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Abstract 

The objective of this paper is to investigate the thermal behaviour and loadability characteristic of a yokeless 

and segmented armature axial-flux permanent-magnet (YASA-AFPM) generator, which uses an improved 3-D 

coupled electromagnetic-thermal approach. Firstly, a 1-kW YASA-AFPM generator is modelled and analysed by 

using the proposed approach; the transient and steady-state temperatures of different parts of the generator are 

determined. To improve the modelling accuracy, the information is exchanged between the thermal and 

electromagnetic models at each step of the co-simulation, considering both the accurate calculation of losses and the 

impacts of temperature rise on the temperature-dependent characteristics of the materials. Then, by using the 

proposed approach, the impact of the slot opening width and the turn number of stator segments on the generator 

loadability are investigated. After that, the experimental tests are performed. The results reveal the effectiveness and 

accuracy of the approach to predict the machine loadability and thermal behavior. 
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1. Introduction 

Over recent years, much research has been dedicated to the modeling, optimum design, and analysis of direct-drive 

AFPM machines. Using such electric machines has many benefits, such as a reduced number of the turbine drive-train 

components, reduced costs, increased system reliability, increased torque density, and improved efficiency. Due to having the 

competencies such as high power density, high efficiency, and low axial length, AFPM machine is a very good candidate to use 

as a direct-drive wind generator [1-3]. The AFPM generators could be designed in different topologies. The state of the art on 

topologies with a yokeless and segmented armature (YASA), which is an improved version of the double-sided AFPM 

topology, resulted in many positive aspects, such as short end coils, high torque density, low iron mass, and losses due to the 

deletion of unnecessary stator yoke, high slot filling factor, reduced mutual inductance, and fault tolerance [4]. 

To design a PM machine for a particular application, its thermal behavior must be investigated. Some concerns, such as 

the magnet stability, irreversible demagnetization, or any damage to the insulating materials, must be taken into consideration 

[5-6]. The winding temperature determines how long a machine can be loaded. Exceeding the thermal limits of the windings 

accelerates the oxidation of insulation materials, which in turn adversely affects their electrical properties and stability [7-8]. 

Thus, assessment and measurement of temperatures in the different parts of electric machines are of high importance. 
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Analytical thermal modeling is an essential step in designing any electrical machinery to evaluate the temperature of 

different parts. The thermal analysis is beneficial in selecting machine materials. For example, thermal demagnetization risk is 

of great concern for permanent-magnet machines. Also, the heat tolerance of PMs and insulation materials is limited, and any 

violation of their permitted temperature rise makes them lose their efficiency and stability [9].  

To investigate the thermal behavior of AFPM machines, distinct approaches, such as the computational fluid dynamics 

(CFD), lumped-parameter models, and finite element analysis (FEA), have been presented in the scientific literature [10-13]. 

The modeling of the machine losses as the heat sources requires an electromagnetic model. A coupled electromagnetic-thermal 

modeling technique was described for computing heat losses and evaluating temperature distribution in some electrical 

machines [14-15]. Furthermore, the thermal behavior of AFPM machines has been investigated through a 3-D 

thermal -magnetic finite-element analysis [16-17]. Nonetheless, in most of the above-mentioned approaches, the power losses, 

which play a basic role in the thermal analysis, have not been accurately calculated. For example, a general approximate 

relationship has been used to calculate iron losses. In addition, these studies overlook the fact that the effect of temperature rise 

on the properties of conductors and PMs is required for very accurate modeling, and it has not been included in the simulation 

process so far. The electrical, magnetic, and thermal properties of the materials, including the resistivity, magnetization, and 

thermal properties are function of the temperature. At each step of the simulation, variations in these properties affect the 

accuracy of thermal-magnetic analysis. Thus, in this study, to have accurate thermal modeling and analysis, considering the 

above-mentioned concerns, a new improved coupled electromagnetic-thermal analysis based on a 3-D magnetic and thermal 

co-simulation is presented and applied for the modeling and analysis of a YASA-AFPM generator. Another contribution of the 

paper is applying the approach to investigate the influence of the slot opening width and number of turns of each stator segment 

on the loadability of the studied YASA-AFPM generator. Finally, by using the conventional method, the proposed method, and 

the experimental tests, the loadability characteristics of the studied generator are obtained and compared. 

The paper is structured as follows. In Section 2, the specifications of the studied YASA-AFPM machine are given. Then, 

in Section 3, the proposed thermal analysis approach is described. In Section 4, the results taken from the simulation and 

experimental tests (i.e. the loadability characteristic as well as the transient and steady-state temperatures of the coils and PMs) 

are discussed. Finally, the paper conclusions are provided in Section 5. 

2. Topology of the YASA Machine 

 
Fig. 1 The exploded view of the YASA-AFPM machine 

 

Fig. 2 The side view of the YASA-AFPM machine 
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Table 1 The parameters and geometrical data of the studied YASA-AFPM generator 

Parameter Value Parameter Value 

Rated Power (W) 1000 Rated speed (rpm) 500 

Outer diameter (mm) 180 Inner diameter (mm) 87.65 

Number of poles 14 Number of segments 12 

PM thickness (mm) 5 Disk thickness (mm) 6.5 

Air-gap length (mm) 1 Slot opening width (mm) 2 

Pole arc to pole pitch 0.68 Segment axial length (mm) 29.8 

No-load phase voltage (V) 60 Shoe axial length (mm) 5 

Specific electrical loading (A/m) 25000 Width of coil (mm) 8.48 

The exploded view of the studied YASA-AFPM generator with 12 stator segments and 14 PM poles is shown in Fig. 1. 

Also, the side view of the YASA-AFPM machine is shown in Fig. 2. The main parameters and geometrical data of the studied 

YASA-AFPM generator are listed in Table 1 [18].  

3. Proposed Thermal Analyses 

In the most recent coupled thermal-magnetic analysis, losses have been estimated by using general methods. Also, in the 

previous studies, the effect of temperature change on some material properties, such as thermal conductivity and specific heat 

capacity, has not been considered. A much more accurate study will identify how the coupling interacts with other variables 

that are believed to be linked to material properties. In the typical case, lower iterations are conducted; it should be mentioned 

that the electromagnetic analysis implemented in the steady-state reduces time, while the transient operating mode that takes a 

great deal of time is solved. While various methods to conduct the thermal analysis of electrical machines are not linked with 

electromagnetic analysis during the simulation, it is vital to simulate magnetic and thermal model simultaneously since the 

both are dependent on each other [14-16]. 

In this study, two subsequent electromagnetic and thermal analyses are coupled, considering the effect of temperature 

changes on the thermal properties of the materials used in the generator structure. Here, to implement a highly accurate coupled 

electromagnetic-thermal approach during the simulation process, the temperature-dependent properties of the materials are 

considered as functions of the temperature and updated with the new calculated temperatures. The temperature-dependent 

thermal properties of materials, such as permanent magnets, copper coils, steel sheets, and soft iron, are included in the model. 

The magnetic analysis makes it possible to calculate the power losses by the Joule effect in the parts to be heated, and the 

governing equation used in the magnetic model is expressed as: 

0( [ ] ) [ ]( ) 0rV V V
t

∂
∇× ∇× + +∇ =

∂

�

�

σ
A

A  (1) 

where �� , V� , �, � , and �  are the tensor of vacuum reluctivity, medium reluctivity, magnetic vector complex potential, 

conductivity of the medium, and electric scalar potential, respectively.  

The copper, iron, mechanical, and PMs eddy current losses are the most significant power losses that occur in the AFPM 

machines. The mechanical losses include windage losses (air-solid friction) and bearing friction losses (solid-solid friction). 

Due to the low rotational speed of the studied YASA-AFPM generator, the mechanical losses are neglected. For the studied 

generator, which uses the relationships given in [18], the total mechanical losses are estimated as about 3.68 watts. In the 

proposed thermal analysis, at each step of the co-simulation, the losses created in the coils and stator segments, and the rotor 

disks are calculated by using the 3-D electromagnetic analysis, while at each step of the co-simulation, the 

temperature-dependent properties of the materials are updated with the temperature variations. 
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The magnetization curve of the iron materials (grain-oriented steel sheets of the stator segments and soft iron used in the 

rotor disks), as well as the nonlinear demagnetization curve of the PM materials, are included in the analysis. The iron losses in 

the stator segments and in the rotor disks can be accurately calculated by using the following relation: 

2 2 2( , ) ( , ) ( )m m e m mFe hdp k f B fB k f B d B= +  (2) 

where d is the derivative operator,  �	
  is the iron losses density, �m is the peak value of the alternating flux density, � is the 

frequency, 
��, �m� and ���, �m� are the variable coefficients of the eddy currents and hysteresis losses, respectively [19].  

Thus, in comparison to the conventional methods, which use constant coefficients for calculating total iron losses, in this 

study, the coefficients are fitted as a nonlinear function of �m and � according to the core loss curve of the used materials. For 

example, the core loss curve of the grain-oriented steel sheets (M4-Goes) used for the stator segments (at a frequency of 50 & 

60 Hz) is shown in Fig. 3. After we calculate the average power dissipation in the iron volume regions by integrating the 

instantaneous losses density during a period, the resulted mean losses are given in the thermal analysis. 

 
Fig. 3 The core loss curves of the M4-Goes 

Due to the induced eddy currents in the PMs, the current density at the cross-section of the PMs can be calculated as 

follows: 

1
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m

JJ
t

= − +
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where ρ� and �� are the resistivity of the PM material and the constraint current density, respectively [20]. By integrating 

ρ ��
� over the PM volume regions, the average PM losses are obtained. 

Table 2 Variation of the copper properties with temperature [21-22] 

Specific Heat Capacity (J/kg.K) Thermal Conductivity (W/m·K ) Temperature (°C) 

384.70 400.73 20 

386.07 400.02 30 

387.42 399.31 40 

388.76 398.60 50 

390.07 397.88 60 

391.36 397.17 70 

392.63 396.46 80 

393.88 395.75 90 

395.12 395.05 100 

As the temperature changes, the electrical, magnetic, and thermal properties of the materials, including the resistivity, 

magnetization, specific heat capacity, and thermal conductivity, changes too. In order to calculate losses more accurately and 

to deal with the dependence of the material properties on temperature as with conductors, the specific heat capacity and thermal 

conductivity of the materials are considered in the proposed model as an exponential function of temperature as follows: 
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where a and b  are constant factors, �� is the ambient temperature, and �  is the temperature constant. Table 2 shows the data 

related to the copper. 

To study the impact of the losses on the thermal behavior of the machine, the temperature evolution of the machine is 

investigated via the transient thermal analysis. The transient thermal behavior of the proposed model is simulated by using the 

following equation: 

( )p

T
C k T q

t

∂
+ ∇× − ∇ =

∂
ρ  (5) 

where ρ��,  and � are the volumetric heat capacity, thermal conductivity tensor, and volumetric power density of the heat 

sources, respectively. 

The heat generated due to the power losses is transmitted through three heat transfer mechanisms, namely conduction, 

radiation, and convection. As it is widely accepted, convection is the most important mechanism, although radiation has been 

proven relevant in some cases. The heat generated due to the losses is transmitted through conduction in the solid parts of the 

electric machines, and through the convection in the fluids. In an AFPM machine with a single inner stator and two outer rotors, 

the heat generated in the coils is transferred to the stator via conduction and then is conducted to the machine’s frame, where 

the frame surface is cooled by the environment. The rotor disks have no heat source, and the heat transfer is done via 

convection through the heated air movement in the air-gap. Because of the lamination, the temperature gradient over the stator 

area is significant. However, the high conductivity of the metal and the small size of the rotor cause the rotor area to have an 

insignificant temperature gradient. In the steady-state rotation, the rotor heating is uniform unless there are juts on the surfaces 

of the rotor, and they are exposed to more heated airflow. Obviously, the temperature increases from the inner radius towards 

the rotating clearance outlet, which is due to the air heating in the clearance. The maximum temperature occurs in the stator 

areas adjacent to the coils, especially in the areas closer to the inner radius owing to the higher amount of winding per volume 

[23]. The temperatures in the magnets are significantly lower than those of the stator segments because the PMs are directly 

mounted on the efficiently-convection-cooled rotor disks [24]. 

The conduction and radiation mainly depend on the geometry and physical properties, while the convection modeling 

requires fluid dynamics. Although the contribution of radiation to heat transfer is typically neglected in the thermal model, 

radiation coefficients are defined for each boundary of the presented model. The emissivity at the interface between rotor and 

shaft as well as the stator boundary is defined as 0.9 W/(m
2⋅°C

4
). The rotor disk is a freely rotating disk, i.e. a disk that freely 

rotates around its center. For such a disk, the coefficients of the convection heat transfer in the laminar and turbulent flow 

regimes have been expressed as [25-26]: 

k
h Nu

R
= ×  (6) 

where � is the radius of the disk, and the average Nusselt number (��    ) is obtained according to the different flow conditions. 

The critical Reynold number for transition is: 

1
5 22.5 10( )c

v
r

Ω
= ×  (7) 

where Ω is the angular speed, and ν is the air dynamic viscosity. As !� > �, the air flowing in the air-gap is laminar. The 

Nusselt number to heat transfer coefficient of the outside rotor disk can be considered as: 
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where Reynolds (�#) and Grashof ($!) numbers are obtained by: 
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where % is the coefficient of thermal expansion, ∆� is the temperature difference between the disk surface and surrounding air, 

ρ is the specific density of the cooling medium, ' is the rotational speed, and μ is the dynamic viscosity of the fluid.  

Regarding peripheral edge of rotor, the Nusselt number for average heat transfer coefficient around the radial periphery 

can be written as: 

2 1

3 30.133Nu Re pr=  (11) 

where �! is the Prandtl number. The value of Nusselt on rotating shaft can be expressed as: 

2

30.119( )Nu Re=  (12) 

As for the calculation of the heat transfer coefficient in the rotor-stator system, the Nusselt number is: 

0.333 / ( )Nu Q vR= π  (13) 

The volumetric flow rate of the machine (Q) at rated speed (500 rpm) is considered as 0.0025 -./0 according to the measured 

characteristic curves of the machine. The assumptions are based on the natural air-cooling.  

The process of the new multi-physics 3D FE magnetic-thermal analysis is characterized based on the step-by-step 

flowchart illustrated in Fig. 4. At the beginning of the analysis, as defined in Equation (2), the core loss which depends on the 

flux density and frequency, is calculated for the iron parts of the machine. By fitting the core loss curve of the used material 

(refer to Fig. 3) as a nonlinear function of flux density (��) and frequency (�), the coefficients are determined. The coefficients 

that fit a set of data in a least-squares sense are computed by using the Curve Fitting Toolbox in MATLAB. Then, the 

coefficients are added to the 3D-FEM magnetic model. All types of losses are calculated by using 3D transient EM analysis 

based on the initial (ambient) temperature, and the 3D thermal analysis simulation with FEA uses the estimated losses as the 

heat sources. The boundary conditions and the heat transfer coefficients are defined; the amount of the generated heat in all 

regions is obtained. The flow of heat is transferred through the materials.  

Parameters, such as thermal conductivity (k) and specific heat capacity (���), are temperature-dependent and can 

strongly influence the thermal analysis. Therefore, the accurate estimation of these parameters is necessary in case of the 

transient analysis. As shown in Fig. 4, an iteration-based method is used to determine the exact amount of the thermal variables 

(k & C�T) that will be used in the thermal analysis. In the first iteration at the beginning of the analysis, two initial values are 

assumed for the thermal conductivity and the specific heat capacity. In other words, the thermal variables of the materials in 

different regions of the model take on initial values (initialization step). Then, 3D finite element thermal analysis is applied. In 

the next step, post-processing is performed, and temperatures of the different regions of the model are estimated. For each 
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region of the model, the thermal variables at the new temperature (k5678�9 & C�T5678�9) are calculated by using the interpolation 

function (based on Table 2). Then, considering the previous values of the thermal variables, two separate error criteria (ε; & 

ε<=>) are estimated as follows: 

k interp interpk k / kε = −  (14) 

C T int erpint erp
T C TC C T /

p p p pε = −  (15) 

 

 
Fig. 4 The flowchart of the proposed 3-D coupled thermal-magnetic analyses 

As observed in Fig. 4, the flowchart has an update block for the thermal variables (k → k@9A & C�T → C�T@9A). The 

operation of the update block is based on the algorithm described below; for example, updating C�T is done according to the 

flowchart shown in Fig. 5. A similar procedure is used to update k. The criterion to modify (update) the values of k and C�T 

which is in relations 14 and 15 is the value of the error defined for each of these variables (ε; & ε<=>). In each iteration, each 

thermal variable is modified (updated) according to its own error. As shown in Fig. 5, if the value of the error associated with 

each thermal variable is less than or equal to the value of ξ (ε C ξ), the updated value of that variable is considered equal to its 

previous value (k@9A D k & C�T@9A D C�T). Otherwise, the interpolated values of the thermal parameters (k5678�9 D  C�T5678�9) 

are compared to their previous values. For instance, 
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The thermal variables will keep being updated until ε C ξ. In this study, a limit iteration discrepancy of 0.5% is adopted  

(ξ D 0.5%). 

 
Fig. 5 The used flowchart to update the specific heat capacity 

After updating the thermal conductivity and the specific heat capacity of the material, the coupled 

electromagnetic-thermal analysis is performed. As mentioned earlier, in the electromagnetic analysis, some parameters, such 

as the resistivity of conductors and the residual flux density of permanent magnets, are temperature-dependent. In addition, the 

losses calculated via the electromagnetic analysis are the inputs of the thermal analysis. Therefore, the interaction between the 

two analyses should be taken into account. Due to the interaction between the thermal and magnetic analyses, it is better to 

exchange data between the two analyses during the simulation. The co-simulation provides data exchanges between the 

thermal and magnetic analyses. In the second loop of the flowchart in Fig. 4, the data exchange continues until the temperature 

field convergence condition is met. At each time step, the convergence of the temperature field is checked by using Equation 

(16), which is based on newly imported and previously imported temperature fields. 

2
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T
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T T

T
≤

∑
∑

ξ  (17) 

where � is the temperature, F is the node number, and GH is the desired accuracy. 

The steps taken during the coupled electromagnetic-thermal analysis in the second loop of the flowchart (Fig. 4) are given 

in Table 3. This multi-physics procedure is implemented by using Altair Flux – MATLAB-Simulink coupling as presented in 

Table 3. This coupling realizes the solving of magnetic and thermal transient equations at each time step. First, the 

electromagnetic aspect is analyzed and then, the thermal one. Once the convergence of multi-physics coupled procedure is 

achieved at each moment, the calculations of the next time step will be performed.   

The coupling process includes the following steps:  

(1) Preparation of the Altair Flux project: the physical application (magnetic, electric or thermal), geometry, mesh, physics 

specific description (definition of materials and their characteristics), and the multi-physics input and output parameters are 

defined. Also, the face and volume regions are assigned.  
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(2) Generation of the “component file” via the Altair Flux: the coupling “component file” is necessary in order to transfer 

information from the Altair Flux project to the MATLAB-Simulink. The component file has an extension in “.F2MS” 

format. By using the 3D Altair Flux software, two component files are created. One is for the electromagnetic model, and 

the other is for the thermal model (in the transient application). 

(3) Creation of MATLAB-Simulink model: in MATLAB-Simulink, two blocks are created called coupling blocks, and these 

blocks are addressed by these two component files. In addition to the Altair Flux-Simulink coupling library, other libraries 

are added to be used to update the temperature-dependent properties of the materials in the time steps where the 

temperature changes. 

(4) Configuration of the Simulink model parameters: an attempt has been made to choose an optimal solver by making a 

compromise between accuracy and simulation time. Fixed-step solver which implements the ODE3 method is selected to 

solve the model. Fixed-step size or fundamental sample time is considered as 25E-5 seconds. 

(5) Launching the simulation. 

(6) Post-processing of results. 

Table 3 The steps taken during the second loop of the flowchart in Fig. 4 

Step Magnetic Thermal Software 

1 
Performing transient magnetic analysis at the 

current time step ti, and calculation of losses 
- Altair Flux 

2 
Exporting losses -  

- Importing losses.  

3 - 

Performing transient thermal analysis 

at the time step ti, and obtaining the 

temperature field 

Altair Flux 

4 
- Exporting the temperature field  

Importing the temperature field -  

5 

Updating some of the temperature-dependent 

parameters in the electromagnetic model, such as 

the resistivity of conductors and the residual flux 

density of PMs 

- MATLAB-Simulink 

6 Checking the convergence of the temperature field at the time step ti, using Eq. (17) MATLAB-Simulink 

7 
If the temperature field convergence is met, go to 

the next time step ti+1; otherwise, return to Step 1 
  

The numerical solution of the equations employs a 3-D finite volume discretization approach in which the software 

package Altair Flux is used for the thermal and magnetic analysis. The following assumptions are considered in the 3-D model: 

i) the heat generated per unit volume is uniformly distributed throughout the different parts; ii) the heat transferred by the 

radiation is neglected; iii) the ambient temperature is taken as the measured one (28.1°C). 

Owing to the symmetry, half of the machine is used in the coupling analysis, and a high-quality mesh is applied to produce 

results with an acceptable level of accuracy. Necessarily, the magnetic and thermal models do not have the same mesh. The 

estimated losses from the 3D electromagnetic analysis are used as the heat sources in 3D thermal simulation. For a more 

accurate estimation of losses, the accuracy of the electromagnetic analysis is of great importance. For this purpose, in the 

electromagnetic model, finer meshes are used for the air-gap and nearby areas, whereas an auto-adapting mesh is used for the 

other areas. In the thermal model, finer meshes are used in the regions where the temperature changes, and heat flux vectors are 

expected to rapidly change their value and direction. If the meshes of the regions are different for electromagnetic and thermal 

models, Multi-point Support is implemented in Altair Flux software. This is necessary for data exchange if two regions have 

different meshes. The coordinates of the nodes are transferred from one to another via Multi-point Support. The meshing used 

in the thermal analysis is illustrated in Fig. 6. The detailed data related to the meshing are given in Table 4. 
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(a) 3D view (b) 2D view 

Fig. 6 The meshing used in the thermal analysis 

Table 4 The detailed data related to the meshing used in the electromagnetic and thermal analyses 

Thermal analysis Electromagnetic analysis 

Number of nodes 83181 Number of nodes 143598 

Number of line elements 9942 Number of line elements 10969 

Number of surface elements 169378 Number of surface elements 167120 

Number of volume elements 460031 Number of volume elements 842827 

Mesh order 2nd order Mesh order 2nd order 

Although a smaller time step increases accuracy, it also increases the simulation time. Solving the coupled multiphysics 

problems may take a long computational time (time step: 25E-5 seconds; computation time: 488 minutes). Even if the 

computation time is relatively higher than other approaches and the calculating process becomes more complex, 

high-performance computing (HPC) technology for the analysis can address the problem to consume less time and easier to be 

carried out.  

Based on the optimized dimensions, the YASA-AFPM generator is fabricated from the main materials including copper 

(for stator coils), grain-oriented steel sheets (M4-Goes) for the stator segments, white Teflon sheet, epoxy resins, soft iron 

(ST37) for the rotor disks, and permanent magnets (N35) [18]. The thermal class of the insulations is B, which tolerates a 

maximum hot spot temperature of 130°C.  

4. Results 

4.1.   Simulation results 

In this section, by using a number of the proposed 3-D coupled magnetic-thermal FEA simulations, the impacts of the slot 

opening width and the number of turns wound around each stator segment on the loadability characteristic of the studied 

YASA-AFPM generator are investigated, and the obtained results are given in Fig. 7 and Fig. 8, respectively. The loadability 

of a generator can be defined as the maximum power that the generator can deliver over the output current range from zero to 

the rated current. In addition, the generator loadability characteristic shows the changes in the generator output power versus 

the load current. To obtain the loadability characteristics, considering different loads for the generator, including 100 ohms, 30 

ohms, 15 ohms, 10 ohms, 8 ohms, 6 ohms, etc., a separate simulation is performed for each load. For each simulation (related 

to each load), the initial temperature is assumed to be equal to the ambient temperature (25 °C). 

As shown in Fig. 7, a decrease in the slot opening width has resulted in a decrease in the YASA-AFPM generator 

loadability. The reason for this phenomenon can be explained as following. By reducing the slot opening width, due to the 

increased area of the stator segments seen from the air-gap side, the cross-section area of the armature reaction flux increases, 

which in turn reduces the armature reaction reluctance and thus increases the generator synchronous reactance. Given that the 

output power of the synchronous generators is inversely related to the synchronous reactance, so it can be concluded that 

decreasing the slot opening width leads to a decrease in the generator loadability.  
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Therefore, when designing the YASA-AFPM generators, it is important to consider a reasonable value for the slot 

opening width. This is due to the fact that although increasing the slot opening width leads to better loadability, it also leads to 

increased cogging torque, which has an adverse effect on the generator performance. Accordingly, to choose an appropriate 

width for the slot opening, it is better to make a compromise between the generator loadability and its cogging torque. It should 

be noted that the discussion about cogging torque is beyond the scope of this paper. 

 
Fig. 7 The impact of the slot opening width on the YASA-AFPM generator loadability 

Also, as shown in Fig. 8, the impact of the number of turns wound around each of the stator segments on the 

YASA-AFPM generator loadability characteristic is investigated. It can be seen that the turn’s number does not affect the 

maximum output power of the generator, but for a lower turn number, a design with a higher output current and a lower output 

voltage can be achieved.  

 
Fig. 8 The impact of the turns number of each stator segment on the YASA-AFPM 

generator loadability 

The fact that changing the stator turn’s number does not affect the maximum output power of the generator can be 

explained as follows. By changing the armature turn's number, the generator excitation voltage changes proportionally. 

Besides, as the generator is operated in off-grid mode, the terminal voltage of the generator also changes approximately in 

proportion to the stator turn's number. In the PM generators, the synchronous reactance is directly related to the square of the 

stator turn's number [26]. Given that the maximum output power of a synchronous generator is directly related to the product of 

the excitation voltage and the terminal voltage but is inversely related to the synchronous reactance, it is expected that 

changing the stator turn's number does not affect the maximum output power of the generator. 

4.2.   Experimental results 

The structure of the stator segments as well as the rotor disks of the studied YASA-AFPM generator are illustrated in Fig. 

9. The core of the stator segments is made of the grain-oriented electrical steel sheets (M4-Goes), and a concentrated coil of 

112 turns is wound around each of the stator segments. The rotor disks are made of soft iron (ST37), and 14 PM poles are 
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mounted on each rotor disk. To reduce the PM eddy losses, each magnet pole is divided into 3 pieces. To validate the proposed 

analysis, as shown in Fig. 10, an experimental setup is developed; the prototype of the studied YASA-AFPM generator is 

driven by a DC motor at nominal speed (500 rpm) and loaded with different resistive loads. 

  
(a) Stator segments (b) Rotor disks 

Fig. 9 The prototype of the YASA-AFPM generator 

 
Fig. 10 Experimental setup 

Fig. 11 shows the loadability characteristic of the studied YASA-AFPM generator, which is obtained via the experimental 

tests, conventional and proposed 3-D coupled magnetic-thermal FEA simulations. It should be mentioned that in the 

conventional 3-D coupled magnetic-thermal method, the thermal properties of materials do not change with the temperature 

variations.  

 
Fig. 11 The loadability characteristic obtained via the experimental tests, 

conventional and proposed 3-D coupled FEA 

According to Fig. 11, the experimental results show a good agreement with those obtained via the proposed 3-D coupled 

magnetic-thermal FEA simulations. In addition, it can be seen that the results obtained from the proposed and conventional 

methods are somewhat different. The loadability characteristic obtained through the proposed method is somewhat lower than 

the one obtained through the conventional approach, especially for the higher load currents. For the loadability characteristics 

obtained via the conventional and proposed approaches and for the load currents up to 10 amps, the maximum error regarding 
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the experimental loadability characteristic is calculated as about 7.51% and 4.09%, respectively. The justification for this is as 

follows. In the proposed 3-D coupled magnetic-thermal method, the effects of the temperature changes on the material 

properties are included in each step of the simulation, which successively influences the electromagnetic analyses. Thus, the 

proposed coupled analyses can be applied for an accurate examination of the electrical machines' performance. For the load 

currents above 8.5 amps, a further increase in the load current results in a decrease in the YASA generator output power. This 

is because of a redundant increase in the armature reaction effect, which in turn leads to the demagnetization of PMs and thus 

decreases the air-gap magnetic flux density. 

At the nominal rotational speed (500 rpm) and full-load condition, with the natural air-cooling system, a TESTO 925 

Type K thermocouple thermometer and a TESTO 830-T1 infrared thermometer are used to measure the temperature of coils 

and PM surface, respectively.  

For the nominal output current (8 amps), where the generator output power is the nominal power, the transient 

temperatures of the studied YASA-AFPM generator obtained via the conventional and proposed 3-D coupled 

magnetic-thermal FEA simulations and the experimental tests are compared in Fig. 12.  

 
Fig. 12 Temperatures obtained in the coil and PM surface under full-load conditions 

As it can be seen from the curves, the results achieved from the 3-D coupled electromagnetic-thermal analysis are in good 

agreement with those achieved from the measurements, and this confirms that the proposed approach can execute the thermal 

analysis with acceptable accuracy. 

In order to measure the temperature, the probe type K (maximum temperature measurement: +400 °C) is located within 

the coils as can be seen in the Experimental setup (The green-colored probe in Fig. 10). It should be mentioned that the 

maximum temperature of the generator is occurred in the coils and stator segments. Strictly speaking, thanks to the good 

thermal contact and the high thermal conductivity of both materials, there is a slight temperature difference between the stator 

segments and coils. 

According to Fig. 12, the steady-state temperature of the coils is reached after 115 minutes. The steady-state temperature 

of the stator coils obtained by conventional, proposed, and experimental methods are approximately as 90.7 °C, 95.5 °C, and 

96.4 °C, respectively. Hence, regarding the experimental method, the error of conventional and proposed methods in 

estimating the steady-state temperature of the stator coils is evaluated as about 5.9% and 0.93%, respectively. Also, by using 

the curves in Fig. 12, which show the temperature time variations of the stator coils, the thermal time constant of the coils for 

the conventional, proposed, and experimental methods are estimated as about 22.19 minutes, 22.63 minutes, and 22.58 minutes, 

respectively. The difference between the results of the proposed and conventional methods indicates the effects and high 

importance of accurate calculation of losses. The temperatures in the PMs are significantly lower than those of the coils and 
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stator segments because the PMs are mounted on the surface of the rotor disks. The heat generated in the coils and the stator 

segments is axially dissipated through the convective flux from the stator segments to the air-gap, where the convective 

cooling occurs from the stator to the rotor. Despite the heat flux toward the rotor disks, a good convective cooling at the 

backplane of the disks can maintain the temperature of magnets within the allowable range. Fig. 13 illustrates the temperature 

distribution in different parts of the machine derived from the analyses under full load at 500 rpm with a natural air-cooling 

system. 

 
Fig. 13 The contour plots of the steady-state temperature distribution at full load 

5. Conclusions 

In this study, the loadability and thermal behavior of a 1 kW YASA-AFPM generator were investigated by using an 

improved coupled electromagnetic-thermal analysis. The impacts of the slot opening width and number of turns of each stator 

segment, on the YASA-AFPM generator loadability, were studied carefully. It presented that the generator loadability can be 

undesirably reduced if an inappropriate value is selected for the slot opening width. In addition, the temperature distribution 

obtained for the different parts of the generator showed that the design meets the generator thermal specifications under the 

full-load conditions. By doing the experimental tests on the prototype of the YASA-AFPM generator, the loadability 

characteristic and the temperature variations of the PMs and coils were obtained and compared with those obtained via the 

proposed and conventional coupled analysis. Comparing the simulation and experimental results revealed that the proposed 

approach has higher accuracy in the thermal and performance analysis than the conventional method. Thus, this analysis can be 

applied to accurately investigate the performance of electric generators. Studying the cooling system effect on the generator 

performance can still be a subject for further research. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

[1] S. Kurian, T. K. Sindhu, and E. P. Cheriyan, “Review on Developments in Wind Energy Generation and its Integration to 

Utility Grid,” International Review on Modelling and Simulations, vol. 6, no. 5, pp. 1523-1532, 2013. 

[2] M. Cheng and Y. Zhu, “The State of the Art of Wind Energy Conversion Systems and Technologies: A Review,” Energy 

Conversion and Management, vol. 88, pp. 332-347, December 2014. 

[3] Y. Chen, P. Pillay, and A. Khan, “PM Wind Generator Topologies,” IEEE Transactions on Industry Applications, vol. 41, 

no. 6, pp. 1619-1626, November 2005. 

[4] B. Zhang, T. Seidler, R. Dierken, and M. Doppelbauer, “Development of a Yokeless and Segmented Armature Axial Flux 

Machine,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2062-2071, April 2016. 



International Journal of Engineering and Technology Innovation, vol. 11, no. 2, 2021, pp. 88-102 102 

[5] A. Di Gerlando, G. M. Foglia, M. F. Iacchetti, and R. Perini, “Parasitic Currents in Stray Paths of Some Topologies of 

YASA AFPM Machines: Trend with Machine Size,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 

2746-2756, May 2016. 

[6] M. A. Fakhfakh, M. H. Kasem, S. Tounsi, and R. Neji, “Thermal Analysis of a Permanent Magnet Synchronous Motor for 

Electric Vehicles,” Journal of Asian Electric Vehicles, vol. 6, no. 2, pp. 1145-1151, January 2008. 

[7] H. Vansompel, P. Leijnen, and P. Sergeant, “Multiphysics Analysis of a Stator Construction Method in Yokeless and 

Segmented Armature Axial Flux PM Machines,” IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 139-146, 

March 2019. 

[8] A. Boglietti, A. Cavagnino, and D. Staton, “Determination of Critical Parameters in Electrical Machine Thermal Models,” 

IEEE Transactions on Industry Applications, vol. 44, no. 4, pp. 1150-1159, July 2008. 

[9] D. Joo, J. Cho, K. Woo, B. Kim and D. Kim, “Electromagnetic Field and Thermal Linked Analysis of Interior 

Permanent-Magnet Synchronous Motor for Agricultural Electric Vehicle,” IEEE Transactions on Magnetics, vol. 47, no. 

10, pp. 4242-4245, October 2011. 

[10] N. Rostami, M. R. Feyzi, J. Pyrhonen, A. Parviainen, and M. Niemela, “Lumped-Parameter Thermal Model for Axial Flux 

Permanent Magnet Machines,” IEEE Transactions on Magnetics, vol. 49, no. 3, pp. 1178-1184, March 2013. 

[11]  D. Staton, S. J. Pickering, and D. Lampard, “Recent Advancement in the Thermal Design of Electric Motors,” SMMA 

Fall Technical Conference “Emerging Technologies for Electric Motion Industry”, October 2001 pp. 1-11. 

[12] Y. Xu, M. Ai, and Y. Yang, “Heat Transfer Characteristic Research Based on Thermal Network Method in Submersible 

Motor,” International Transactions on Electrical Energy Systems, vol. 28, no. 3, p. e2507, March 2018. 

[13]  A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, “Evolution and Modern Approaches for 

Thermal Analysis of Electrical Machines,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 871-882, 

March 2009. 

[14]  P. K. Vong and D. Rodger, “Coupled Electromagnetic-Thermal Modeling of Electrical Machines,” IEEE Transactions on 

Magnetics, vol. 39, no. 3, pp. 1614-1617, May 2003. 

[15] P. Holmberg and M. Leijon, “Coupled FEM and Lumped Circuit Model of the Electromagnetic Response of Coaxially 

Insulated Windings in Two Slot Cores,” European Transactions on Electrical Power, vol. 17, no. 6, pp. 554-568, 

November 2007. 

[16] F. Marignetti, V. D. Colli, and Y. Coia, “Design of Axial Flux PM Synchronous Machines Through 3-D Coupled 

Electromagnetic Thermal and Fluid-Dynamical Finite-Element Analysis,” IEEE Transactions on Industrial Electronics, 

vol. 55, no. 10, pp. 3591-3601, October 2008. 

[17]  H. Vansompel, A. Rasekh, A. Hemeida, J. Vierendeels, and P. Sergeant, “Coupled Electromagnetic and Thermal 

Analysis of an Axial Flux PM Machine,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, November 2015. 

[18] S. J. Arand and M. Ardebili, “Multi-Objective Design and Prototyping of a Low Cogging Torque Axial-Flux PM 

Generator with Segmented Stator for Small-Scale Direct-Drive Wind Turbines,” IET Electric Power Applications, vol. 10, 

no. 9, pp. 889-899, November 2016. 

[19] D. M. Ionel, M. Popescu, M. I. McGilp, T. J. E. Miller, S. J. Dellinger, and R. J. Heideman, “Computation of Core Losses 

in Electrical Machines Using Improved Models for Laminated Steel,” IEEE Transactions on Industry Applications, vol. 

43, no. 6, pp. 1554-1564, November 2007. 

[20] D. Ishak, Z. Q. Zhu, and D. Howe, “Eddy-Current Loss in the Rotor Magnets of Permanent-Magnet Brushless Machines 

Having a Fractional Number of Slots Per Pole,” IEEE Transactions on Magnetics, vol. 41, no. 9, pp. 2462-2469, 

September 2005. 

[21] C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” Journal of Physical and Chemical 

Reference Data, vol. 1, no. 2, pp. 279-421, 1972. 

[22] G. K. White and S. J. Collocott, “Heat Capacity of Reference Materials: Cu and W,” Journal of Physical and Chemical 

Reference Data, vol. 13, no. 4, pp. 1251-1257, October 1984.  

[23] S. Kahourzade, A. Mahmoudi, A. Gandomkar, N. A. Rahim, H. W. Ping, and M. N. Uddin, “Design Optimization and 

Analysis of AFPM Synchronous Machine Incorporating Power Density, Thermal Analysis, and Back-EMF THD,” 

Progress In Electromagnetics Research, vol. 136, pp. 327-367, 2013. 

[24] Y. C. Chong, E. J. E. Subiabre, M. A. Mueller, J. Chick, D. A. Staton, and A. S. McDonald, “The Ventilation Effect on 

Stator Convective Heat Transfer of an Axial-Flux Permanent-Magnet Machine,” IEEE Transactions on Industrial 

Electronics, vol. 61, no. 8, pp. 4392-4403, August 2014. 

[25] D. A. Howey, A. S. Holmes, and K. R. Pullen, “Measurement and CFD Prediction of Heat Transfer in Air-Cooled 

Disc-Type Electrical Machines,” IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1716-1723, July 2011. 

[26] J. F. Gieras, R. J. Wang, and M. J. Kamper, Axial Flux Permanent Magnet Brushless Machines, 2nd ed. USA: Springer, 

2008. 

 

Copyright© by the authors. Licensee TAETI, Taiwan. This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license 

(https://creativecommons.org/licenses/by-nc/4.0/). 


