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Abstract 

The generalized multiplicative operator of differentiation is introduced in this paper. It is shown that the 

generalized multiplicative operator can be expressed as a product of two noncommutative but multiplicative 

exponential operators, though the generalized multiplicative operator is not an exponential operator itself. The 

generalized multiplicative operator is effectively exploited for the construction of solutions to nonlinear ordinary 

differential equations through formal transformations of invariants and representations of initial conditions. The 

concept of the generalized multiplicative operator provides the insight into the algebraic structure of solutions to 

nonlinear ordinary differential equations which cannot be identified using conventional exponential operators. 

 

Keywords: ordinary differential equation, multiplicative operator, invariant 

 

1. Introduction 

The construction of analytic solutions to nonlinear ordinary differential equations (ODE) is an important research topic. 

Numerous techniques have been developed for that purpose during the last decades. An explicit algorithm based on the Laurent 

series for the construction of meromorphic solutions of autonomous nonlinear ODE is presented in [1]. The frequency domain 

approach is used to prove the existence of a unique bounded, exponentially stable solution to some third order nonlinear 

differential equations [2]. Existence and boundary behavior for singular nonlinear ODE is investigated in [3]. WTC-Kruskal 

algorithm is developed in [4] in order to study the Painleve property of nonlinear ODE. Differential transform method has been 

successfully exploited for solving nonlinear ODE and their systems [5, 6]. The Adomian decomposition method is used to 

construct the solution in a form of an infinite series where the components are usually determined recurrently [7]. 

Semi-analytical Chebyshev collocation method is used to solve high-order nonlinear ODE in [8]. We list only a small fraction of 

different techniques and semi-analytical algorithms for the construction of exact solutions to ODE.  

The application of algebraic techniques for the construction of analytic solutions to ODE is a classical field of research [9, 

10]. An overview on developments of algebraic theory approach to ODE is given in [11]. The application of algebraic theory to 

the numerical treatment of ODE is studied in [12]. The differential operator is one of the key concepts in the algebraic theory of 

differential equations [13]. The exponential differential operator is especially useful for these purposes [14, 15].  
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It is well known that the concept of the invariant plays an important role in mathematics in general [16]. In particular, 

special invariants of ODE have been recently formulated in the context of geometrical analysis of differential equations [17, 18]. 

The main objective of this paper is to introduce the concept of the generalized multiplicative operator of differentiation and to 

demonstrate its applicability in solving practical problems. Moreover, we will demonstrate the relationship among the 

generalized multiplicative operator of differentiation and invariants of differential equations what will help to develop special 

techniques for the construction of analytic solutions to nonlinear ODE problems.  

This paper is organized as follows. Symbols and notations are listed in section 2; the generalized multiplicative operator 

is introduced in section 3; the expression of the solution in the operator form is derived in section 4; a number of examples are 

given in section 5 and concluding remarks are given in the last section. 

2. Symbols and notations 

The following notations will be used throughout the manuscript (appropriate definitions will be given later): 

n – the order of the explicit ordinary differential equation; 

y – the dependent variable;  

110 ,,, nsss   – Cauchy parameters (initial conditions); 

 – the canonical variable (the center of the series expansion of the solution);  

x – the free variable; 

 110 ,,,, nsssp   – an R-valued function of  and Cauchy parameters; 

 110 ,,,,, nsssxf   – an R-valued function of x,  and Cauchy parameters;  

110 ,,,, 


nsss   – the set of functions  110 ,,,, nsssp  ; 

110 ,,,,, 


nsssx   – the set of functions  110 ,,,,, nsssxf  ; 

s, t – Cauchy parameters for 2n  (i.e. 0: ss  ; 1: st  ); 

xD , D , 
0sD , …, 

1nsD – ordinary differential operators in respect of variables x, , 0s , …, 1ns ; 

yD  – the generalized differential operator; 

M , 0M  – multiplicative operators; 

G  – the generalized multiplicative operator; 

 110 ,,,, nsssv   – the invariant associated with yD ;  

3. The generalized multiplicative operator 

3.1 Existing designs (or original designs) 

Functions of two types are used in this paper. Functions of the first type  10 ,,,  njj sspp   describe the mapping 
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R
10

:
nssjp 

; where R
10

,,,
nss 

 are variation intervals (or unions of intervals) of variables 

R10 ,,, nss  . These functions are differentiable any number times in respect of every variable. It can be noted that the 

identification of variation intervals (or unions of intervals) is a straightforward task whenever the expression of 

 10 ,,, nj ssp   is given explicitly. For example, the function 

 
 0

0
411

1
,

s
sp





  
(1) 

is defined and differentiable any number of times in respect of  and 0s  when     ;00;  and 









4

1
;0s  (the 

principal square root is considered in Eq. (1)). The analysis of functions of the first type is not the objective of this paper, but we 

will consider only such functions  10 ,,,  njj sspp   that intervals 
10

,,,



nss   exist and are not empty sets. The set of 

functions of the first type is denoted as 
110 ,,,, 


nsss  . 

Functions of the second type are constructed from functions of the first type using the following algorithm. 

(i)   Construct the power series: 
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10100 ,,,
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j
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j

n ssp
j

x
ssxf    (2) 

(ii)   Extend the function  100 ,,,, nssxf   to a wider domain (if it is possible) using classical extension techniques. The 

extended function  10 ,,,, nssxf   is denoted as the second type function. 

For example, the series 
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can be extended to a function  
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for  0;0 s  and   xs  0411 . From now on we will use the equality  
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assuming that the transformation into the extended function does not cause any misunderstandings and will not specify the 

domain of x,  and 0s . 

Other forms of the second type functions can be used. Typical cases (structures of 0f ) are listed below: 
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0

10100 ,,,
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,,,

j

nj

j

n ssp
j

ssf  


 .  

It can be noted that it is not necessary to introduce the function norm (neither for the first type functions nor for the second 

type functions) in the process of the construction of analytic solutions of nonlinear ordinary differential equations.  

The set of extended functions is denoted as 
10 ,,,, 


nssx  (

1010 ,,,,,,, 


nn ssxss   ). 

3.2 The generalized operator of differentiation 

Let us consider an explicit ODE: 




















1

1

,,,,
n

n

nn

n

dx

yd

dx

dy
yxP

dx

yd
 ; (3) 

with initial conditions 

 
k

x

k
n

k

s
dx

ssxyd








 10 ,,,, 
; 1,,1,0  nk  ; (4) 

where  10 ,,,,  nssxyy   is the solution to the initial value problem (Eq. (3, 4)); n N is the fixed order of the differential 

equation;  10 ,,,  nnn ssPP   is a function of the first type. Then, the generalized operator of differentiation yD  associated 

with Eq. (1) reads [19]: 

 
1210 10121 ,,,:
  

nn snnsnssy DssPDsDsDsDD    (5) 

This paper is organized as follows. Symbols and notations are enlisted in section 2; the generalized multiplicative 

operator is introduced in section 3; the expression of the solution in the operator form is derived in section 4; a number of 

examples are given in section 5 and concluding remarks are given in the last section. 

Conventional properties of differentiation hold for yD . Several properties are listed below: 

(i)     22112211 fDcfDcfcfcD yyy  ; where R21,cc ; 
10 ,,,,21, 


nssxff  . 

(ii)        212121 fDfffDffD yyy  . 

(iii)   
   

 22

2121

2

1

f

DfffDf

f

f
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 . 

(iv)        
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m
 ,2,1,0, mj . 

(v) Let  zf  be a function differentiable any number of times in respect of the variable z. If 

    10110 ,,,,:,,,,   nn ssxffssxF    then   
 

 101,,,,
,,,,

101





nyssxfzzy ssxfDzfDFD
n







. 

We will prove Property (ii).  
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Proof. 

Without the loss of generality we will prove Property (ii) for 2n . Let us assume that the generalized operator of 

differentiation reads     tsy DtsQDtsPD ,,   and functions  tsPP , ;  tsQQ , ;  tsff ,11  ;  tsff ,22   are 

differentiable in respect of variables s and t any number of times. Then, 

              

             .212121212121

212121212121

fDfffDfDQffDPfffDQffDP

fDfffDQfDfffDPffQDPDffD

yytsts

ttsstsy




  

End of proof. 

Other properties can be proved analogously. 

3.3 The multiplicative operator 

yD  can be exploited to construct the multiplicative operator M: 








0
!

:

j

j
y

j

D
j

x
M . (6) 

The operator M satisfies following equalities [19, 20]: 

(i)     22112211 MfaMfafafaM  ; 21, aa R; 
10 ,,,21,



nssff  . 

(ii)    mm xM   ; m Z0. 

(iii)      101101 ,,,,,,   nn MsMsxfssMf   . 

(iv)   
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. 

Without the loss of generality we will prove the equality    MtMsftsMf ,, 11   when     tsy DtsQDtsPD ,,  .  

Proof.  

Let  tsxyMsy ,,: 11  ;  tsxyMty ,,: 22  ;    tsxztsMfz ,,,: 1   and       tsxytsxyfMtMsfw ,,,,,,: 2111  . 

Then,  
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The last equality yields the following differential equation with partial derivatives: 

0














t
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Q

s

z
P

x

z
; (7) 

where    tsftsz ,,,0 1 . Analogously,  
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The last relationship yields the equality:  

0














t

w
Q

s
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x

w
;         tsftsytsyftsw ,,,0,,,0,,0 21  . (10) 

Therefore, finally: 

   tsxwtsxz ,,,,  . 

End of proof. 

Other equalities can be proved analogously.  

It is worth noting that the multiplicative operator defined by Eq. (6) can be considered as the exponential operator:  

 yxDM exp . (11) 

Now, let us introduce the operator: 

 








0

0
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:
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j
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D
M


. (12) 

Note, that  

   n
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r

rnrn xx
n

r
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0

0 ; ,2,1,0n .  

Moreover,  

   10100 ,,,,,,,,   nn ssxfssxfM   .  

Thus, the operator 0M  is a multiplicative and an exponential operator at the same time. 
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3.4 The generalized operator of differentiation 

We introduce the generalized multiplicative operator: 
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. (13) 

The following properties hold true: 

(i)     22112211 GfaGfafafaG  ; 21, aa R; 
10 ,,,21,



nssff  .  

(ii)   mm xG  ; m Z0. 

(iii)      101101 ,,,,,,   nn GsGsxfssGf  . 

(iv)   
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(v)   Let  10 ,,,,  nkk ssxgMs  . Then  10 ,,,,  nkk ssxgGs  ; 1,,1,0  nk  . 

We will prove the third equality (other equalities can be proved analogously). 

Proof. 

The second property of the multiplicative operator yields:  
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The replacement of the variable x by the expression x  (what is possible) yields: 
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what concludes the proof. 

End of proof.  

Definitions and properties of operators M, 0M  and G (Eq. (11, 12, 13)) yield the following equality.  

Corollary 1. 

MMG  0 .  

Thus, the generalized multiplicative operator G is a product of two noncommutative but multiplicative and exponential 

operators. But the operator G is not an exponential operator. It is worth noting that exponential operators are widely used in 

geometric-operator calculus [17, 21, 22]. We will demonstrate that the generalized multiplicative operator G can be effectively 

exploited for the construction of solutions to ODE problems.  
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4. The expression of the solution to ODE in the operator form 

Theorem 1. 

The solution to the initial ODE problem Eq. (3, 4) can be expressed in the following form [19]: 

      0Gsy  .  

Without the loss of generality we will prove that the solution to the differential equation  
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It is clear that   tsy DtsPtDDD ,,2   . The operator yD  satisfies all properties of the generalized operator of 
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t
dx
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 ,,,
.  

End of proof. 

Eq. (15) can be considered as the generalization of the Picard formula [23] describing the solution of an ordinary 

differential equation in a power series form. 

Corollary 2. The following equality holds: 
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End of Proof. 

Properties of multiplicative operators M and G yield the fact that the solution to the ODE initial value problem (Eq. (3, 4)) 

does satisfy the equality: 
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For example, the solution to the initial value problem xy
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initial condition   ssz ,,0   satisfies the following differential equation: 
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4.1 Invariants of the generalized operator of differentiation and their properties 

Definition 1. A function  10 ,,,,  nssxvv  ; 
10 ,,,, 


nssxv   is an invariant of yD  if  

0vDy . (17) 

The set of invariants is denoted as   yy DvDv Ker :0  . Properties of invariants of yD  are listed below. 
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212211  . The proof follows from properties of yD .  

(ii) Let  mzzz ,,, 21    be a function of variables mzzz ,,, 21   and ym Dvvv Ker ,,, 21  .  
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Proof. 
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End of proof. 

(iii)   Let yDv Ker   and 
10 ,,,, 


nssxf  . Then,    fDvvfD yy  ;    MfvvfM  ;    GfvvfG  . 

Proof. 

     fDvfDvfvDvfD yyyy  . Other equalities can be proved analogously.  

End of proof. 
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End of proof. 

Corollary 3. The replacement of a real complex number 0  in the expression of 
0

~
G  by a symbol x yields the equality 

GGx 
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; (19) 

moreover, yDGf Ker   for 
10 ,,,, 
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End of proof. 

Note that the variable x is regarded as a constant in respect of the operator yD . 

Corollary 4.  
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Eq. (13), Eq. (18) and Eq. (19) yield the equality 0yDy ; therefore 

yDy Ker  . (20) 

Corollary 5. Let 
10 ,,,,21,



nssxff  . Then 21 GfGf   if and only if 21 ff  . 

Proof. 

If 21 ff   then 21 GfGf  .  

Now, let us assume that 21 GfGf  . Then  
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  021  ffD j
y  holds for all ,2,1,0j . But   2121

0 ffffDy   what concludes the proof. 

End of proof. 

Corollary 6. Let   yn Dssxf Ker ,,,, 10  . The replacement of the symbol x by the symbol  produces a function 

 10 ,,,, nssf  . Then, the following equality holds true: 

   1010 ,,,,,,,,   nn ssxfssGf   . (21) 

Proof. 

The function f can be expressed in the form   
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yj Dv Ker  . But then   




 

0

10
!

,,,,

j

j

jn
j

vssf


   what immediately yields Eq. (21).  

End of proof.  

Let  tsxy ,,,  be the solution to differential equation (14) and     vtsvtsxy x  :,,:,,,
00  ; 

 
  utsu

dx

tsxdy
x

xx




:,,:
,,,

0

0




 where Rx 0  is not a singular point of differential equation (14). Then,  
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Z

. (22) 

It can be noted that Eq. (22) is not the only representation of yDKer  in terms of u and v. In general, other representations 

(in other terms) do exist. 

4.2 The canonical parameter of the generalized operator of differentiation 

Definition 2. A function  10 ,,,  nss  ; 
10 ,,, 


nss   is the canonical parameter of yD  if 
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1yD . (23) 

Corollary 7. The variable  is a canonical parameter of yD  because 1yD . Moreover, all other canonical parameters 

of yD  can be expressed in the form: 

v  (24) 

where yDv Ker  .  

Corollary 8. Let 1  and 2  be two canonical parameters of yD . Then,  

yDKer 21   . 
 

4.3 Structural expressions of the solution to ODE 

We will consider several typical structural expressions of solutions. Let us assume that the function  10 ,,,  nsszz   

can be expressed in the form: 

 mvvz ,,, 1   (25) 

where 
10 ,,, 


nss  ;   ynjj Dssvv Ker ,,, 10   ;  mj ,,2,1  . Then, properties of the generalized operator of 

differentiation yield: 

 mvvxGz ,,, 1  . (26) 

Note that 
 

vvD
j

x
vGv

j

j
y

j




 


1
!


. Various particular cases of Eq. (25) could be considered. Several typical 

examples are listed below. 

Theorem 2.  

Let us assume that 0s  can be expressed in the form: 

 mvvs ,,, 10  . (27) 

Then,  

 mvvxy ,,, 1  . (28) 

Proof. 

The proof follows from Eq. (13) and Eq. (26). 

End of proof. 

Eq. (28) also represents the structural expression of the solution in Eq. (13).  

It appears that if one is able to identify invariants and to construct the expression of 0s  (Eq. (27)) then there is no need to 
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solve the initial problem defined by Eq. (3, 4) – the solution is automatically generated by Eq. (28). Since this result is of 

fundamental importance, we denote the expression in Eq. (27) as the 0s  representation.  

The natural question arises what is easier – to find invariants or to solve the initial problem using conventional techniques. 

A discussion on these questions is provided in section 5.  

Corollary 9. A particular case of the 0s  representation: 

 






1

0

k

kk fvs  , (29) 

where   ynkk Dssvv Ker ,,, 10    for all k yields the solution to the ODE defined by Eq. (3, 4): 

 






1k

kk xfvy . (30) 

Eq. (30) represents another structural expression of the solution in Eq. (13).  

Note that 






1k

k
k xvy  if   k

kf    (what is a rather common situation).  

Corollary 10. 

Let us assume that the expression of the invariant   yDsvv Ker , 0    is given. Then  0,GsGvGv   what yields the 

algebraic equation: 

  10 ,,,,,  nssxyxvv  . (31) 

Then the solution y  could be expressed from Eq. (31). Thus it is possible (not always) to reduce the initial problem 

defined by Eq. (3, 4) to the solution of the algebraic problem defined by equation Eq. (31). 

It can be noted that other generalizations are also possible. 

5. Examples 

A number of examples are given in this Section. We start from the most primitive examples and continue with more 

demanding nonlinear ODE problems. 

Example 1. Let us consider a differential equation 0
dx

dy
;  sxyy ,,  with the initial condition   ssy ,, . Then, 

sy DDD  0 ; 
 









0
!

j

j
j

D
j

x
G 


. The invariant reads   ssv :,  because ssDy  . Then, the s-representation reads: 

ss  . Therefore, sGs  ;   Gssxy ,, . Finally,   ssxy ,, ;   ssy ,,  and 












 


Rk

Zk

k

ky asaD
0

Ker . 
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Example 2. Let us consider a differential equation 0
2

2


dx

yd
;  tsxyy ,,,  with initial conditions   stsccy ,,; ; 

 
t

dx

tsxdy

x




 ,,,
. Then, tsy DtDDD 0  . The invariant reads:   tstsv  ,,  because 

   0 tttstDD s  . Then the s-representation reads:   ttss   . Now,   tGtsGs    (note that 

   xtGtGtG   ). Thus xttsy   ;   stsy ,,, ; 
 

t
dx

tsxdy

x




 ,,,
. Note that 

 
t

dx

tsxdy
Gt 

,,,
 and 

 












 


0;,Ker 00

,

0

0

xxattxtsaD kl

Zlk

lk

kly R . 

Example 3. Let us consider a differential equation  xP
dx

dy
1 ;  sxyy ,,  with the initial condition   ssy ,, . 

The generalized operator of differentiation reads:   sy DPDD  1 ; 
 

  









0

1
!

j

s

j

DPD
j

x
G 


 . Now, let us define a 

primitive function  xP1
ˆ  for  xP1 :    





 dzzPP 11
ˆ ;   0ˆ

1 P  where R  and  1P̂  exists. Then, the invariant reads: 

    1
ˆ, Pssv   because           0ˆ

1111   PPPsDPD s . Then the s-representation reads: 

     11
ˆˆ PPss  . Thus,     xPPsGs 11

ˆˆ   . Finally       xPPssxy 11
ˆˆ,,   ;   ssy ,,  and 

      












 


010011
ˆ;,ˆˆKer 

0

xPaxxPPsaD k

Zk

k

ky R . 

Example 4. Let us consider a differential equation 
 
 yQ

xP

dx

dy

1

1 ;  sxyy ,,  with the initial condition   ssy ,, . 

Then, 
 
  sy D
sQ

P
DD

1

1 
  ; 

   
 



















0 1

1

!
j

j

s

j

D
sQ

P
D

j

x
G


 . Let  xP1

ˆ  and  xQ1
ˆ  be primitive functions for  xP1  and 

 xQ1 . Then, the invariant reads:       11
ˆˆ, PsQsv  , because 

 
 

         0ˆˆ
1111

1

1 









 


 PPPsQD

sQ

P
D s . Now, 

the s-representation can be expressed in the implicit form          1111
ˆˆˆˆ PPsQsQ  . Therefore, 

         1111
ˆˆˆˆ PGPsQsQG  ;            GPPsQsGQ 1111

ˆˆˆˆ  ;         xPPsQsxyQ 1111
ˆˆˆ,,ˆ   . Finally 

        xPPsQQsxy 111
1

1
ˆˆˆˆ,,    . The explicit solution exists if the inverse function  xQ 1

1
ˆ   does exist.  

Example 5. Let us consider a differential equation 
2y

dx

dy
 ;  sxyy ,,  with the initial condition   ssy ,, . Then, 

sy DsDD 2  . It can be observed that  



s

s
svv




1
,  because  

 
 

 

 
0

1

1

11 2

2

2

2
2 



















s

ss
s

s

s

s

s
DsDvD sy .  
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Thus, 
  

 
 sxxy

sxy

GGs

Gs

s

s
G

s

s

,,1

,,

111 



 









. The algebraic equation for the identification of y takes the form: 

xy

y

s

s




 11 
. Finally  

 





xs

s
sxy

1
,, . It can be noted that    

 
0

1
,, 2 





 

xs

s
DsDsxyD sy  and 

  ssy ,,  and 
  























 



R0

0

,
1

Ker 
0

xa
xs

s
aD k

Zk

k

ky


. 

Example 6. Let us consider a linear ordinary differential equation 0
2

2

 by
dx

dy
a

dx

yd
;  tsxyy ,,,  with initial 

conditions   stsy ,,, ; 
 

t
dx

tsxdy

x




 ,,,
. Then,   tsy DbsattDDD    and invariants 

become       121 exp,,  sttsv ;       212 exp,,  sttsv  where 1  and 2  are two different roots of the 

algebraic equation 02  ba . Note that 021  vDvD yy . Then, the s-representation reads:  

       








22

12

1
11

21

2 expexpexpexp 










stst
s .  

Thus, the solution reads:  

     


















 x

ts
x

st
y 2

21

1
1

21

2 expexp  

and  

         












 




Rkl

lk

lk

kly aststaD
0,

2112 expexpKer  . 

Example 7. Let us consider a linear ordinary differential equation 02 2
002

2

 y
dx

dy

dx

yd
 ;  tsxyy ,,,  with initial 

conditions   stsy ,,, ; 
 

t
dx

tsxdy

x




 ,,,
. Then,   tsy DsttDDD 2

002    and invariants read 

       001 exp,,  ststsv ;       002 exp,,  sttsv ; 021  vDvD yy . The s-representation takes the 

form:                000000 expexpexpexp  ststss .  

Thus, the solution reads:         xxstsy 00 exp  and  

          














 




RaststsaD kl

lk

lk
kly

0,

0000 expexpKer 

. 

So far, the solution of trivial differential equations has been demonstrated in Examples 1 – 7. These examples were used 

to illustrate the specific features of the proposed solution technique. A more demanding problem is investigated in Example 8. 
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Example 8 (The Riccati type equation). Let us consider a differential equation 
  
 xyy

yyyy

dx

dy

21

21




 ;  sxyy ,,  

with the initial condition   ssy ,, ; where 21, yy C; 21 yy  . Then, 

  
  sy D

yy

ysys
DD 









21

21 ; 
    

 























0 21

21

!
j

j

s

j

D
yy

ysys
D

j

x
G




 . Two invariants are appropriate for the 

s-representation:   21 , ysv  ;   
1

2
2 ,

ys

ys
sv




  because 021  yDyD yy . Really,  

 
  

 
   

 
01

21

12

1

2

2
1

21

21

21

1

2
2 




































yy

yy

ys

ys

ys

ysys

yy

ysys

ys

ys
vDy




. Then, the s-representation can be 

expressed in the implicit form: 
 



 1

1

2
2

ys

ys

ys
ys







 .  

Therefore, 
 





G

GyGs

ys

ys
yGs 1

1

2
2







 ;  

   
x

ysxy

ys

ys
ysxy 1

1

2
2

,,
,,










 ; and finally, 

 
   
   




21

2112,,
ysxys

ysyxysy
sxy




 ;   ssy ,, . The kernel reads: 

   
    

























 



0;,Ker 00

201

21012

0

xax
ysxys

ysyxysy
aD k

Zk

k

ky R



 because 00 x  is the singular point of this 

differential equation. 

It can be noted that the same problem can be solved using different invariants (we will exploit a similar invariant to the one used 

in Example 4):       11
ˆˆ, PsQsv   where  

 xyy
xP

21
1

1


 ;  

21
1

lnˆ
yy

x
xP


 ;   01ˆ

1 P  and  
  21

1

1

yyyy
yQ


 ; 

 
2

1

21
1 ln

1ˆ
yy

yy

yy
yQ






 . Then, the implicit s-representation reads: 

 ln
1

ln
1

ln
1

ln
1

21212

1

212

1

21 yyyyys

ys

yyys

ys

yy 

















. Then,  lnlnlnln

2

1

2

1 G
ys

ys

ys

ys
G 









 because 

0lnln
2

1 
















ys

ys
Dy . Therefore, 

 
 

x
ys

ys

ysxy

ysxy
lnlnln

,,

,,
ln

2

1

2

1 













. Finally, the solution in the explicit form reads: 

 
   
   




21

2112,,
ysxys

ysyxysy
sxy




 ;   ssy ,, .  

An even more complex problem is investigated in Example 9. 

Example 9 (Invariants and the s-representation of the Liouville type equation). Let us consider the differential 

equation 

y
x

y

dx

dy
41 ; R ;  sxyy ,, , (32) 

with the initial condition   ssy ,, . Then, sy Ds
s

DD 


 41 .  
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The invariant reads:  
 ss

s
sv




4121
,


 . Really, it is easy to check that  

 
0

4121
41 












ss

s
Ds

s
D sc





.  

Nevertheless, it is clear that finding the invariant can be as much complex problem as solving the original differential 

equation. It was rather easy to determine invariants in Example 8. But the identification of  sv ,  becomes a difficult task now. 

In general, one needs to have some sort of algorithm for the construction invariants (especially if differential equations are 

complex). We are going to present a detailed description of this algorithm in the second part of this paper (the object of the first 

part is to derive the general framework for the solution of nonlinear ordinary differential equations).  

At this point we will illustrate the duality of the problem. One can derive invariants and then the construction of the 

solution becomes a straightforward task. On the contrary, one can reconstruct invariants if the explicit expression of the solution 

is available. Note that the algorithm for the construction of invariants (the objective of the second part of the study) does not 

require the analytic solution of the original differential equation.  

In [24] it is shown that the solution of Eq. (32) reads: 

 
 

  241212

41212
,,

sssx

xsss
sxy









 . 

 

Then, according to Corollary 8 (part (i))    






0

,,,

j

j
j xsvsxy   and the s-representation reads  







0

,

j

j
j svs   (because 

  yxsvGs

j

j
j 



0

, ). Now, keeping in mind that 
  






 1

1

2
1

1

j

jjz
z

, one can deduce: 

 

 
 

   
 

  
.

4121

2
2

4121

2

4121

2

4121

2
14121

41212

0

1
1

1

2

22











 














































j

j

j

j
j

j

x

ss

sj
s

ss

sx
j

ss

sx

ss

sx
ss

xsss
y


















  

Now, immediately, 
 

  











0

1

4121

2
2

j

j

j

j

ss

sj
ss 




. Therefore,  

 

   j

j

j

ss

sj
sv






4121

2
,

1








 ;  

 
 ss

s
sv




4121
,


  and 

  





























 





Rk

k

k

ky a
ss

s
aD

0 4121
Ker 


. 

6. Concluding remarks 

A number of examples are used to illustrate the functionality of the proposed technique. It becomes clear that the 

identification of invariants can be as much complex problem as the solution of the initial ODE problem. A necessity of an 

explicit algorithm for the construction of invariants becomes obvious for more demanding and complex nonlinear ODE 
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problems. The construction of this algorithm is the primary objective of the second part of this paper. Theoretical results 

presented in the first part serve as a foundation for the construction of this algorithm. Moreover, the concept of the generalized 

multiplicative operator provides the insight into the algebraic structure of solutions to nonlinear ODE which cannot be 

identified using conventional exponential operators.  
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