 1.84 2.38 2.11 

5 1 1 2 2 2 3 2.52 4.01 3.09 2.52 

6 1 2 2 2 3 1 5.01 4.10 5.95 5.01 

7 1 2 3 3 1 1 2.52 2.3 2.75 2.52 

8 1 3 3 2 1 1 2.53 2.33 2.81 2.53 

9 1 1 3 3 3 2 4.21 4.2 4.26 4.21 

10 2 2 2 3 1 1 2.54 2.52 2.57 2.54 

11 2 3 2 3 2 2 6.64 6.26 7.00 6.64 

12 2 1 2 3 3 3 7.95 8.43 7.48 7.95 

13 2 1 3 1 1 2 3.23 3.38 3.18 3.23 

14 2 2 3 1 2 3 7.98 7.68 8.26 7.98 

15 2 3 3 1 3 1 4.24 4.58 4.80 4.54 

16 2 3 1 2 1 3 3.4 3.6 3.3 3.43 

17 2 1 1 2 2 1 6.46 6.22 6.7 6.46 

18 2 1 1 2 3 2 4.51 4.48 4.54 4.51 

19 3 3 3 2 1 1 9.86 9.78 9.64 9.76 
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Table 5 L27 orthogonal array, MRR after each experimental factors (continued) 
 

Exp. No. A B C D E F MRR
1
10

-6
g/s MRR

2
10

-6
g/s MRR

3
10

-6
g/s Mean  

20 3 1 3 2 2 2 3.98 4.36 3.6 3.98 

21 3 2 3 2 3 3 8.68 8.67 8.69 8.68 

22 3 2 1 3 1 2 9.12 8.97 9.27 9.12 

23 3 3 1 3 2 3 4.13 4.01 4.25 4.13 

24 3 1 1 3 3 1 8.18 7.64 8.71 8.18 

25 3 1 2 1 1 3 9.49 8.23 9.31 9.01 

26 3 2 2 1 2 1 4.32 4.16 4.48 4.32 

27 3 3 2 1 3 2 8.34 8.23 8.45 8.34 

2.2.   Genetic models 

Discipulus is a manifold-run GP system, which is designed to perform several runs prudently by adapting its parameters 

of the problem at supply smartly. Multi-run GP is a statistical algorithm that produces a wide range of results by running it 

over-and-over with the same input variables ranging from very bad to very good. The R
2
 value denotes the program output 

quality ranging from 0.05 to 0.99. For generating mathematical models based on GP for MRR and Ra of the AFM process, GP 

employs a statistics from a large number of experiments including optimal set of input values given in Tables 1-4. The 

collected experimental data are haphazardly arranged (refer to Tables 2-3) by using a pre-processor called Notitia data 

preparation software. Then, it is sent to the discipulus GP software in three sets of the  data group, viz., validation, training, and 

applied [24].  

A large number of experimental runs are sometimes required more than 100 for the best solution. The discipulus software 

develops program sequences. They discover useful parameters forming an optimum output in the least potential duration. 

Initially, the developed programs are run at the arbitrarily available program parameters settings. These are the population 

size/number of computer programs, number of team size (generations), crossover, transformation (Mutation) and imitation 

rates, functions, termination sets, number of trials, the extent of subset size, etc. They are then altered to locate optimal sets. 

The modified factors involve achieving the precise mathematical equation that fulfills the results detailed in Table 6. The 

parameters set expectation to accomplish the conclusive model providing an empirical relation model that meets the defined 

conditions [25]. 

Table 6 The factor setting for GP 

 Value Assigned 

Parameters 

Number of players size (G) = 800 

Number of Team size = 1000 

Depth of subset tree = 6 

Maximum teams / match = 50 

Number of trials = 100 

Sets 

Function:* (multiplication), + (addition), - (subtraction), / (division) etc. 

Termination: “V0, V1, V2, V3, V4, V5,  -10, 10”  

N = {G, arbitrarily chosen constants} 

Rate of GP 
0.14 (Mutation) 

Crossover (70% and 30% non-homologous and homologous respectively) Reproduction: 0.08 

Fitness scheme, r
2
 

𝑟2 = √(error1)2 + (error2)2 + ⋯ + (errorn)2 

where  error = (program’s output −  observed data)  

2.3.   Regression analysis, fitness and correlation coefficient (r/R) estimation 

A regression study is a hypothetical process involving allegorical regression and discovers both the target (operational 

model of response) function. Target function fixed coefficients of inputs uses an approximation of an error measurement using 

linear or square fit. The fitness analysis shows the closeness of the response value forecast using GP with the trial results. The 

correlation coefficient attributes the potential and direction of a direct correlation between response A and inputs B. The 
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squaring of the correlation coefficients gives the relationship between the variation of the predicted output from the inputs. 

Also, it helps determine the accuracy level in making predictions from a defined model. r
2
/R

2
 is evaluated as the ratio of to the 

total deviations in the range, 0 < r
2
/R

2
 < 1. Additionally, it implies the linear relationship's stability between A and B. It 

characterizes the percentage of the results confined to the group of best-fitting [26]. For r/R = 0.95 or r
2
/R

2
 = 0.9025, 90.254% 

of the overall deviation of B (existing between A and B) is clarified with the help of the relationship and, the remaining 

(9.746%)  is in the unsolved/unclear portion of B. 

2.4.   GP modelling parameters 

The parameters of GP modeling are presented in Table 6 which demonstrates the group of the fixed factors required to 

obtain the mathematical equation meeting the conditions of the quantity. The present investigation confidently proposes that 

the specific GP allocation of trial results obtained by using multiple runs of GP. Mostly, by the standard of the best solutions, 

not the one which is replicated by other training algorithms. A machine-code GP approach is superior to other methods for its 

swift actions compared to different available approaches. Their capability to achieve various runs in reasonable time margins 

on a computer system increases the capability of searching the programs in the high-quality standard of the population. 

3. Results and Discussion 

GP programs hierarchically accommodate the ranked programs which are dynamically accomplished by adjusting the 

size and configuration. They are developed throughout the simulation by using the convenient function set 𝐹 (arithmetic 

operators: +, −, ∗ and /) and terminal genes set T of symbolic regression. The initial population is produced to accommodate the 

environment of the solution. Further program structures are continuously modified by using fitness judgment function based on 

adaptability guidelines  and by predicting the output through GP program to match the experimental results. The genetic 

changes in program structures begin adjusting by following the fitness judgment applied to an initial population to make the 

repetitive process called evolution.  

The evolution process stops when the termination standards are met, which produces  many solution models of the result 

sets received from the various experimental runs of finishing quality characteristics of the AFM process. The MRR, Ra are the 

outputs for defining the finishing quality. The parameters A to F are the input variables. The data units are randomly arranged 

by using Notitia software through inputting the collected data set into it. The program splits them into three data-set files, 

namely, training, validation, and applied [27]. The discipulus software treats the first few and last columns as the inputs and an 

output. The crossover rate uses homologous as a transformation to imitate natural evolution more accurately. It uses 

non-homologous when instruction programs are to exchange between two successful growing programs without referring to 

their size and location. 

The models of the experimental results in GP discipulus software are obtained in the form of C or C++ or java format. 

They are simplified in the structure of mathematical equations containing input and output parameters. For the two output 

characteristics, separate simulations are carried out. The mathematical equations generated for outputs are genetic models 

involving independent input variables and a dependent output variable. They use the training dataset, which is authenticated by 

a validation dataset, and checked by an applied dataset [21, 28]. The obtained fittest genetic models are presented in the form of 

equations 2 and 3. Appendices A and B provide the coefficients used in the empirical equations of the MRR and ∆Ra, 

respectively. 

When these Genetic model results are compared with Regression-based mathematical models, which are obtained from 

ANOVA response surface equations, the error amount is very high.  In non-Genetic models up to 3-digit numbers, no error or 

a deficient error (second or third decimal levels) from the Genetic models is obtained. Other simulation methods need only 
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high valued digit numbers even without decimal level numbers for outputs conforming to input values to minimize error. These 

techniques accommodate few inputs and generate incorrect empirical models. The above non-GP techniques use the data 

required to fill design matrix tables. The empirical relations are acquired by using optimal input values instead of every set of 

data. 

From the results of Tables 2 and 3, the optimal level input parameters produce the equations at the 84% precision level if 

the outputs are limited to two-digit whole numbers. Thus, the easily optimal combination of the parameters to derive the 

empirical correlations is acquired by using the regression method. Therefore, the genetic model solutions sustain higher 

accuracy exceeding statistical examinations for any number of outputs and input values. 

A regression fitting curve of GP program involving a number of generations called counts for two output quality 

characteristics of the AFM process is shown in Fig. 3. The plots comparing the results of the experimental runs and GP 

predicted for MRR and ∆Ra by using the normal distribution chart are shown in Fig. 4. The genetic models score the good 

accuracy over the experimental data and exhibit higher accuracy of prediction regarding the experimental results. 

  

(a) Ra (b) MRR 

Fig. 3 The regression fit for the percentage of finishing process parameters of the AFM 

  

(a) Ra (b) MRR 

Fig. 4 The experimental-predicted relationship 

The genetic models carry out the analysis of AFM finishing output quality features under various levels of input 

parameters to generate vast data of Al-MMCs at specific competences.  The genetic models produce the experimental results 

without a skilled operator or adequate familiarity of the process or experimental setup. The genetic models study alone 

explains the role of input variables range and each input level effect on other levels to associate with finishing quality 

featureseven it covers all levels of the work-piece to extend their applications. 



International Journal of Engineering and Technology Innovation, vol. 10, no. 4, 2020, pp. 293-305 301 

 Surface roughness 

2
2

(8(1+2D)
ΔRa= 1.53 -0.528*D

V2

 
 
 

 (2) 

 Material removal rate 

2
(K+V4) J

3.2 1.58( +K)
J K( +K)

3.2V4K K+V4MRR= + + V0
V2 V2 V2

  
  
  
  
  
 
 
 
 
  

 (3) 

3.1. Comparison with ANOVA models 

To understand the accuracy of GP results and their level, these models have to be compared with other standard statistical 

models of a higher order. Researchers widely accept ANOVA to produce regression models (mathematical models) and 

declare each factor's significant level. Using Minitab 19 software for the L27 array experimental plan is carried out, and the 

following equations (4) and (5) are obtained at a 95% confidence interval level. The comparisons between GP and ANOVA 

results presented in terms of an error obtained among experimental, GP, and ANOVA, are shown in Tables 2 and 3. 

2

0 1 2 3 4 5 0

2 2 2 2 2

1 2 3 4 5 0 1

0 2 0 3 0 4 0 5 1 2

1 3
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4. Conclusions 

In this GP modeling work, the empirical equations of the MRR and Ra of Al/SiCp MMCs with various percent SiCp 

samples undergoing a finishing by the developed AFM process and following inferences were drawn. The finishing quality 

characteristics of aluminum-based MMCs are developed by using discipulus software and C, C++ program. GP was based on 

the empirical equations, and it forecasted the actual results of the finishing parameters instantly for the given input parameters 

combination without experimentation.  

GP based equations produced more accurate output values with an error of 0.008. They can be acknowledged by the 

advanced methods for predicting the finishing features at a higher degree of accuracy.  Mainly, they are impossible to be 

acquired by other approaches based on algorithms and regression analysis.  
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A related issue is when the experimental methods are expensive, difficult to conduct, time-consuming, or the 

non-availability of mathematical models is involved. The precision of the obtained GP solutions depends on the relationship 

evolved factors, experimental runs, and an accuracy level of the readings. A large number of experimental readings and more 

levels of the input factors for improving the construction and composition of the empirical equation were achieved during GP 

evolution. The improves in terms of that the reliability is up to 99.35 to 99.86% predicted the experimental outputs.  The 

GP-based modeling was thus demonstrated to be a highly proficient and beneficial technique for producing the  relationship 

models existing in data in the absence of the theoretical methods. They overcame the level of the error produced by other 

methods.  

 The GP solutions to the present problem may produce erroneous results if the number of parameters is varied, and fewer 

trial results are provided to the computer program. The GP solutions to the present problem may vary if the number of 

parameters is varied, and fewer input data to the computer program may produce erroneous results. In the future, GP based 

models using other mathematical functions (trigonometric, hyperbolic, and exponential) can be generated to compare with the 

present GP models. This may reduce the size of equations, processing time, and that even  one equation can describe the 

relation between multi-outputs for a given set of parameters. The suggested GP model proficiency will be evaluated with 

supplementary evolution-based algorithms. They are multiobjective and simulated annealing particle swarm optimization and 

ant colony optimization for forthcoming explorations. Besides, multiple constraints can also be contemplated for further 

minimizing the error to a large extent. 

Nomenclature 

AFM Abrasive flow machining 

GP Genetic programming 

MRR Material removal rate 

MMC Metal matrix composites 

EDM Electrical discharge machining 

∆Ra Change in Surface roughness  

SiCp Silicon carbide particulates 

ANOVA Analysis of variance 

ID Inner diameter 

F arithmetic operators 

T terminal genes set 

SS Stainless steel 

RSM Response surface methodology 

Al Aluminium 

ANN Artificial neural network 

AlSiCp Aluminium-silicon carbide particles 

TD Taguchi Design 

SAE  Society of Automotive Engineers 

R
2
 Coefficient determination 

r/R Correlation Coefficient 

N Number of generations 
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Appendix A (Coefficients of equation of Material Removal Rate, MRR) 
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Appendix B (Coefficients of equation of Surface Roughness, ∆Ra) 
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