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Abstract 

This paper reports the results of research to examine the effects of cutting parameters such as pulse-on time, 

pulse-off time, servo voltage, peak current, wire feed rate and cable tension on surface finish, overcut and metal 

removal rate (MRR) during Wire Electrical Discharge Machining (WEDM) of g rade-5 t itanium (Ti-6Al-4V). 

Taguchi’s L27 orthogonal design method is used for experimentation. Mult i-response optimizat ion is performed  by 

applying weighted principal component analysis (WPCA). The optimum valu es of cutting variables are found as a 

pulse on time 118 µs, pulse off t ime 45 µs, servo voltage 40 volts, peak current 190 Amp. , wire feed rate 5 m/min 

and cable tension 5 gram. On the other hand, Analysis of Variance (ANOVA), simulation results indicate that 

pulse-on time is the primary influencing variab le which affects the response characteristics contributing 76.00%. 

The results of verificat ion experiments show improvement in the value of output characteristics at the optimal 

cutting variables settings. Scanning electron microscopic (SEM) analysis of the surface after machining indicates 

the formation of craters, resolid ified material, tool material transfer and increase in the thickness of recast layer at 

higher values of the pulse on time. 

 

Keywords: WEDM, titanium grade-5, Taguchi method, weighted principal component analysis, ANOVA, 

SEM analysis 

 

1. Introduction 

Titanium is the n inth most abundant available element in the earth’s crust and mostly used as a structural metal and 

exotic space-age metal. Titanium and its alloys possess high strength, min imum weight ratio, low density, exceptional 

corrosion resistance, excellent properties at elevated temperature, a low thermal coefficient of expansion, non -magnetic, high 

fracture toughness and fatigue strength, excellent cryogenic properties, great ballistic resistance-to-density ratio and non-

hazardous, non-allergenic and are completely biocompatible. Due to these features, they find broad applications in the 

biomedical field, aerospace, chemical industry, power generation, oil and gas extraction, automotive, sports, etc. 

High cutting temperatures up to even 1100°C is produced in the proximity of cutting periphery of the tool while 

machining of titanium alloys. As titanium alloys possess very low thermal conductivity, nearly  80% of the heat produced, is 

conducted into the tool which  results in rapid wear of the tool. Titanium alloys offer high resistance to its deformat ion at 

elevated temperature and due to the minimal area of contact between chip and tool o n the rake face generates higher 

mechanical stresses in the adjacent area of the cutting edge which is generally three to four times more than that of nickel 

alloys and steels. Due to low elasticity modulus, chatter is another major problem involved during  fin ish machining of 
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titanium alloys. While machining, deflection of titanium is twice than that of carbon steel, resulting in  springing back action 

behind the cutting edge of the tool. This bouncing motion on the cutting areas leads to impulsive flank wea r, vibrat ion and 

cutting temperature increase. When cutting temperature exceeds 500°C, titanium and its alloys exhib it high chemical 

reactivity with cutting tool materials. While machining of titanium, chips pressure welds to the cutting tool which results  in 

dissolution-diffusion wear and increases as temperature rises [1]. These problems can be min imized by utilizing non -

traditional machining process such as Wire Electrical Discharge Machining  (WEDM). 

WEDM is a thermal energy cutting process, where material removal mechanism is mainly due to melting and 

vaporization effect and takes place by heat generated with incessant discrete sparks produced in a small gap between wire 

and workpiece in existence of dielectric flu id. WEDM technology is widely used in co nductive materials machining main ly 

for the production of mold, dies, medical and dental instrumentation, graphite electrodes, parts in automotive and aerospace 

industries [2]. 

Liao [3] used the weighted principal component (WPC) technique for three different case studies and found that WPC 

method is advantageous than principal component analysis (PCA) and Taguchi method. Gauri and Chakraborty [4] applied 

WPC method for various case studies and concluded that WPC method eliminates uncertainty in the decisio n-making 

process in the selection of weights for different characteristics which is associated with other methods. Routara et al. [5] used 

WPCA method for optimization during cylindrical grinding of UNS C34000 brass. Biswas et al. [6] attempted sub -merged 

arc weld ing (SAW) of mild steel plates and implemented WPCA method for the optimizat ion of bead height, width, heat 

affected zone (HAZ) and penetration depth. Padhi et al. [7] performed W EDM on EN 31 steel. For the optimizat ion of 

dimensional deviation, MRR and surface roughness Taguchi system integrated with PCA was used. Zhao et. al. [8] carried 

out spot welding of TC2 titanium alloy sheets to study the effect of welding parameters on various welding quality 

characteristics and optimized them with the help of PCA. Das et al. [9] performed multi-feature optimization by using 

WPCA during EDM of EN-31tool steel. Taguchi’s L27 orthogonal design was used to find out the influence of Ton, Toff, IP, 

and SV on MRR and surface roughness. Rao and Krishna [10] used an integrated approach principal component analysis 

coupled with Taguchi method for the optimization of the process parameters during machining of ZC63/SiCp MMC. Gauri 

and Pal [11] d iscussed some limitations while applying PCA -related methods for multi-characteristics optimizat ion. 

Soepangkat and Kis Agustin [12] carried out operations on SKD61 tool steel on WEDM and used WPCA for the 

optimization of surface roughness and recast layer thickness. Mohanty et al. [13] used WPCA integrated with Taguchi 

method for the optimization  of control parameters  during EDM of D2 steel. Panda et al. [14] performed turn ing tests on EN 

31 steel and used WPCA method for the optimizat ion of different values of surface roughness. Lusi et al. [15] presented 

experiments on H 13 tool steel using WEDM. For the optimization of MRR and surface roughness, both Taguchi and WPCA 

method was utilized. Costa et al. [16] conducted end milling operations on AISI 1045 steel in  a dry  environment. For the 

optimization of SR and MRR, a combination of WPCA and S/N ratio  was used. Dhakad and Vimal [17] performed 

operations on EN45 alloy steel on W EDM. Taguchi technique combined with PCA method was used for the optimization of 

machining time, MRR and gap voltage. Nair and Kumanan [18] performed abrasiv e water jet machining (AWJM) on Inconel 

617. WPCA technique was applied for the optimizat ion of MRR, parallelism, circularity, perpendicularity, and cylindricity 

of the cut profiles. 

In this research, tests are conducted on Ti-6Al-4V using six control factors of WEDM. Taguchi’s L27 experimental 

design is used to perform the trials. Three quality characteristics selected for the study are surface roughness, overcut and 

MRR. WPCA technique is applied to convert multi-response optimization problem into an equivalent single quality response 

known as the multi-response quality index (MQI). The optimal levels of the control parameter are then determined at  which 

more substantial value of MQI is present. Since larger the MQI better is the quality. Finally, verifica t ion trials are performed 

to confirm the results. SEM analysis of the cut surfaces is carried out to examine the various aspects of the surface integrity. 
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2. Experimentation 

2.1.   Test set up and work material 

 

 
Fig. 2 Experimental setup 

A series of trials are performed  on ePULSE-40 5-axis sprint cut W EDM manufactured by Electronica Machine Tool 

Ltd., India (Fig. 1) to acquire the data for modeling. Fig. 2 shows the details of the experimental setup. The material applied 

to the investigation is Titanium grade-5 of size 30 mm x 30 mm x 5 mm thick which is connected to the negative polarity. 

The chemical composition of the material is 6 wt. % Al, 4 wt. %V, 0.25 wt.% (max) Fe, 0.2(max) wt.%  O and remainder 

titanium. The brass wire of 0.25 mm diameter with positive polarity is used to cut a block of 10 mm x 10 mm x 5 mm 

thickness. De-ionized water is used as a dielectric with a flushing pressure of 15 kg/cm
2
 to flush out the debris from the 

 
Fig. 1 ePULSE-40 sprint cut WEDM 
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cutting zone. The conductivity of the dielectric is maintained at a constant value of 20 μS/cm at 22°C.Trials are performed 

with zero wire offset. The value of servo feed is kept at 2120 units. 

2.2.   Measurement of quality features 

There are various machin ing features that are associated with the WEDM process which must be optimized for bette r 

performance and economy. In the present study, various machining characteristics are studied. These are discussed as 

follows: 

2.2.1.   Metal removal rate (MRR) 

MRR is computed by measuring the weight of the workpiece before and after machining div ided by  cutting time. The 

weight of the workp iece is measured with an electronic weighing balance (Fig. 3) having an accuracy of 0.01 gm. The 

computed weight loss is then transformed into the volume of material removed in mm
3
/min using the Eq. (1). 

MRR = 
 𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑚𝑖𝑛
 (1) 

 

 
Fig. 3 Measurement of weight by using an Electronic weigh balance  

2.2.2.   Surface finish 

The surface fin ish of the square block is measured in μm by using a Mitu toyo make d igital surface tester SJ-210 (Fig.4). 

The surface finish is measured three times on each machined surface perpendicular to the cut, and then an average is made. 

The cut off length is selected as 0.8 mm during measurement. 

 
Fig. 4 Surface roughness measurement using surface tester SJ-210 
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2.2.3.   Overcut 

Overcut [19] is calculated by using the Eq. (2). 

Overcut = 
𝑆𝑖𝑧𝑒 𝑜𝑓𝑐𝑢𝑡 −𝑑

2
 (2) 

where d = Diameter of wire in mm 

The size of the cut is the algebraic difference of dimensions between  the square block and square on the workpiece. 

The dimension of the square block is assessed with a digital micrometer (Mitutoyo, 1 micron, Fig. 5)  and the size of the 

square on the workpiece is measured by a profile projector (Dr. Heinrich Schneider - ST 360 H, 0.1 micron, Fig. 6). 

 

Fig. 5 Measurement of a square block using digital micrometer 

 

 

Fig. 6 Dr. Heinrich Schneider ST 360 H profile projector 

2.3.   Plan of experiments 

In the present study, six cutting variab les are considered such as pulse-on time (TON), pulse-off t ime (TOFF), servo 

voltage (SV), peak current (IP), wire feed rate (WF), and cable tension (WT). Init ially, pilot stage experiments are realized by 

changing one variable at a time while keeping other variables constant at some value to detect the ranks of each cutting 

variable. Table 1 p resents the levels of the cutting factors used during experimentation. Taguchi’s L27 experimental design is 

used for testing, and each trial run is realized thrice thus 81 experiments total. The response characteristics preferred for the 

present study are surface roughness, overcut and MRR. Table 2 presents the results of Taguchi method. 

The S/N ratio of surface roughness and overcut is calculated considering “lesser-the-better” attribute and for MRR 

“higher-the-better” feature is used as presented by Eqs. (3) and (4), respectively. 
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ζLB = -10 log [
1

𝑛
∑ 𝐾𝑥𝑦2𝑛

1 ]  (3) 

ζHB = -10 log [
1

𝑛
∑ 1/𝐾𝑥𝑦2𝑛

1 ] (4) 

where Kxy is the x
th

 experimental value at the y
th

 test and n is the total number of repetitions. 

Software used for the statistical analysis  is Minitab 16. 

Table 1 Cutting variables and their ranks 
Symbol Cutting Parameter Unit Level 1 Level 2 Level 3 

TON Pulse on Time µs 110 114 118 

TOFF Pulse off Time µs 45 50 55 

SV Servo Voltage Volts 20 30 40 

IP Peak Current Amp 170 190 210 

WF Wire Feed Rate m/min 1 3 5 

WT Cable Tension Gram 2 5 8 

Table 2 Taguchi’s L27 orthogonal arrangement along with response features 

Expt. 
No. 

TON TOFF SV IP WF WT 
Surface Roughness 

(µm) 
Overcut 

(mm) 
MRR 

(mm
3
/min) 

1 110 45 20 170 1 2 1.82 0.294 21.00 

2 110 45 20 170 3 5 1.68 0.225 18.26 

3 110 45 20 170 5 8 1.60 0.247 17.80 

4 110 50 30 190 1 2 1.76 0.310 20.16 

5 110 50 30 190 3 5 1.70 0.220 18.76 

6 110 50 30 190 5 8 1.61 0.272 17.72 

7 110 55 40 210 1 2 1.79 0.276 20.54 

8 110 55 40 210 3 5 1.58 0.298 17.50 

9 110 55 40 210 5 8 1.52 0.164 17.06 

10 114 45 30 210 1 5 2.32 0.274 28.23 

11 114 45 30 210 3 8 2.19 0.251 27.69 

12 114 45 30 210 5 2 1.85 0.163 22.00 

13 114 50 40 170 1 5 2.28 0.185 28.03 

14 114 50 40 170 3 8 1.79 0.176 20.60 

15 114 50 40 170 5 2 2.01 0.172 24.87 

16 114 55 20 190 1 5 1.95 0.262 23.57 

17 114 55 20 190 3 8 2.06 0.161 25.70 

18 114 55 20 190 5 2 1.97 0.157 24.65 

19 118 45 40 190 1 8 2.51 0.282 32.20 

20 118 45 40 190 3 2 2.04 0.168 25.37 

21 118 45 40 190 5 5 2.41 0.160 30.54 

22 118 50 20 210 1 8 2.10 0.312 27.38 

23 118 50 20 210 3 2 2.36 0.265 28.40 

24 118 50 20 210 5 5 2.25 0.198 27.79 

25 118 55 30 170 1 8 2.50 0.210 31.04 

26 118 55 30 170 3 2 2.31 0.159 28.00 

27 118 55 30 170 5 5 1.73 0.178 19.20 

3. Multi-Response Optimization by WPCA Technique 

Principal component analysis (PCA) is a mult i-element statistical tool developed by Pearson [20] and Hotelling [21]. 

This method presents the arrangement of variance-covariance through the linear combinations of all the response 

characteristics. It converts a set of interrelated response characteristics into an independent primary component.  However, in 

the case of realized  research for multi-response optimization WPCA technique is applied. In this method, all the main 

elements in spite of the eigenvalues are considered; therefore, overall deviat ion in every character is fully exp lained. In this 

technique, weight for each  response feature is taken as the amount of total difference contributed by every component to 

unite the entire principal elements which will appear as a multi-response quality index (MQI). The different steps of WPCA 

technique are explained below: 
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Step I: Compute S/N ratio of each response 

S/N ratio for the respective response characteristics is computed by using Eqs. (3) & (4) and are presented in Table 3. 

Table 3 S/N ratios and scaled S/N ratios of each response characteristic 

Expt. 

No. 

S/N ratios Scaled S/N ratios 

Surface Roughness Overcut MRR Surface Roughness Overcut MRR 

1 -4.8940 10.6328 26.4160 0.567935 0.077296 0.321761 

2 -3.6947 12.9563 25.2297 0.798902 0.467558 0.106692 

3 -3.2694 12.1573 25.0082 0.880809 0.333356 0.066535 

4 -4.4890 10.1726 26.0912 0.645932 0 0.262876 

5 -3.9188 13.0854 25.4646 0.755744 0.489242 0.149278 

6 -3.2096 11.3086 24.9707 0.892325 0.190806 0.059736 

7 -4.5930 11.1712 26.2520 0.625903 0.167728 0.292028 

8 -2.9639 10.5059 24.8607 0.939644 0.055982 0.039794 

9 -2.6505 15.6845 24.6412 1 0.925794 0 

10 -7.1842 11.2555 29.0131 0.126875 0.181887 0.7926 

11 -6.7168 11.9949 28.8453 0.21689 0.306079 0.762178 

12 -5.0896 15.7385 26.8510 0.530265 0.934864 0.400624 

13 -6.9535 14.6555 28.9514 0.171305 0.75296 0.781414 

14 -4.7444 15.0724 26.2867 0.596745 0.822984 0.298319 

15 -5.6219 15.3061 27.9119 0.427752 0.862237 0.592959 

16 -5.3769 11.6450 27.4483 0.474935 0.247308 0.508911 

17 -6.0211 15.8812 28.1998 0.350871 0.958832 0.645153 

18 -5.4837 16.0798 27.8360 0.454367 0.99219 0.579198 

19 -7.8430 10.9949 30.1571 0 0.138116 1 

20 -5.8754 15.4762 28.0851 0.378931 0.890807 0.624359 

21 -7.4834 15.9155 29.6964 0.069254 0.964593 0.916478 

22 -6.3908 10.1261 28.7476 0.279673 -0.00781 0.744466 

23 -7.2746 11.5459 29.0653 0.109466 0.230663 0.802063 

24 -6.8354 14.0812 28.8777 0.194049 0.656499 0.768052 

25 -7.7125 13.5690 29.8375 0.025132 0.570469 0.942058 

26 -7.1216 15.9900 28.9421 0.138931 0.977107 0.779728 

27 -4.1736 15.0075 25.6684 0.706673 0.812083 0.186225 

Step II: Compute scaled S/N ratios of each response characteristic  

In this step scaled S/N rat ios are calculated for each response characteristic in the range of 0 to 1  using Eq. (5). This will 

reduce the inconsistency between the values of different response characteristics. 

min
 ,   ( 1,2,3,..., ; 1,2,3,..., )

max ?min
XY

xy y
for x m y n

y y
M

 

 


 


 (5) 

where, Mxy= value of scaled S/N ratio  for y
th

 response at x
th

 experimental run, min  ζy= min (ζ1y, ζ2y, ζ3y, ….,ζmy) and  max ζy= 

max ( ζ1y, ζ2y, ζ3y, …., ζmy). 

The scaled S/N ratios of each response characteristics are represented by a matrix as shown below by Eq. (6): 

1 1 1 1

2 2 2 2

(1) (2) (3) ... ( )

(1) (2) (3) ... ( )

(1) (2) (3) ... ( )u u u u

M M M M v

M M M M M v

M M M M v

 
 

  
 
 

 (6) 

where u= experimental runs = 27, v = number of response characteristic= 3.Scaled S/N ratios are calculated for each 

response characteristic and are shown in Table 3. 
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Step III: Correlation coefficient matrix 

The correlation coefficient matrix is estimated as given by Eq. (7): 

 (M ( ), M ( ))

σ(Mu)(y) x σ(Mu)(p)
,  1, 2,3, ...,  ;  1, 2,3, ...,  

yp

C
A y n p

ov u y u p
n  

 
 
 

 (7) 

where Cov  (Mu(y), Mu(p)) is the covariance of sequences Mu(y) and Mu(p), σ(Mu)(y) is the standard deviation of sequence 

Mu(y) and σ(Mu)(p) is the standard deviation of sequence Mu(p). 

Step IV: Eigenvalues and eigenvectors calculation 

From the correlation coefficient matrix, eigenvalues and eigenvectors are determined by Eq. (8) as follows: 

(A- λsI)Qsk = 0 (8) 

where λs = eigenvalues and ∑ λs𝑛
𝑠=1  = n, s = 1,2,3,…,n; Qsk = [bk1bk2……bkn]

T
 = eigenvectors related to the eigenvalues λs. 

Table 4 shows eigenvalues, eigenvectors, and explained variation of each response characteristic. 

Table 4 Correlation matrix with Eigen values, Eigen vectors and explained variation  

Principal Component Eigenvalue Eigenvector Amount of explained Variation 

First 2.0203 [-0.696 (b11), 0.169 (b12), 0.698 (b13)] 0.673 (ξ1) 

Second 0.9704 [0.132 (b21), 0.986 (b22), -0.107 (b23)] 0.323 (ξ2) 

Third 0.0092 [0.706 (b31), 0.169 (b32), 0.698 (b33)] 0.003 (ξ3) 

Step V: Determination of principal components  

The h
th

 primary component about u
th

 experimental run can be calculated as represented by Eq. (9): 

Zh
i
 = bh1Mu1 + bh2Mu2 +…….+ bhpMup ; (h = 1,2,3,…, p) (9) 

The principal component for each response characteristic i.e . surface roughness, overcut and MRR is computed by 

using following Eqs. (10), (11) & (12) and are presented in Table 5. 

Z1
i
 = -0.696 Mu1 + 0.169 Mu2 + 0.698 Mu3 (10) 

Z2
i
 = 0.132 Mu1 + 0.986 Mu2 - 0.107 Mu3 (11) 

Z3
i
 = 0.706 Mu1 - 0.017 Mu2 + 0.708 Mu3 (12) 

Step VI: Calculate multi-response quality index (MQI) for each experiment 

Multi-response quality index (MQI) represents  weighted sum of all the principal components. MQI value for i
th 

experimental run therefore may be computed using the Eq. (13). 

( 1)
 

p i

h i h
MQI Z


   (13) 

where ξi is the amount of overall variance of the response characteristics explained by the h
th 

principal component, Zh
i
 is the 

calculated value of h
th 

primary  component about i
th 

experimental run and  ∑ 𝜉
𝑝
ℎ =1 i = 1. Larger the value of MQI better will be 

the quality.  

The MQI values for every test is calculated by applying Eq. (14) and indicated in Table 5. 

MQI
i
 = 0.673 Z1

i
 + 0.323 Z2

i
 + 0.003 Z3

i
 (14) 



International Journal of Engineering and Technology Innovation, vol. 8, no. 2, 2018, pp. 133 - 145 

 Copyright ©  TAETI 

141 

Table 5 Values of Principal components of all response attributes and Multi-response quality Index (MQI) 

Expt. 

No. 

Principal Components  Multi-response 

quality Index 

 (MQI) 

Rank Surface Roughness 

(Z1 
i
) 

Overcut  

(Z2
i
 ) 

MRR 

(Z3
i
 ) 

1 -0.157630 0.116753 0.627454 -0.066490 22 

2 -0.402550 0.555051 0.631614 -0.089740 23 

3 -0.510260 0.437836 0.663291 -0.200000 25 

4 -0.266080 0.057135 0.642144 -0.158690 24 

5 -0.339120 0.566178 0.630927 -0.043460 20 

6 -0.547120 0.299530 0.669031 -0.269450 26 

7 -0.203450 0.216752 0.645792 -0.064970 21 

8 -0.616750 0.174973 0.690611 -0.356490 27 

9 -0.539540 1.044833 0.690262 -0.023560 19 

10 0.495668 0.111280 0.647642 0.371471 13 

11 0.432773 0.248870 0.687543 0.373704 12 

12 0.068563 0.948904 0.642116 0.354565 14 

13 0.553449 0.681420 0.661382 0.594554 4 

14 -0.068020 0.858312 0.618522 0.233311 15 

15 0.261888 0.843182 0.707149 0.450720 9 

16 0.066460 0.252084 0.691409 0.128225 18 

17 0.368153 0.922692 0.688183 0.547861 5 

18 0.255721 0.976301 0.713988 0.489588 9 

19 0.721342 0.029182 0.705652 0.497006 8 

20 0.322613 0.861549 0.694428 0.497482 7 

21 0.754517 0.862168 0.681361 0.788314 1 

22 0.323665 -0.050440 0.724664 0.203708 16 

23 0.522634 0.156063 0.641222 0.404065 11 

24 0.511991 0.590741 0.669619 0.537388 6 

25 0.736474 0.464999 0.675023 0.647867 3 

26 0.612685 0.898335 0.633522 0.704400 2 

27 -0.224620 0.874069 0.616953 0.133008 17 

Step VII: Optimal arrangement of the cutting variables 

Table 6 shows the average values of MQI with respect to different stages of the control parameters. For example, it can 

be seen from Table 2 that factor TON is set at rank 1 in  the first nine tests and therefore, MQI value at  rank 1 of factor TON is 

found as the average of the MQI values with reference to the first nine trials. Since, a greater value of MQI indicates better 

quality. Thus, the optimal setting of the cutting parameters is with pulse on time ( TON) = 118 µs, pulse off time (TOFF) = 45 

µs, servo voltage (SV) = 40 volts, peak current (IP) = 190 Amp, wire feed rate (WF) = 5 m/min and cable tension (WT) = 5 

gram. 

Table 6 Average values of MQI for each cutting variable 

Level TON TOFF SV IP WF WT 

1 -0.1413 0.2807 0.2171 0.2675 0.2391 0.2200 

2 0.1313 0.2169 0.2348 0.2752 0.2511 0.2292 

3 0.4900 0.2451 0.2907 0.1999 0.2523 0.2233 

Step VIII: ANOVA and Verification experiments  

ANOVA is performed to establish major influencing factors and percentage contribution of cutting parameters for MQI. 

The results of ANOVA are represented in Table 7.  

The percentage contribution of each cutting variable influencing MQI is shown in Fig. 7. Major noteworthy factor 

affecting the response characteristics is TON which contributes 76.00%, fo llowed by IP 11.40%, WT  6.5%, WF 1.03%, TOFF 

0.67% and SV  0.035%. Three verificat ion trials, at  the optimum arrangement of cutting variables, are performed. The results 

of verification tests are indicated in Table 8. 
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Table 7 ANOVA for MQI 

Source DF Seq SS Adj MS F P % Contribution 

TON 2 2.08478 1.04239 122.36 0.000* 76.00 

TOFF 2 0.01840 0.00920 1.08 0.366 0.67 

SV 2 0.00096 0.00048 0.06 0.946 0.03 

IP 2 0.31308 0.15654 18.37 0.000* 11.40 

WF 2 0.02833 0.01417 1.66 0.225 1.03 

WT 2 0.17816 0.08908 10.46 0.002* 6.50 

Error 14 0.11927 0.00852 - - 4.35 

Total 26 2.74298 - - - - 

S = 0.0922999   R-Sq = 95.65%   R-Sq(adj) = 91.92% 

*P-value < 0.05 indicates significant parameter at 95% confidence level 

 

 
Fig. 7 Percentage contribution of cutting variables on MQI 

Table 8 Verification test results at the optimum arrangement of cutting variables 

Sr. No. Response characteristic 
Optimum value 

Predicted value Experimental value 

1 Surface roughness, µm - 2.26 

2 Overcut, mm - 0.152 

3 MRR, mm
3
/min - 34.57 

4 MQI 0.788314 0.827157 

4. SEM Analysis of Machined Samples 

From Fig. 8 to 10, it is observed that at Experiment No. 19 microstructure indicates matt surface, large deep craters, 

more amount of molten material resolid ified on the machined surface in  the form of debris and micro -cracks. At high values 

of the pulse on time, more amount of discharge energy is released for machining. It results in subsequent melting and 

vaporization of material from the workpiece surface. The surface finish depends upon power contained per spark and 

efficient utilization of that spark for p roducing a crater . The higher the pulse on time, the more significant the amount of 

discharge energy hence more amount of heat is generated and large dark holes are formed on the workpiece surface. Some of 

the molten material produced by the discharge is carried away by the dielectric. The remaining molten material gets re-

solidified to form debris and spherical g lobules. Micro-cracks are formed due to the existence of thermal stress and tensile 

stress in the machined workpiece. Thermal stress is created when the sparks hit  the cut surface during machin ing. Tensile 

stress in the component is produced as some of the molten material is flushed away from the part’s surface by the dielectric 

and some remains resolidified on the surface. As the carbon reacts with molten metal, it  bonds more than the natural parent 

element during the cooling process, and when the stress on the surface surpasses the material’s ultimate tensile strength, 

cracks are formed. From SEM-EDX analysis, it  is observed that tool material migrates (traces of Cu & Zn) from wire to the 
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workp iece surface the value of which varies from 7.02 wt% at low energy input to 13.98 wt% at high power input. Also, at 

high values of the pulse on t ime and lower values of pulse off time, average recast layer thickness increases (>4μm). This is 

because some amount of molten material does not get flushed away and remains solidified on the surface.  

 
 (a) Experiment No. 9 (Low energy input) 

 
 (b) Experiment No. 19 (High energy input) 

Fig. 8 Microstructure of Machined samples  

  
(a) Experiment No. 9 (Low energy input) (b) Experiment No. 19 (High energy input) 

Fig. 9 SEM-EDX analysis of machined samples  
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(a) Experiment No. 9 (Low energy input) (b) Experiment No. 19 (High energy input) 

Fig. 10 SEM image of recast layer of machined samples  

5. Conclusions 

WPCA technique is used to detect the optimal arrangement of cutting parameters while machining of Ti-6Al-4V on 

WEDM. To  examine effect of pulse-on time (TON), pulse-off time (TOFF), servo voltage (SV), peak current (IP), wire feed 

rate (WF) and cable tension (WT) on response characteristics such as surface roughness, overcut and MRR, tests are carried 

out by applying Taguchi’s L27 orthogonal plan. From this research, the results are summarized as given below: 

(1) Applying WPCA technique, the optimum settings of the cutting parameters which give the highest MQI values  as: TON 

=118 µS, TOFF = 45 µS, SV = 40 volts, IP = 190 Amp, WF = 5 m/min and WT = 5 gram. 

(2) Outcomes of the ANOVA specify that TON contributing 76.00% is the key variable which affects MQI. 

(3) SEM analysis of machined samples shows that, at higher values pulse on time surface quality decreases owing to the 

formation of the major deep craters, more amount of molten material resolidified on the workpiece surface, migrat ion of  

tool material and increased recast layer thickness. 
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