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Abstract 

This study investigates the optimized Sierpinski carpet fractal patch antenna and also explores the possibility 

of the integration of the proposed design with monolithic microwave integrated circuits. The optimization process 

has been performed using an ant lion optimization algorithm to achieve the required operating frequency and 

impedance matching. Further, due to surface waves excitation in the high index substrates used for the antenna 

design, the performance of the antenna degrades. Therefore, a process of micro-machining has been adopted to 

overcome this limitation. The micro-machining process creates an air cavity underneath the patch which further 

creates the low index environment in the patch antenna causing drastic improvement in the performance 

parameters along with the compatibility with monolithic microwave integrated circuits. The design shows 

multiple resonance frequencies in X-band and Ku-band. The proposed micro-machined design shows the 

resonance at 7.9 GHz, 9.6 GHz, 13.6 GHz, and 19 GHz with a maximum gain of 6 dBi.   
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1. Introduction 

Investigations on multiband and high gain antennas have attracted attention in the last decade because of the evolution 

of various wireless communication applications operating from few MHz to several GHz. Above mentioned characteristics 

can be achieved with the utilization of microstrip patch antenna into the system due to its various advantages over the 

conventional antennas [1-3].  

Among those properties, the multiband property of the patch antenna can be achieved by transforming the conventional 

patch structure into the fractal geometry [4-5]. There are various conventional and modified fractal geometries having been 

discussed in the literature to design the patch antenna. Among them, some are very popular named as Sierpinski carpet, 

Sierpinski gasket, Hilbert curve, Minkowski curve, Koch fractal, tree fractal etc. [6-13]. 

From the past decade, other hybrids and modified fractal structures have also been introduced in the literature to design 

the patch antenna and correspondingly improve the performance parameters. This study investigates the optimized version of 

the Sierpinski carpet fractal antenna up to the third iteration. 

The performance parameters mainly depend upon the dimensional configuration of the design; however, most of the 

time, it is a very tedious task for the antenna designers to achieve the required band of operation with the exact calculated 
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dimensions of the patch antenna. Therefore, dimensions of the proposed antenna have to be optimized to achieve the 

required performance characteristics; for optimization, several evolutionary algorithms have been presented for solving the 

various single objective and multi-objective functions [14]. 

Regarding the microstrip patch antenna, several parameters like dimensions of the patch and ground plane, feed position, 

width of microstrip feed, and height of the substrate can be optimized to attain the expected resonant frequency, bandwidth, 

and return loss and gain [15]. Various algorithms like particle swam optimization (PSO), bacterial foraging optimization 

(BFO), whale optimization, grey wolf optimization, ant lion optimization (ALO), etc. have been used to optimize the 

dimensions of the antenna and to achieve the required results [16-17]. In this study, the ant lion optimization has been 

applied on the length of the patch and width of the quarter wave matching line to obtain the required band of operation and 

corresponding reflection coefficient, respectively. 

From the theoretical and practical point of view regarding patch antenna, it is evident that the choice of substrate 

material is the crucial step toward determining the performance parameters of the antenna. Generally, thick and low 

dielectric material substrates like roger (2.2) and FR4 (4.4) are used to achieve better performance. But to design, the 

antenna with small size and compatible with monolithic microwave integrated circuits (MMIC), high index materials like 

silicon (11.9) and Gallium Arsenide (12.9) are preferred.  

Traditionally, there is a drawback of using high index materials directly due to the generation of surface waves which 

further degrades the performance of the patch antenna [18]. To deal with the situation, a selective part of the substrate 

materials will be etched off underneath the substrate material with the process called bulk micro-machining [19], which 

further reduces the overall dielectric constant of the substrate and improves the performance of the proposed antenna. 

The idea of micro-machining comes from drilling the holes (like EBG) in conventional substrates like FR4 or Duroid to 

improve the antenna performance characteristics [20].There is another type of micro-machining called surface micro-

machining which is utilized in the designing of RF-MEMS switches of cantilever type beam and shunt capacitive type beams. 

In this paper, the bulk micro-machining of the final iteration of the design has been performed and performance parameters 

have been improved.    

2. Proposed Antenna Design 

This section consists of the proposed antenna design and divides into two subsections, one of which includes a 

conventional Sierpinski carpet fractal patch antenna designed on FR4 substrate and another shows the utilization of micro-

machining in the 3
rd

 iteration of the design. The proposed design has been iterative up to the 3
rd 

iteration. All the designs 

have been simulated on high-frequency structure simulator (HFSS 13.0) software.  

2.1.   Conventional Sierpinski fractal antenna 

To design the proposed fractal design, dimensions of the rectangular patch have been calculated using standard 

equations to design Zeroth iteration of the Sierpinski carpet antenna on substrate of thickness 1.58mm with dielectric 

constant 4.4 (FR4) and loss tangent of 0.02. The first iteration is formed by cutting a slot in the center having one-third 

dimensions of the patch in Zeroth iteration. The second iteration is formed by cutting the 9 slots around the center slot by 

calculating one-ninth dimensions of the Zeroth iteration and the process continues as shown in Fig. 1.  

However, more mathematical approaches like exact numerical results instead of limits and to calculate exact 

infinitesimal values of the area can be observed from [21-23]. Further, the dimensional view of the 3
rd

 iteration is shown in 

Fig. 2 and various nomenclatures regarding dimensions have been tabulated in Table 1. A microstrip feed of 50Ω is used 

with a λ/4 feed line to achieve the matching with the patch antenna. 
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(a) Zerothiteraiton (b) First iteration (c) Second iteration (d) Third iteration 

Fig. 1 Sierpinskicarpet fractal patch antenna iterations 

 

Fig. 2 Dimensional view of the third iteration of the proposed design 

Table 1 Dimensional parameters of the proposed antenna 

Parameters Dimension (in mm) 

Length of the patch (L) 7.08 

Width of the Patch (W) 10.89 

Width of Slot 1 (S1) 3.63 

Width of Slot 2 (S2) 1.21 

Width of Slot 3 (S3) 0.4 

Length of Slot 1 (S4) 2.49 

Length of Slot 2 (S5) 0.79 

Length of Slot 3 (S6) 0.26 

Length of quarter wave matching line (Lq) 5.3 

Width of quarter wave matching line (Wq) 0.75 

Width of Feed (Wf) 2.95 

Length of feed (Lf) 4.85 

To do so, first, the impedance of the patch has been calculated which comes around 300Ω and to match this impedance 

with the 50Ω, impedance a quarter wave matching line is connected. The impedance of the quarter wave line was calculated 

as 𝑍𝑞 = √300 × 50 = 122.47Ω . Further, the width of the microstrip line has been decided by the impedance of the 

microstrip line. Therefore, from the calculated impedance of the quarter wave matching line, the corresponding width of the 

same has been found using an online microstrip calculator. 

The Sierpinski carpet is constructed using squares geometry of the patch antenna. After calculating all the dimensional 

parameters, the next step is to study the mathematics of the fractal geometry in which let Nn be the number of yellow boxes 

of the patch, Ln is the ratio for the length, An is the ratio of the fractional area after the nth iteration and dn is the capacity 

dimension [24]. Then: 
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2.2.   Micro-machined Sierpinski fractal antenna 

The performance of the 3
rd

 iteration of the proposed design has been improved using the process called micromachining 

as shown in Fig. 3. In this process, a selective part of the substrate material etched off underneath the patch while remaining 

the other circuitry on the substrate. Conventionally, the micro-machining process has been implemented on the high index 

substrate. But due to high surface wave excitation in high index materials, the performance parameters (gain and operational 

bandwidth) of the antenna degrade. 

 

Fig. 3 Micro-machining in antenna 

Consequently, a low index environment has been created underneath the patch antenna by creating a cavity; this process 

will improve the performance parameters of the patch antenna [18]. The overall effective dielectric constant after the micro-

machining process has been calculated using Eqs. (5)-(8).There is a region of the mixed air-silicon. The effective dielectric 

constant can be calculated by using the cavity model. The capacitance of the patch in mixed region is given by: 

effε A
C

d
  (5) 

where C is the capacitance, A is the area of the patch, d is the substrate thickness and 𝜀𝑒𝑓𝑓 = 𝜀𝑒𝑓𝑓𝜀0. In this context, walls of 

the cavity are assumed to be straight and 𝜀𝑟𝑒𝑓𝑓 can be estimated from the following equations [18]: 
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In the above formula, εsub is the dielectric constant of the substrate, εair is the dielectric constant of air, Xair is the ratio of 

the air to full substrate thickness in the mixed field region, L is the length of patch and Xfringe is ratio of the air to full 

substrate thickness in the fringing field regions. The top view and 3D view of the micro-machined Sierpinski carpet fractal 

patch antenna have been shown in Figs. 4-5, respectively. 

  

Fig. 4 Top view of the micro-machined Sierpinski  

carpet antenna 

Fig. 5 3D view of the micro-machined Sierpinski carpet antenna 

3. Optimization of the Sierpinski Carpet fractal Patch Antenna 

This section comprises of two sections namely curve fitting implementation and ant lion optimization algorithm. The 

length of the patch and width of quarter wave matching line have been optimized to achieve the required band of operation 

and reflection coefficient.  

3.1.   Curve fitting implementation 

The curve fitting tool in matlab is a method to establish relations between input and output parameters. The relations are 

shown in the form of polynomial equations from 2
nd

 order to several order equations. Also, the curve fitting shows the 

residuals and least mean square error methods. Residual shows that how much the calculated data will be deviated from the 

actual fitting curve [25]. 

In the antenna design, curve fitting is used to correlate the dimensions of the patch antenna and performance parameters. 

In this paper, a relation has been established between the length of the patch and resonant frequency as the resonant 

frequency of the antenna is inversely proportional to the length of the patch. Similarly, return loss depends on the width of 

the quarter wave transformer, a relation has been setup between return loss and quarter wave transformer. A set of values has 

been tabulated from the simulation results. 

3.2.   ALO implementation 

The name antlion comes from their distinctive nature of hunting of their prey. Antlion larvae excavates a sharp -edged 

cone like a hole where it waits for the prey. The prey like an ant can slip into the cone-shaped hole. The prey tries to rescue 

from the hole. But the predator captures the prey by throwing sand onto the prey and consumes the body of ant. After 

consuming the ant, antlions throw the remaining parts of the prey and build the pit for the next hunt. For imitating this 

process, it is supposed that ant would be caught when ant’s fitness is more than its equivalent antlion. An antlion updates its 

position to catch other ants. This process is imitated with Eq. (9) [26]: 

if fitness( ) fitness( )
i i i i

k k k kAntlion Ant   Ant Antlion   (9) 

Here 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑘
𝑖  is the position of k

th 
antlion in i

th
 iteration and 𝐴𝑛𝑡𝑘

𝑖  shows the position of k
th

 ant at i
th

 iteration, Elitism 

gave the fittest antlion produced so far in all iterations and known as elite. Because of this, the movement of all the ants will 
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be affected by the elite. Hence, every ant updates their position according to Eq. (10) [26] All the input parameters of the ant 

lion optimization algorithm related to the design are shown in Table 2. 

Ant (Roulette wheel selection random walk selection) / 2  +     (10) 

The pseudo codes for the ALO algorithm are defined as follows [26]: 

Initialize the first population of ants and antlions randomly 

Calculate the fitness of the ants and antlions 

Find the best antlions and assume it as the elite 

While the end criterion is not satisfied 

     for every ant 

          Select an antlion using Roulette wheel 

         update ant positions by shrinking the radius 

         Create a random walk and normalize it 

         Update the positions of ant using equation (3.7) 

end for 

Calculate the fitness of all ants 

      Replace an antlion with its corresponding ant it if becomes fitter (3.6) 

       Update elite if an antlion becomes fitter than the elite 

end while 

Return elite     

Table 2 Input parameters of ALO 

S.No. Details of Parameter Values 

1 Number of Search Agents 100 

2 Lower Bound for L 5mm 

3 Upper Bound for L 9mm 

4 Lower Bound for Wq 0.1mm 

5 Upper Bound for Wq 1mm 

6 Dimensions (number of variables) 2 

7 Max Iterations 100 

4. Results and Discussions 

This section discusses the various results regarding the above designs and optimization. At first, optimized results have 

been demonstrated to achieve the required operating frequency with excellent impedance matching. After that overall result 

of all the iterations has been discussed and the finally, the effect of micro-machining on the third iteration has been discussed. 

4.1.   Analysis of conventional and optimized Sierpinski carpet patch antenna 

The calculated length of the patch is 7.95mm. At this length, the resonant frequency is 7.9 GHz. But the required 

frequency is 8.3 GHz. So to obtain this frequency, the length of the patch is optimized with the fitness function given in Eq. 

(11). The fitness function is minimized using ant lion optimizer. Further, Eq. (12) has been formulated using a curve fitting 

technique by establishing a relation between the length of the patch and the operating frequency.  

2
Fitness Function (8.3- ) F  (11) 

5 4 3 2
0.12785 4.5376 64.16 452.14 1588.9 2239.2F L L L L L             (12) 

The resonant characteristics of the conventional Sierpinski carpet operate at different frequencies in X-band. To 

improve bandwidth and to obtain the required frequency band length of the patch have to be optimized by using Eqs. (11) 

and (12) through the ant lion optimizer. After applying the optimization obtained value of the patch length is 7.08 mm which 

is less than the actual calculated length. So, the overall area of the patch antenna has been miniaturized. At the optimized  
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Fig. 6 Optimized resonant frequency 

length, the resonance characteristics of all the iterations for X-band are shown in Fig. 6, which illustrates that the resonant 

frequency for all the iterations is 8.3 GHz and all the iterations cover the 8025 to 8400 MHz band.  

4.2.   Analysis of Sierpinski carpet fractal antenna with optimization of width of quarter wave transformer 

In this section, the effect of the width of the quarter wave transformer on the return loss has been discussed. For the 

third iteration, the variation in the return loss with width of quarter wave transformer at 8.3 GHz has been formulated using 

curve fitting approach which is described in: 

5 4 3 2
397.62 ( ) 1478.1 ( ) 2004.2 ( ) 1104 ( ) 206.24 24.1RL Wq Wq Wq Wq Wq-           (13) 

Eq. (13) is formulated to get the best return loss and also to obtain the optimized value of the width of the quarter wave 

transformer. The fitness function has been established to find the best return loss at optimized feed width, which is given in: 

2
Fitness function (26 ) RL   (14) 

The above fitness has been optimized through ant lion optimizer. Accordingly, the best return loss has been found to be 

-26 dB which is better than the conventional return loss (-18dB) and optimized width of the quarter wave transformer is 

0.5797 mm, which is also less than the calculated width i.e. 0.7 mm. The results of the optimized and conventional return 

loss are shown in Fig. 7. Basically, higher return loss shows better impedance matching and subsequently, more power is 

radiated into space with low loss of power, which will significantly improves the efficiency of the antenna. 

 

Fig. 7 Optimized reflection coefficient 
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4.3.   Overall analysis of optimized Sierpinski carpet fractal antenna 

 
Fig. 8 Frequency v/s S11 (dB) curve of Sierpinski carpet fractal antenna 

Table 3 Performance parameters of the optimized Sierpinski carpet fractal antenna 

Zeroth Iteration 

Resonant Frequency S11 (dB) Gain (dBi) Bandwidth VSWR 

8.2929 -20.91 3.15   660 MHz 1.1977 

17.5051 -23.15 8.67  1.567 GHz 1.1495 

First iteration 

8.2929 -17.84 2.6 dB  555 MHz 1.2941 

11.9394 -14.95 2.8 dB  558 MHz 1.4355 

15.3939 -17.05 6.84   3.14 GHz 1.3267 

Second Iteration 

8.2929 -17.64 4.5  581 MHz 1.3017 

11.9394 -14.32 2.7  522 MHZ 1.4761 

17.3131 -19.37 9.26  3.226 GHz 1.2408 

Third Iteration 

8.2929 -18.68 2.5 580 MHz 1.2634 

11.9394 -13.62 2.85 477.6 MHz 1.5263 

15.3939 -18.80 5.97 3.36 GHz 1.2593 

The bandwidth of all the bands has been improved with the optimization process, which is shown in Fig. 8 and Table 3. 

Fig. 8 illustrates the resonance characteristics of the optimized Sierpinski carpet fractal antenna operating in X-band and Ku-

Band. From Table 3, it can be seen that all the iterations in Sierpinski carpet fractal antenna resonant at desired frequency 

which is 8.3 GHz. It can also be observed that one more frequency about 11.9 GHz has been achieved which is at the edge of 

the X-band and the rest of the frequencies belongs to the Ku-band with large bandwidth. 

 

Fig. 9 Frequency v/s VSWR curve of Sierpinski carpet fractal antenna 
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Moreover, VSWR graph has been shown in Fig. 9, which depicts that the value of VSWR is less than 2 at the respective 

operating frequencies. VSWR can also be calculated from the return loss and reflection coefficient and vice versa from: 

1

1

VSWR
T

VSWR





 (15) 

where T is the reflection coefficient 

10
20 (T)RL Log   (16) 

4.4.   Radiation patterns of the conventional Sierpinski carpet fractal antenna design 

The radiation pattern consisting of co-polarization and cross-polarization at all the resonating frequencies of the 3
rd

 

iteration of the proposed design has been shown in Fig. 10. There are two radiations patterns for each operating frequency 

i.e., one at phi=0° and another at phi=90°.  

   
(a) ϕ = 0°and f=8.29 GHz (b) ϕ = 90°and f=8.29 GHz (c) ϕ = 0°and f=11.93 GHz 

   
(d) ϕ = 90°and f=11.93 GHz (e) ϕ = 0°and f=15.39 GHz (f) ϕ = 90°and f=15.39 GHz 

Fig. 10 Simulated co and cross polarization of the antenna 

It can be observed that the good cross-polarization level lower than 30 dB in the direction perpendicular to the antenna 

with a maximum gain of 5.8 dB is observed in the third band. The 3D gain patterns at the respective operating frequencies 

are shown in Fig. 11. Various performance parameters like resonating frequency, S11 (dB), VSWR, and gain of all the 

iterations have been shown in Table 3. 

   
(a) Gain plot at 8.29 GHz (b) Gain plot at 11.93 GHz (c) Gain plot at 15.39 GHz 

Fig. 11 3D polar gain plot 
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4.5.   Comparative analysis of optimized Sierpinski carpet fractal antenna on FR4 substrate and  

micro-machined silicon substrate 

 

Fig. 12 Resonant characteristics of conventional and micro-machined Sierpinski carpet fractal antenna design 

 The resonant characteristics of the optimized Sierpinski carpet fractal antenna designed on FR4 substrate and on the 

micro-machined substrate have been shown in Fig. 12, which depicts the shifting in the operating frequency due to the 

alteration in the overall dielectric constant of the substrate material. But a considerable amount of gain improvement can be 

observed at a lower range of operating frequencies. A comparative analysis of various performance parameters of both the 

designs have been tabulated in Table 4. 

Table 4 Comparative analysis of conventional and micro-machined proposed antenna 

Conventional design on FR4 Substrate 

Resonant frequency (GHz) S11 (dB) Gain (dBi) VSWR 

8.29 -18.68 2.38 1.2634 

11.93 -13.62 2.786 1.5263 

15.39 -18.80 5.82 1.2593 

Micro-Machined Patch Design 

Resonant frequency (GHz) S11 (dB) Gain (dBi) VSWR 

7.9 -12 4.4 1.8 

9.6 -11.6 6.0 1.82 

13.6 -18.5 5.2 1.26 

19 -20.3 3.8 1.1 

4.6.   Radiation patterns of the micro-machined designs 

Radiation patterns regarding co-polarization and cross-polarization of the micro-machined version of the 3
rd

 iteration of 

the Sierpinski carpet fractal antenna design have been shown in Fig. 13. Total 8 radiation pattern, two (phi=0° and 90°) at 

each four operating frequencies show the required cross-polarization level at frequencies of interest in the direction 

perpendicular to the antenna with a maximum gain of 5.9 dB is observed in X-band which is an improvement as compared to 

the conventional design. 

Almost there is a significant improvement of 150% in the gain at X-band frequencies in the case of micro-machined 

design over the conventional design on FR4 substrate. The radiation patterns deteriorate at high frequencies due to radiation 

losses and correspondingly value of gain reduces. Moreover, 3D gain polar plots have been shown in Fig. 14. This depicts 

that there is broadside nature of radiation patterns at lower frequencies, but at higher frequencies, owing to losses, there are 

more side lobe levels in radiation patterns, and correspondingly cross-polarization level increases as shown in Fig. 12 (g) and 

(h). Further, a comparative analysis of the proposed design with similar fractal geometry antennas has been tabulated in 

Table 5, which clearly indicates that proposed design exhibits the miniaturized size with wide bandwidth as compared to the 

other similar designs. 
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(a) ϕ = 0°and f=7.9 GHz (b) ϕ = 90°and f=7.9 GHz (c) ϕ = 0°and f=9.6 GHz (d) ϕ = 90°and f=9.6 GHz 

    
(e) ϕ = 0° and f=13.6 GHz (f) ϕ=90° and f=13.6 GHz (g) ϕ = 0° and f=19 GHz (h) ϕ = 90° and f=19 GHz 

Fig. 13 Simulated co and cross polarization of the micro-machined antenna 

  
(a) 7.9 GHz (b) 9.6 GHz 

  
(c) 13.6 GHz (d) 19 GHz 

Fig. 14 3D polar gain plots of the micro-machined Sierpinski carpet fractal antenna 

Table 5 Comparative analysis of proposed design with similar antenna designs 

Reference 

Papers 

Substrate 

Used 
Shape of the antenna size (mm

2
) Frequency band (Bandwidth (GHz)) 

[9] 
FR4 

(εr = 4.4) 
Modified Minkowski fractal 110×60 Multiple frequencies with very narrow band 

[10] 
FR4 

(εr = 4.4) 
Hybrid Fractal Antenna 38×38 2.4-2.48(0.08), 5.80-5.85(0.05) 

[11] 
FR4 

(εr = 4.4) 
Giuseppe Peano Fractal 30×30 2-2.75 (0.75) 

[12] 
Arlon 

(εr = 2.5) 
Sierpinski square patch 

2052 mm
2
 

(Area) 
1.561-1.589 (0.028) 

[13] 
FR4 

(εr = 4.4) 

Koch fractal boundary slot 

antenna 
100×100 

1.825- 3.375 (1.55) 

 

Proposed 

design 

FR4 

(εr = 4.4) 
Sierpinski fractal antenna 20×20 

8-8.58 GHz (580 MHz) 

11.7-12.17 (477 MHz) 

13.3-16.9 (3.3 GHz) 
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5. Conclusion 

An optimized Sierpinski carpet fractal antenna utilizing ant lion optimization and micro-machining process has been 

presented in this study. By optimizing the dimensions of the antenna using the anti-lion optimization, the required operating 

band with excellent impedance matching has been achieved. The ant lion optimization algorithm provides very competitive 

and excellent results over the other nature-inspired met heuristic algorithms because this algorithm shows high exploration 

and convergence speed due to boundary shrinking mechanism and elitism. The proposed design shows a resonance at 8.29 

GHz, 11.93 GHz, and 15.3 GHz with excellent impedance matching of -26 dB at 8.29 GHz. The design covers the band of 

8.025 GHz-8.4 GHz which further can be used for earth exploration satellite service.  The maximum bandwidth of the 

Sierpinski fractal antenna is 3.3 GHz in Ku-band. Further, the performance parameters of the conventional Sierpinski carpet 

fractal antenna have been improved in terms of gain with the process of micro-machining along with the compatibility of 

design with monolithic microwave integrated circuits. The maximum gain of 6 dB has been achieved at 9.6 GHz. There is an 

achievement of the significant improvement of 150% in terms of gain at X-band with the help micro-machining process. 

List of Acronyms 

PSO Particle Swarm Optimization 

BFO Bacterial Foraging optimization 

ALO Ant Lion Optimization 

VSWR voltage standing wave ratio 

MMIC monolithic microwave integrated circuits 

HFSS High frequency Structure Simulator 

RL Return Loss 

RF-MEMS Radio Frequency Micro-Electro-Mechanical Systems 
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