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Abstract 

This paper deals with a design problem of an adaptive gain robust controller which achieves consensus for 

multi-agent system (MAS) with uncertainties. In the proposed controller design approach, the relative position 

between the leader and followers are considered explicitly, and the proposed adaptive gain robust controller 

consisting of fixed gains and variable ones tuned by time-varying adjustable parameters can reduce the effect of 

uncertainties. In this paper, we show that sufficient conditions for the existence of the proposed adaptive gain robust 

controller are reduced to solvability of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed 

robust formation control system is verified by simple numerical simulations. A main result of this study is that the 

proposed adaptive gain robust controller can achieve consensus and formation control giving consideration to 

relative distance in spite of uncertainties.  

 
Keywords: multi-agent system (MAS), consensus, adaptive gain robust controller, relative distance, linear matrix 

inequalities (LMIs) 
 

1. Introduction 

For designing control systems for dynamical systems, it is necessary to derive a mathematical model for the controlled 

system. If the mathematical model represents the control system precisely, then the desired control system can be designed by 

various control design strategies. In particular, it is well known that LQ regulator for linear systems guarantees good robustness 

and asymptotic stability for closed-loop systems provided that its mathematical model can be described precisely [1-2]. 

However, it is unavoidable that there are some gaps between the original controlled system and its mathematical model, and 

these gaps are known as “uncertainty”. Therefore, robust controller design methods have been well studied to deal with 

uncertainties explicitly, and a large number of robust control strategies have been proposed [3-8]. One can see that most of the 

conventional robust controllers have been designed by solving linear matrix inequalities (LMIs), and have consisted of the 

fixed gains designed by considering the worst-case variations for uncertainties. In addition to such typical robust control with 

fixed gains, adaptive gain robust controllers for uncertain systems have also been given [9-11]. Furthermore, comparing with 

the traditional fixed gain robust controller, these adaptive gain robust controllers are more flexible and adaptive.  

Now, due to the rapid development of modern industries and sciences, controlled systems are highly complex and large in 

dimension, and such dynamical systems are referred to as “large-scale interconnected systems”. Large-scale interconnected 

systems are characterized by a great multiplicity of measured outputs and combined inputs. Moreover, large-scale 

interconnected systems are defined as a group of interconnected subsystems such that decentralized operation is mandatory. 

For such large-scale interconnected systems, it is difficult to apply centralized control strategies. Thus, the design problems of 
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decentralized control for large-scale interconnected systems and the decentralized control strategies have been studied [12]. 

Furthermore, various design problems of decentralized robust control for uncertain large-scale interconnected systems have 

also been studied [13-16]. Additionally, various researchers have focused on formation control problems for multi-agent 

system (MAS) recently, and a multi-agent system can be defined as a network of a number of coupled dynamic units that are 

referred to agents. One can see that the design problems of formation control for MAS can be considered one of the 

decentralized control problems. Since consensus problem has the potential to be applied to various fields (for example, mobile 

robots, unmanned vehicles, vehicle formations, and so on), the consensus problem for design problems of formation control for 

MAS has been attracted a lot of attention. As is well known, consensus means that the states of all agents (for example, 

positions and velocities) are driven to a common state by applying distributed protocols. The consensus problem is often 

considered one of the most important and basic problem in formation control. Therefore, lots of existing results and researches 

for consensus problem for MAS have been well studied [17-24]. Olfati-Saber and Murray [17] considered the consensus 

problem for a network of first-order integrators with three different information network structures. Additionally, Xie et al. [18] 

analysed convergence for a consensus protocol for a class of networks of dynamic agents with fixed topology. Hence, there are 

many efficient results for the consensus problem. But in most cases, relative positions for each agent is not considered 

explicitly in the process of consensus. In addition, most of these results have dealt with a design problem of fixed gain 

controllers, and the derived controller has been designed by considering the worst-case variations of uncertainties/disturbances. 

Moreover, some results for consensus controllers based on event-triggered controller have also been reported [21-22]. 

However, there is no result for the adaptive gain controller designed by considering both uncertainties and relative positions of 

each agent explicitly. To bridge the gap, we have already presented a design method of an adaptive gain controller giving 

consideration to relative distances between agents [25]. The adaptive gain controller in our result [25] consists of fixed gains 

and variable ones tuned by time-varying adjustable parameters. Additionally, in the proposed control method, the upper bound 

on relative positions is the only information required, and the accurate information on the target position of other followers is 

nonessential. 

From the above, on the basis of the existing result [25], this study handles a robust consensus problem for MAS with 

uncertainties. In the proposed robust control strategy, the proposed adaptive gain robust controller is composed of fixed gains 

and variable compensation inputs tuned by time-varying adjustable parameters. In this paper, we assume that the state equation 

for agents includes the information of the target relative position in advance, and sufficient conditions for the existence of the 

proposed adaptive gain robust controller can be reduced to solvability of LMIs. The advantages of the proposed adaptive gain 

robust controller are as follows: The proposed adaptive gain robust control strategy can achieve consensus robustly, and the 

proposed controller can be designed by solving LMIs, i.e. the proposed adaptive gain robust controller can easily be derived. 

Moreover, by introducing adaptive gains which can reduce the effects of uncertainties, consensus for MASs with uncertainties 

can robustly be achieved. Therefore, one can easily see that the proposed adaptive gain robust controller is a natural extension 

of our result [25]. Finally, simple numerical simulations are demonstrated to illustrate the effectiveness of the proposed 

formation control systems. 

2. Preliminaries 

This section shows the mathematical notation used in this paper. A list of mathematical symbols used in this paper is 

shown in Table 1. For matrices � ∈ ℝ�×� and � ∈ ℝ�×	, the Kronecker product �⊗ � is defined as follows: 
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Moreover, we express the information path between agents based on graph theory [17, 26] in this paper. Graph theory is often 

used for control problems in MAS because the graph theory is useful for discussing the consensus problems. The graph is 

aggregation of vertices and edges, and the notation of a graph is � ∈ (
, �), where 
 = �1, 2,⋯ ,�� is the vertex set of � 

vertices in the graph �, and � is the edge set of connecting the vertices. In addition, (�, �) ∈ � means an edge between � and �. 

Note that there are two types of graphs, undirected graph and directed one, and the graph is considered to be the directed graph 

in this paper. Furthermore, in order to express the graph algebraically, an adjacency matrix, a degree matrix �, and a graph 

Laplacian ℒ are introduced in this paper. The adjacency matrix � represents the adjacency relation of each vertex of the graph. 

In the graph � ∈ (
, �), when there is an directed edge from � ∈ 
 to � ∈ 
 for a pair (�, �) ∈ �, i.e. there exists a available 

edges from 	�  to � , the vertex �  is said to be adjacent to vertex � . In this case, the adjacent set of vertices �  is 	�� ≜

�� ∈ 
|(�, �) ∈ ��, and the elements "�#  for the adjacency matrix � = $"�#% is defined as: 

1 ( , ) and 

els0 e
ij

if i j i j
a

∈ ≠


≜

ε 

 

(2) 

Additionally, in the directed graph � ∈ (
, �), the in-degree of a vertex � represents the number of edges incoming to the 

vertex � and it is denoted as &�
��. By the way, out-degree means the number of edges outgoing from a vertex. Then for the graph 

� ∈ (
, �), the degree matrix � ∈ ℝ'×'are defined as: 

( )1 2, , ,in in in

Ndiag d d d= ⋯D (3) 

Additionally, the graph Laplacian ℒ = $(�#% are defined as: 

= −L D A (4) 

One can see that the graph Laplacian ℒ represents the structure of the graph (i.e., the in-degree of each vertex and the 

relationship for edges) in a single matrix. Therefore, in the consensus problem for MAS, the graph Laplacian ℒ is utilized for 

describing features of MASs.  

Table 1 Mathematical symbols in this paper  
ℝ�×� ) by	* real matrix 

In *-dimensional identity matrix 
+ > 0(+ ≥ 0) The matrix A is positive definite (positive semi definite) 
+ < 0(+ ≤ 0) The matrix A is negative definite (negative semi definite) 

‖"‖ Euclidean norm of a vector a 
‖2‖ The matrix norm of any matrix 2 induced by the vector norm 

diag (A1, A2,⋯, An) Diagonal block matrix with matrices +�	(� = 1,2,⋯ , *) 
∗ Symmetric element of matrix 

�⊗ � Kronecker product 

3. Problem Formulation 

In this paper, we consider the multi-agent systems (MAS) consisting of �  agents with leader-follower structure. 

“Leader-follower structure” is a kind of MASs composed by defining an agent as a leader and the other agents (followers). 

Furthermore, it is assumed that the agent’s dynamics includes the structured uncertainties. Namely, each agent is represented 

by the following state equation: 

( ) ( ( ) ) ( ) ( )i i i

d
x t A B t E x t Bu t

dt
= + ∆ +

 
(5) 
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where � ∈ ℝ�×�, � ∈ ℝ�×�and 4 ∈ ℝ�×�are known constant matrices, and ∆(6) ∈ ℝ�×� is an unknown time-varying matrix 

satisfying ‖∆(6)‖ ≤ 1.0. It is well known that the uncertain term �∆(6)4 is referred to as “structured uncertainties”, and the 

uncertainties in the system satisfy the matching condition [4]. Moreover, a new state variable 8̅�(6)(8̅�(6) ≜ 8�(6) − &�) for the 

difference between the state of each agent 8�(6) and the target relative position &� from the leader to the �-th follower is defined. 

It is assumed that the information about the relative position between the leader and other followers cannot be obtained by the 

�-th follower, but can be obtained by the upper bound of the relative position &��  which satisfies ‖&�‖ ≤ &�� . 

Now, we consider the control input ;�(6) for each agent. Firstly, the following state feedback input is defined as: 

( ) ( )Ki iu xt K t= (6) 

where < ∈ ℝ�×� is a feedback gain matrix which stabilizes the matrix += ≜ + + �< [24]. Moreover, in order to achieve 

consensus [25-26], we introduce the following input ;?�(6) as: 

( )( ) ( ) ( )
i

F

j

i i ju t F x t x t
∈

= −∑
N

 

(7) 

In Eq. (7), @ ∈ ℝ�×� is a consensus gain, and for �-th agent, we define the following control input ;�(6): 

( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( )
i

i Ki Fi i

i i j i

j

u t u t u t v t

Kx t F x t x t v t
∈

+ +

= + − +∑
≜

N

 

(8) 

where A�(6) ∈ ℝ�  is a compensation input [25] for reducing the effects of relative position and uncertainties. Then, by 

introducing the augmented vectors 8̅(6) = (8̅BC(6), 8̅DC(6),⋯ , 8̅'C(6))C  and ;(6) = (;BC(6), ;DC(6),⋯ , ;'C (6))C we obtain: 

( ) ( ) ( ) ( ) ( )N N

d
x t I A x t I B u t

dt
= ⊗ + ⊗

 

(9) 

In Eq. (9), +̅ is a matrix given by +̅ = + + �∆(6)4. Furthermore, from Eqs. (8) and (9), one can derive: 

( ) ( ) ( ) ( ) ( )

[ { ( )}] ( ) {( ) ( )}

N N

N N N N

d
x t I x t I u t

dt

A B K F x t B F d t

A B

v

= +

= + + ⊗ + ⊗ +

⊗ ⊗

L L

 

(10) 

where matrices +̅', �', and <' are given by +̅' ≜ E'⨂+̅, �' ≜ E'⨂�, and <' ≜ E'⨂<, respectively. Moreover, the vectors 

& and A(6) in Eq. (10) are defined as & ≜ (&BC , &DC , ⋯ , &'C )C, A(6) = (ABC(6), ADC(6),⋯ , A'C(6))C , respectively. 

From the above discussion, the controller design objective in this paper is to design the stabilizing feedback gain <, the 

consensus gain @, and compensation input A(6) such that asymptotical stability of the closed-loop system of Eq. (10) is 

guaranteed. 

4. Main Results 

This chapter shows an LMI-based design method of the stabilizing feedback gain < , the consensus gain @ , and 

compensation input A(6) for the multi-agent system. In the following, we assume the number of agents is 3, i.e. �=3, for 

simplicity. Moreover, in this study, the first agent is the leader �=1=“(”, and the other agents mean followers. And, the graph of 

network topology between agents is assumed as Fig. 1. Then, the adjacency matrix �, the degree matrix �, and the graph 

Laplacian ℒ can be obtained as follows. 
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Fig.1 The graph corresponding to MAS consisting of three agents 
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Note that the proposed design method can easily be extended the case of multi-agent systems consisting of 4 or more agents.  

Now, we give the following theorem for determining the stabilizing feedback gain < , the consensus gain @ , and 

compensation input A(6) for the closed-loop system of Eq. (10).  

Theorem 1: Consider the closed-loop system of Eq. (10) in which the control input of Eq. (8) is applied to the multi-agent 

system of Eq. (9). If there exist solutions G ∈ ℝ�×�, H= ∈ ℝ�×�, and H? ∈ ℝ�×� of the following linear matrix inequality 

(LMI) condition: 
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(12) 

then asymptotical stability of the closed-loop system of Eq. (10) is ensured, and the consensus for MAS of Eq. (9) can be 

achieved. In addition, the stabilizing feedback gain < ∈ ℝ�×� and the consensus gain @ ∈ ℝ�×� can be calculated by using 

solutions G ∈ ℝ�×�, H= ∈ ℝ�×�, and H? ∈ ℝ�×� as follows: 

1 1,   K FK W S F W S
− −= = (13) 

and by introducing the matrix I = GJB, the compensation inputs A�(6) are designed as follows: 
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(14) 

Proof 1: Now, we introduce the following Lyapunov function candidate; 

( ) ( )3, ( ) ( )T
x t x t I P x t= ⊗V (15) 

where I ∈ ℝ�×� is a symmetric positive definite matrix. The time derivative of Eq. (15) along the trajectory of the closed-loop 

system of Eq. (10) can be written as: 
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In Eq. (16), Φ(I, <, @) and L(I, @, A(6)) are the matrix and the scalar represented by:  

( ) ( ){ } ( ){ }3 3 3 3 3 3 3 3, ,
T

P K F A B K P P A B K   Φ = + + ⊗ + + + ⊗   L LF F

 

(17) 
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where IM = (EM⨂I). From ‖∆(6)‖ ≤ 1.0 and ‖&�‖ ≤ &�� , one can easily see that the relation holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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(19) 

Thus, we select the following compensation input A�(6): 
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(20) 

If the compensation input A�(6) of Eq. (20) is selected, then the following relation holds: 

( ) ( ), ( ) , , ( )Td
x t x t P K F x t

dt
Φ≤V

 

(21) 

where the matrix Φ(I, <, @) is expressed as: 
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(22) 

where Φ�#(I, <, @) can be written as follows: 
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Therefore, if the inequality condition is satisfied as: 

( ), , 0P K FΦ < (24) 

then the following inequality for the function 
(8̅, 6) is obtained: 

( ) ( ), , 0 , 0
d

P K F x t
dt

Φ < <V

 

(25) 

That is, the function 
(8̅, 6) of Eq. (15) becomes a Lyapunov function of the closed-loop system of Eq. (10), and the 

asymptotic stability of the closed-system of Eq. (10) is guaranteed. 

Now, we consider the inequality condition of Eq. (24). Here, in order to determine the feedback gain < ∈ ℝ�×� and the 

consensus gain @ ∈ ℝ�×� , a symmetric positive definite matrix G = IJB  and complementary variables H= ≜ <G  and  

H? ≜ @G are introduced. Moreover, pre- and post-multiplying Eq. (24) by GM = EM⨂G, we obtain: 
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(26) 

In Eq. (26), N�#(G,H= ,H?)is expressed as; 
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(27) 

Thus, one can see that the inequality of Eq. (26) is a linear matrix inequality (LMI) for G ∈ ℝ�×�, H= ∈ ℝ�×�, and H? ∈

ℝ�×�. If the solution of Eq. (26) exists, then asymptotical stability of the closed-loop system of Eq. (10) is guaranteed. 

Moreover, by using G ∈ ℝ�×�, H= ∈ ℝ�×�, and H? ∈ ℝ�×�, which satisfy the LMI of Eq. (26), the gains < and @ can be 

derived as: 

1 1,   K FK W S F W S
− −= = (28) 

From the above discussion, the proof of Theorem 1 is completed.  

Remark 1: If the solutions G ∈ ℝ�×�, H= ∈ ℝ�×�, and H? ∈ ℝ�×� of the LMI of Eq. (12) cannot be obtained, the internal 

stability of closed-loop system is not ensured and the consensus cannot be achieved, i.e. the proposed adaptive gain robust 

controller cannot be constructed. In other words, accomplishment of our control objective in the proposed formation control 

strategy is reduced to the solvability of LMIs. Additionally, one can see that the LMI of Eq. (12) is equivalent to one in 

Theorem 1 of our previous work [25]. Thus, the stabilizing feedback gain	< and the consensus gain	@ in the proposed robust 

formation control are same as ones in [25] and only the compensation input is different. From this fact, one can see that the 

result of this paper is a natural extension of the existing result [25].  
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5. Numerical Simulations 

In this section, simple numerical simulations are given to show the effectiveness of the formation control system with the 

proposed adaptive gain robust controller. 

In this paper, the simulation results for three cases (Case 1-3) are provided to illustrate the effectiveness of the proposed 

formation control systems. In Case 1, the simulation results of the formation control via the proposed adaptive gain robust 

controller is shown. Moreover, we compare the proposed formation control strategy with the existing result [25] in which the 

relative distances are considered only, and the existing result [25] is shown in Case 2. Additionally, Case 3 represents the 

results for the “fixed” gain robust controller (see Appendix). Note that the numerical simulations for all cases have been done 

under the same conditions. Furthermore, in the case of the “fixed” gain robust controller, the exact information for relative 

positions is required (see Remark A.1 in Appendix), and thus in this example, it is supposed that the exact information for 

relative positions can be obtained.  

Firstly, we consider agents represented by the following state equation: 

1 1 1

2

0 1 0 0 0 0

1.75 ( ) 1.75 ( ) 0 1.75 ( ) 1 0
( ) ( ) ( )

0 0 0 1 0 0

0 0 0 1.75 ( ) 0 1

i i i

t t td
x t x t u t

dt

t

   
   

−   = +
   
   

  

δ δ δ

δ  

(29) 

where OB(6) and OD(6) are unknown parameters and are set as Δ(6) = &�"Q(OB(6), OD(6)). Furthermore, OB(6) and OD(6) are 

given by:  

1

2

( ) 1.0exp( 0.05 ) sin(10 )

( ) 1.0exp( 0.05 ) cos(10 )

t t t

t t t

= −

= −

δ π

δ π

 

(30) 

From Eq. (29), the matrix 4 can be described as: 

1.75 1.75 1.75

1.75

0

0 0 0
E

 
= 


−



 

(31) 

Moreover, it is supposed that the state variable 8�(6) is given by 8�(6) = (8�
(B)(6)			8�

(D)(6)			8�
(M)(6)			8�

(R)(6))C. For the state 

variable in Eq. (29), 8�
(B)(6) and 8�

(D)(6) (resp. 8�
(M)(6) and 8�

(R)(6)) are the position and velocity in the 8-axis (resp. S-axis). 

see the existing result [25]. 

By solving LMI of Eq. (26), the following matrices are obtained: 

1 3 3

3 3

1

3

3

18

1.1574 4.2577 10 2.0310 10 3.4560 10

1.1574 3.4550 10 2.0330 10

1.1574 4.2577 10

1.1574

1.1651 9.708 10

1.9053 2.1926

9.7081 10 1.1651

1.6958 10 1.9053

K

S

W

− − −

− −

−

−

−

−

 − × × − ×
 

× × 
=  

− × 
 
 

 − − ×
 

− − 
= 

− × −
− × − 

⊻

⊻ ⊻

⊻ ⊻ ⊻

6 6

1 1

6 6

1 1

6.9246 10 6.9246 10

7.9258 10 5.6843 10

6.9246 10 6.9246 10

5.6843 10 7.9258

,  

10

TT

FW

− −

− −

− −

− −

 × ×
 

× × 
=  

× × 
 

× × 

 

(32) 
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Therefore, the stabilizing feedback gain < ∈ ℝD×R and the consensus gain @ ∈ ℝD×R for Case 1 and Case 2 can be calculated as: 

2 3

1

1

1.8646 2.3322 1.4535 10 6.8409 10

8.2057 10 2.1978 1.8699 2.3327

2.9273 7.9213 2.1088 5.6819
10

2.1088 5.6819 2.9274 7.9213

K

F

− −

−

−

 − − − × − ×
=  
 − × − − − 

 
= × 
   

(33) 

Next, in order to determine the gains < ∈ ℝD×R	and @ ∈ ℝD×R for the “fixed” gain robust controller (Case 3), we solve the LMI 

of Eq. (A.14) in Theorem A.1 in Appendix. Then, the matrices G, H=, and H? and the positive scalar T are obtained as:  

7

18

32.0270 34.3991 46.2393 25.2218

70.1974  4.3522 31.8467

331.5794 51.0899

61.8142

 33.9315 18.7995

295.7166 15.8179
,  

23.6860 32.6215

282.871

3.5769 10

1.3072 10 0

T

K F

S

W W

−

−

− − 
 

− − =
 −
 
 

− × −− 
 

− = =
 
  × −

−



⊻

⊻ ⊻

⊻ ⊻ ⊻

5

4 5

5 5

5 4

2.0300 10

3.4951 10 2.5277 10

4.2221 10 5.7594 10

3.062

322.1627

3 10 3.5272 10

T−

− −

− −

− −

 ×
 

− × − × 
 

− × × 


=


× − × 

γ

 

(34) 

Therefore, the gain matrices < ∈ ℝD×R and @ ∈ ℝD×R for the “fixed” gain robust controller can be derived as: 

5 5 6 6

7 6 6 6

21.4083 16.0091 3.4940 2.4006

4.4184 1.0228 0.6414 7.4360

2.1740 1.700510 10 10 10

9.267

3.7690 2.5100

8 10 5.0285 10 1.4229 10 9.0947 10

K

F

− − − −

− − − −

− − − 
=  

− − 

 × × × ×
=  
 − × − × − × − ×

−

− − −



−

−

 

(35) 

In this example, the initial values of each agent are selected as follows:  

( ) ( ) ( )2 3(0) 5.0 2.0 3.0 2.0 ,  (0) 6.0 4.0 0.0 3.0 ,  (0) 1.0 2.0 2.0 4.0
T T T

lx x x= − = = (36) 

Furthermore, the desired relative position of the leader and follower &D and &M are set as: 

( ) ( )2 32.0 0.0 2.0 0.0 2.0 0.0 2.0 0.0,  
T T

d d= − − = − (37) 

Additionally, &�D and &�M are set as &�D = &�M = 2√2. Also, we introduce &V(6) as the reference signal to the reader W(6) 

expressed by the following. 

( )

( )

( )

( )

1

1 1

1

1 1

3.0cos 1.0 10

3.0 10 sin 1.0 10
( )

3.0sin 1.0 10

3.0 10 cos 1.0 10

t

t
r t

t

t

−

− −

−

− −

 ×
 
 

− × × 
=  

× 
 
 × ×
 

π

π

π

π

π

π
 

(38) 

The reference signal of Eq. (36) means that the reader draws a circular orbit with a radius of 3.0 around the origin, and the 

followers will behave the desired trajectory according to the specified relative position.  
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The results of this numerical simulation for Case 1 are shown in Figs. 2-6. In addition, Figs. 2-5 represents the time histories of 

8�
(B)(6)~8�

(R)(6) for each agent, respectively. From the results of Figs. 2-5, the leader agent follows the given reference signal 

in spite of uncertainties, and followers with unknown parameters track the desired trajectory corresponding to the specified 

relative positions, respectively. Fig. 6 shows the state trajectories of each agent and depicts the shape of formations, i.e. Fig. 6 

represents the movement of each agent on the 8 − S coordinates. From these figures, we can see that each agent forms a 

desired formation. Therefore, it can be confirmed that the consensus has robustly been achieved by the proposed adaptive gain 

robust controller, and the effectiveness of the proposed formation control strategy is shown. 

  
Fig. 2 Time-histories of 8�

(B)(6) in Case 1 Fig. 3 Time-histories of 8�
(D)(6) in Case 1 

  
Fig. 4 Time-histories of 8�

(M)(6) in Case 1 Fig. 5 Time-histories of 8�
(R)(6) in Case 1 

 
Fig. 6 Trajectories (8 − S plane) of MASs in Case 1 
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The results for Case 2 are shown as Figs. 7-11, representing that the time histories of 8�
(B)(6)~8�

(R)(6) and trajectories 

generated by the formation control strategy in the existing result [25], respectively. From these figures, it can be seen that the 

consensus is also achieved. However, we find that the time-histories of state variables in Case 2 are very oscillated comparing 

with the result of Case 1. This result indicates that the controller of the existing result [25] cannot flexibly react for the effect of 

uncertainty.  

  
Fig. 7 Time-histories of 8�

(B)(6) in Case 2 Fig. 8 Time-histories of 8�
(D)(6) in Case 2 

  
Fig. 9 Time-histories of 8�

(M)(6) in Case 2 Fig. 10 Time-histories of 8�
(R)(6) in Case 2 

 
Fig. 11 Trajectories (8 − S plane) of MASs in Case 2 
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Next, we show the simulation results for the “fixed” gain robust controller, and the time-histories and state trajectories for 

Case 3 are shown in Figs. 12-16. One can easily see from Figs. 12-16 that the fixed gain robust controller can also achieve 

consensus. However, it can also be seen that the “fixed” gain robust controller takes a lot of time to perform the formation 

comparing with the result of Case 1. This indicates that the proposed adaptive gain robust controller is more flexible and 

adaptive than the “fixed” gain robust controller. 

  
Fig. 12 Time-histories of 8�

(B)(6) in Case 3 Fig. 13 Time-histories of 8�
(D)(6) in Case 3 

  
Fig. 14 Time-histories of 8�

(M)(6) in Case 3 Fig. 15 Time-histories of 8�
(R)(6) in Case 3 

 
Fig. 16 Trajectories (8 − S plane) of MASs in Case 3 

To analyze the above results more deeply, the time-histories of the norm of errors between the desired trajectories and the 

realized responses for each agent in Case 1, Case 2, and Case 3 are presented. In this numerical example, the norm of errors 

between the desired trajectory and responses of each agent is given by: 
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2

3

( )

( ) ( ) ( )

( )
x

r t

e t x t r t d

r t d

 
 

= − + 
 + 

 

(39) 

and its time-histories of YZ(6) are shown in Fig. 17. In Fig. 17, “Proposed” (resp. “Conventional” and “Robust”) means the 

time-histories of norm of errors for Case 1 (resp. Case 2 and Case 3). One can see from Fig. 17 that the proposed adaptive gain 

robust controller can smoothly and speedily perform the formation comparing with “Conventional” and “Robust”. 

From the above discussions, it can be concluded that the consensus has been achieved via the proposed adaptive gain 

robust controller, and the effectiveness of the proposed formation control strategy has been shown.  

 
Fig. 17 Time-histories of YZ(6) 

6. Conclusions 

In this paper, we propose a formation control system via an adaptive gain robust controller which achieves consensus for 

MASs with uncertainties. In addition, the effectiveness of the proposed robust control system is shown through simple 

numerical simulations. From the discussions in numerical simulations for uncertain MASs, we find that the proposed adaptive 

gain robust controller can flexibly and smoothly achieve consensus in spite of uncertainties.  

In the proposed robust control strategy, the proposed adaptive gain robust controller consists of fixed feedback gains and 

variable compensation input tuned by updating rules, and both relative distances between agents and uncertainties are treated 

explicitly. The sufficient condition for the existence of the proposed formation control system can be reduced to the solvability 

of LMI, and this fact means that the proposed adaptive gain robust controller can easily be derived by solving LMIs. 

Furthermore, the proposed robust control strategy only requires the information about the upper bound on relative positions 

between agents, i.e. there is no need to have the complete information on the target relative position of the other followers. 

Thus, one can easily see that the result of this paper is a natural extension of the existing result [25].  

While the proposed control strategy has some of the advantages mentiond above, the achievable control performance such 

as transient performance, disturbance attenuation level and so on has not been discussed. Therefore, it will be necessary to 

tackle design problems for robust formation controllers with achievable performance. In other words, we will extend the 

proposed robust control strategy to robust consensus controllers which minimize some additional performance indexes such as 

L2 gain performance, quadratic cost functional and so on. Furthermore, extensions of the proposed adaptive gain robust 

controller to discrete-time systems, time-delay systems, and output feedback control systems are also future research subjects.  
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Appendix 

In this Appendix, an LMI-based design method of the “fixed” gain robust controller based on quadratic stabilization [4-5] 

is shown, i.e. we show a design method of the formation control strategy with fixed gains only. Note that the number of agents 

is 3. For uncertain MASs of Eq. (5), the control input is defined as 

3( ) ( ) ( ) ( )u t K x t F x t+ ⊗≜ L (A.1) 

In Eq. (A.1), the matrices < (resp. @) is the feedback gain (resp. the consensus gain) for the fixed gain robust controller. From 

Eqs. (9) and (A.1), one can derive the following uncertain closed-loop system:  

( ) ( )3

3 3 3 3

( ) ( ) ( )

[ ( )] ( )

N

d
x t I x t I u tA

dt

A B K B F t

B

x

= +

= + + ⊗

⊗ ⊗

L

 

(A.2) 

Therefore, the controller design objective for the fixed gain robust controller is to design the gains < ∈ �D�R and @ ∈ �D�R 

such that asymptotical stability of the closed-loop system of Eq. (A.2) is ensured. 

Now, we introduce the following Lyapunov function candidate: 

( ) ( )3, ( ) ( )T
x t x t I P x t= ⊗V (A.3) 

Then a condition for asymptotical stability of the closed-loop system of Eq. (A.2) can be written as: 

( ){ } ( ){ }3 3 3 3 3 3 3 3 3 3

3 33 33 3

( , ) ( ) ( )

 ( ){( ( ) ) ( ( ) )} ( )

                 <0              

TT

T TT

d
V x t x t x t

dt

x t I t E P P

A B K B P P A B K B

B I EB t x t

+

+

 = + + ⊗ + + ⊗

⊗ ∆ + ∆

 

⊗


L LF F

 

(A.4) 

By using the well-known that the following relation [27] for matrices [ and \ which have appropriate dimensions and a 

positive scalar 	T, holds:  
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1T T T TXY Y XX X Y Y+ ≤ +γ
γ

 

(A.5) 

and by introducing the matrix 4M = (EM⨂I), we have the following inequality for the second term in Eq. (A.4): 

3 3 3 3 3 3 33 3 3 33
1

( ){( ( ) ) ( ( ) )} ( ) ( ) ( ) ( ) ( )T T T TT TTx t I t E P P I t E x t x t P P x t x t E E x tB B B B⊗ ∆ + ⊗ ∆ ≤ +γ
γ

 

(A.6) 

Therefore, one can see from Eqs. (A.4) and (A.6) that the sufficient condition for asymptotical stability of the closed-loop 

system of Eq. (A.2) can be derived as: 

( ){ } ( ){ }3 3 3 3 3 3 3 3 3 3

33 3 333

( , ) ( ) ( )

1
( ) ( ) ( ) ( )

                 <0

T

TT

T T T

A B K B P P A B K B

B B

d
V x t x t x t

dt

x t P P x t x t E E x t

 + + ⊗ + + ⊗ ≤ +

+



+



γ
γ

L LF F

 

(A.7) 

Namely, if the inequality is satisfied as: 

( ){ } ( ){ } 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3
1

 < 0
T TTA B K B P P A B K B E EB PBP+ + ⊗ + + + +⊗+ γ

γ
L LF F

 

(A.8) 

then the inequality condition of Eq. (A.3) is also ensured, and the asymptotic stability for the closed-system of Eq. (A.2) is 

guaranteed.  

Here, in order to determine the gain matrices < ∈ �D�R and @ ∈ �D�R, a symmetric positive definite matrix G = IJB and 

complementary variables H= ≜ <G and H? ≜ @G are introduced. Moreover, pre- and post-multiplying Eq. (A.8) by GM =

(EM⨂G), the following inequality for the asymptotic stability for the closed-system of Eq. (A.2) are obtained: 

( ) ( ) ( )

( )

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3
1

< 0

F K K

T

TT T T

F

T

T

W B I W B S A A S B I W

B EW B EB S S

⊗ + ⊗ + + ⊗

+

+

+⊗ + γ
γ

L

L

 

(A.9) 

Furthermore, by applying Schur complement formula (see [28] for details) to the inequality of Eq. (A.9), we find that the 

inequality condition of Eq. (A.9) is equivalent to:  

3 3

3 3 6

( , , , )
< 0

 

T
K F S

S

S W W E

E I

 Λ
 
 − 
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(A.10) 

where the matrix ](G,H= ,H? , T) is given as: 
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(A.11) 

In (A.11), ]�#(G,H= ,H? , T) are matrices given by: 
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F F
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Λ +

Λ Λ +
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= −

Λ Λ

Λ +

γ γ

γγ γ

 

(A.12) 
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Namely, the inequality of Eq. (A.10) is a linear matrix inequality (LMI) for the matrices 	G, H=, H? and a positive scalar γ . If 

the solution of Eq. (A.10) exists, then the closed-loop system of Eq. (A.2) is asymptotically stable, and formation/consensus 

can be achieved. Additionally, by using,	G ∈ �R�R, H= ∈ �
D�R, and H? ∈ �

D�R, which satisfy the LMI of Eq. (A.10), the gain 

matrices < ∈ �D�Rand @ ∈ �D�R for the fixed gain robust controller can be derived as: 

1 1,   K FK W S F W S
− −= = (A.13) 

Consequently, we have the following theorem for the “fixed” gain robust controller based on quadratic stabilization: 

Theorem A.1: Consider the uncertain closed-loop system of Eq. (A.2). If there exist solutions G ∈ �R�R , H= ∈ �
D�R , 

H? ∈ �
D�R, and a positive scalar T which satisfy the linear matrix inequality (LMI): 
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(A.14) 

then asymptotic stability for the closed-loop system of Eq. (A.2) is ensured, and the consensus for MASs of Eq. (9) can be 

achieved. Moreover, the stabilizing feedback gain < ∈ �D�R and the consensus one @ ∈ �D�Rcan be calculated as: 

1 1,   K FK W S F W S
− −= = (A.15) 

Remark A.1: In the “fixed” gain robust control based on quadratic stabilization [4-5], the control law is given as Eq. (A.1), and 

it can be rewritten as: 

1

2 2 2 3 3

3 2 2 3 3

( ) ( ( ) )

( ) ( ) ( ( ) ) ( 2 )( ( ) ) ( ( ) )

( ) ( ( ) ) ( ( ) ) ( 2 )( ( ) )

l l

l l

l l

u t K x t d

u t u t F x t d K F x t d F x t d

u t F x t d F x t d K F x t d

−   
   

= = − − + + − − −   
   − − − − + + −   

 

(A.16) 

One can easily see from Eq. (A.16) that the “fixed” gain robust controller needs the exact information for relative positions for 

the other agents. Thus, if there exist uncertainties for the information for relative positions, then the “fixed” gain robust 

controller cannot achieve the desired formation. On the other hand, the proposed adaptive gain robust controller utilizes the 

information about the upper bound on relative positions only. From this point, the proposed control strategy is more flexible 

than the “fixed” gain robust controller. 


