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Abstract 

This study presents a three-dimensional non-linear finite element investigation on the pull-out behavior of 

straight and hooked-end Shape Memory Alloys (SMA) and steel fibers embedded in Ultra-High Performance 

Concrete (UHPC) using a single fiber pull-out model. A bilinear cohesive zone model is used to characterize the 

interfacial traction separation relationships. The Concrete Damage Plasticity (CDP) model is used to simulate UHPC, 

and the mechanical behavior is obtained through experimental tests. Parametric studies are conducted to evaluate the 

effects of fiber materials, fiber diameters, and hook angles on the load-displacement behavior. A good agreement 

between the numerical and experimental results is obtained. It is found that the hooked-end fibers with a smaller 

diameter and a hook angle of 40° can be a better choice for structural application. Furthermore, it is observed that the 

use of SMA fibers significantly improves the pull-out performance between fibers and UHPC. 
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1. Introduction 

Materials made of cement such as concrete and cement mortar are generally brittle and have very low tensile strength. 

Accordingly, various researchers have used different methods and additives, such as nanoparticles, polymeric materials, and 

fibers, to improve concrete strengths [1-5]. Studies show that the fibers with different types, materials, shapes, and aspect ratio 

are some of the best methods to improve the ductility, flexural strength, tensile strength, and energy absorption properties of 

concrete against external loads [6-9]. This improvement of mechanical properties is achieved by creating strain hardening 

behavior in the concrete-fiber mixture. The results of the studies show that using steel fibers can improve the maximum 

compressive and tensile strength of steel-reinforced concrete to achieve the values greater than 292 MPa and 37 MPa, 

respectively. This is about 5-10 times higher than the properties of concrete without steel fibers [10]. Therefore, in recent years, 

many researchers have studied the effect of using different fibers on the mechanical properties of concrete. 

Abdallah et al. [11] investigated the adhesion behavior of steel fibers with concrete, and showed that parameters such as 

fiber type, volume fraction, bond length, geometry, and orientation are effective on the pull-out properties of steel fibers 

embedded in concrete. According to their study, there are mainly two different mechanisms of adhesion between the matrix 

and the fibers, namely, physiochemical adhesion and static friction mechanism at the contact surface. The first mechanism is 

mainly defined by the properties of Interfacial Transition Zone (ITZ), which depends on the surface characteristics and the 

chemical reaction of the fibers with the matrix [12-14]. The second mechanism is highly dependent on the geometric shape of 

the fibers. Ellis et al. [15] studied the effect of the geometric shape of fibers on the pull-out behavior of steel fibers using the 
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finite element model. Cunha et al. [16] showed that hooked-end fibers behave differently from straight fibers, and the use of 

hook fibers increases the maximum pull-out force of the fibers from the concrete by 4.5 times. Using an analytical model, 

Alwan et al. [17] predicted a relationship for pull-out strength as a function of hook steel fibers slip. Abdallah and Rees [18] 

compared the pull-out behavior of different types of hook fibers from ordinary concrete. Kim and Yoo [19] examined the 

effects of fiber spacing, geometry, and loading rate on the pullout resistance of steel fibers in Ultra-High-Performance 

Concrete (UHPC).  

With the development of modern engineering materials [20-22], the use of shape memory materials in construction 

applications has significantly increased. For example, Chang et al. [23] examined the applications of Shape Memory Alloys 

(SMA) materials in construction applications. Abdulridha et al. [24] cyclically loaded several superelastic Nitinol-reinforced 

concrete beams. Alam et al. [25] predicted the seismic behavior of concrete members reinforced with shape memory wires. 

Freed et al. [26] investigated the behavior of SMA wire-reinforced concrete for different weight percentages. Moser et al. [27] 

investigated the behavior of concrete reinforced by the use of star-shaped thin SMA fibers. By applying heat to the fibers, they 

created initial stress of about 122 Psi in the fibers, and applied the pre-stress to the concrete. 

The previous studies show that although there have been many types of research in recent years on the pull-out behavior 

of fibers with different materials and geometries, the pull-out behavior of SMA fibers has not been addressed yet. Accordingly, 

the main purpose of the present study is to examine the finite elements and experimentally investigate the pull-out behavior 

between shape memory fibers and UHPC, as well as the effect of hook angle on bond strength. For this purpose, effects of key 

parameters, such as the fiber diameter and end-hook angle on the pull-out behavior of SMA and steel fibers, have been 

investigated using finite element simulation. The results obtained for SMA fibers are compared with the corresponding results 

on steel fibers. The numerical results are verified by comparing them to the results of the experimental tests. 

2. Numerical Simulation 

2.1.   Structure modeling 

30 mm
15 mm

30 mm
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θ

 

r

 
Fig. 1 Geometrical model of concrete with shape memory fiber 

Fig. 1 shows a schematic configuration of the finite element model of SMA fiber pulled out from concrete. The radius of 

hook SMA fibers is r, and its length and end-hook angle are l and θ, respectively, as show in Fig. 1. The size of the matrix must 

be large enough to negate the effect of boundary conditions on the pull-out behavior, so its radius is selected approximately 20 

times the radius of the fibers. For this reason, the cylindrical matrix with length of 30 mm and the diameter of 30 mm are 

considered. The fibers are subjected to uniaxial tension by applying displacement δ to the free end of the fibers to measure the 

generated force 𝑃𝑎. The bottom end of the concrete specimen is completely fixed to apply the clamped boundary conditions 

and to constraint the matrix. As can be seen in the finite element model, the geometry is made up of three different parts, 

namely, concrete, SMA fibers, and the ITZ between the two materials. In this research, the concept of the ITZ model is used to 

simulate the adhesion of the fibers with concrete, and ABAQUS commercial code is used for finite element simulation of the 
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fiber pull-out. The shape memory fibers are meshed using C8D3R cubic elements with an average size of 90 µm. The UHPC 

are meshed by C8D3R elements with an average size of 0.1 mm. It should be noted that these mesh dimensions are selected 

after analyzing mesh sensitivity. 

2.2.   The interaction between fibers and concrete 

Since the fibers are hook-type, to simulate the pull-out behavior, the traction-separation behavior is used, as schematically 

illustrated in Fig. 2.  

   
(a) Mode I: opening (b) Mode II: Sliding (c) Mode III: Tearing 

Fig. 2 Traction-separation behavior of the finite element model in three fracture modes [28] 

The structural relationship between traction stress and separation is as follows: 
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where 𝑇𝑛, 𝑇𝑠, and 𝑇𝑡 are separation stresses in vertical, first shear, and second shear directions, respectively. 𝐾, 𝛿𝑛, 𝛿𝑠, and 𝛿𝑡 

are the stiffness matrix and displacements in vertical, first shear, and second shear directions, respectively.  

Assuming that the vertical and shear components are non-coupled, Eq. (1) is transformed as follows: 
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The mechanical behavior of the contact surface is simulated using the traction-separation law and based on the bilinear 

cohesive zone model. As shown in Fig. 3, in the absence of any kind of failure, the linear contact surface behavior is assumed 

to be linear which is true until the occurrence of the failure. In this model, it is assumed that all the mechanisms of ITZ and the 

fracture process can be considered by three parameters: maximum shear stress or bond strength (Tmax), maximum critical 

separation 𝛿𝑚a𝑥, and the separation energy Gc. 

T

 

Fig. 3 Traction-separation law for modeling cohesive failure 
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2.3.   Defining mechanical properties of materials 

The SMA used in this research is NiTi memory alloy by weight of 50.8% nickel and 49.2% titanium made by Daido Steel 

Co., Ltd., Japan. Fig. 4 shows the stress-strain diagram of the SMA fibers used in the present study. To express the super-elastic 

behavior of SMA fibers, the mechanical behavior of the SMA materials is based on the constitutive equation of Zhou et al. [29]. 

Based on this constitutive equation, the stress-strain relationship has been defined in ABAQUS using the UMAT subroutine. 

The required parameters are Young’s modulus for two phases of austenite and martensite, austenite martensite starting stress, 

austenite to martensite finishing stress, martensite to austenitic starting stress, martensite to austenitic finishing stress, and 

maximum residual strain. Table 1 illustrates the mechanical properties of NiTi required for numerical modeling. 

 

Table  1 Mechanical properties of NiTi fibers* 

Young’s 

modulus 
Austenite martensite 

starting stress 

Austenite to 

martensite finishing 

stress 

Martensite to 

austenitic starting 

stress 

Martensite to 

austenitic finishing 

stress 

Maximum 

strain 

𝐸𝑎 = 67GPa 𝜎𝑓
𝐴𝑆 = 340MPa 𝜎𝑓

𝐴𝑆 = 342MPa 𝜎𝑠
𝑆𝐴 = 175MPa 𝜎𝑓

𝑆𝐴 = 120MPa 휀𝐿 = 0.90% 

*Based on Daido Steel Co., Ltd., Japan Database. 
 

In this study, the Concrete Damage Plasticity (CDP) behavior model of UHPC is used to simulate the nonlinear behavior 

of concrete materials. The parameters in this material model are dilation angle ψ, plastic potential eccentricity e, the ratio of 

biaxial to the uniaxial compressive strength of concrete 𝑓𝑏𝑜/𝑓𝑐𝑜, loading coefficient 𝐾𝑐, and viscosity parameter.  

The uniaxial stress-strain in compression and tension are required to evaluate the hardening/softening behavior of UHPC. 

Compressive tests on the standard cylinder specimens (100 mm × 200 mm), with a procedure conforming to ASTM C39, are 

performed to determine the compressive strengths and stress-strain curves of the UHPC materials. Meanwhile, the tensile 

properties of the UHPC materials are identified using direct tensile tests on the dog-bone specimens. A steel frame containing 

two Linear Variable Differential Transformers (LVDTs) is attached with a gauge length of 90 mm. A uniaxial force is 

monotonically applied through a universal testing machine with a maximum capacity of 2 kN, and the loading rate of 0.6 

mm/min is determined by the speed of the stroke. The tensile force is measured from a load cell at the crosshead, and both the 

load and elongation data are collected by astatic data logger. The tensile stress is then calculated by dividing the measured load 

by the cross-sectional area, and the strain is obtained by dividing the elongation by the gauge length.  

The configuration and test setup are presented in Fig. 5. Also, the stress-strain curves of UHPC in both tensile and 

compressive loads obtained from the direct tensile test and compression test are shown in Fig. 5. Table 2 shows the mechanical 

properties used for UHP concrete. Table 3 demonstrates the geometric properties of hooked-end fibers for finite element 

modeling.  

 

 

Fig. 4 Stress-strain curve of NiTi SMA fiber based on Daido Steel Co., Ltd., Japan Database 
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(a) Uniaxial compression test setup (b) Uniaxial tensile tests setup 

  
(c) Compressive stress-strain curve (d) Tensile stress-strain curve 

Fig. 5 Configuration and test setup for uniaxial compression and tensile tests 

 

Table 2 Mechanical properties of UHPC obtained from direct tensile and compressive stress-strain curves 

Concrete 

properties 

Compressive 

strength 

Modulus of 

elasticity 
Tensile strength Fracture energy Poisson’s ratio 

158 MPa 44680 MPa 6.26 MPa 0.067 N/mm 0.18 

CDP 

parameters 

ψ e 𝑓𝑏𝑜/𝑓𝑐𝑜 Kc 
Viscosity 

parameter 

39 0.1 1.16 2/3 0.0001 
 

Table  3 Geometric properties of hooked-end fibers 

Angle 
Fiber diameter, 

df (mm) 
Material No. 

0, 20, 40, 90 0.5 

SMA 

1, 2, 3, 4 

0, 20, 40, 90 1.5 5, 6, 7, 8 

0, 20, 40, 90 2.0 9, 10, 11, 12 

0, 20, 40, 90 0.5 

Steel 

13, 14, 15, 16 

0, 20, 40, 90 1.5 17, 18, 19, 20 

0, 20, 40, 90 2.0 21, 22, 23, 24 
 

3. Experimental Pull-Out Test 

Pull-out tests of the SMA and steel fibers are performed on UHPC samples containing single fibers, using a universal 

testing machine. The capacity of the load cell is 2 kN, and a uniaxial pull-out force is monotonically applied with a loading rate 

of 1.5 mm/min. The pull-out force-displacement curves for each type of hook-end fiber are recorded. The pull-out load is 

measured from a load cell affixed to the crosshead, and the slip is measured from the internal LVDT of the universal testing 
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machine. However, the elastic elongation of fiber during the pull-out test is neglected. The maximum pull-out load, the 

displacement at maximum pull-out load, and the area under the pull-out load-displacement curve of each fiber type are also 

calculated by analyzing the pull-out force-displacement curves. The UHPC specimen is made as rectangular cubes with 

dimensions 25 × 25 × 60 mm3. Fig. 6 shows how the samples containing single steel and SMA fiber are placed inside the 

universal testing machine. The test is completed when the fibers are completely pulled out. 

  

(a) SMA fiber  (b) Steel fiber 

Fig. 6 SMA and Steel fiber pull-out test setup  

4. Results and Discussion 

First, the parameters of the ITZ model are determined using experimental tests, and then the impact of different 

parameters on the adhesion behavior of hooked-end SMA fibers with concrete is studied. The interaction between fibers and 

concrete is considered by using contact constraint and defining adhesive elements, and the parameters of the adhesive zone 

model are determined so that the force-displacement curve obtained from the finite element model is compliant with the 

experimental results of the pull-out test performed on steel and SMA fibers. After calibrating the finite element results of the 

pull-out test, the unknown constants of the ITZ model are obtained as Table 4.  

Using the values presented in Table 4, the force-slip curve obtained by finite element model and the results of 

experimental tests of samples No. 01 and No. 13 are shown in Fig. 7. As can be seen, there is a good agreement between 

computational and experimental results and the maximum pull-out strength between the experimental test and the finite 

element model, demonstrating about 7% error. On this basis, it can be stated that the finite element model predicts the pull-out 

behavior between SMA fibers and concrete with very suitable accuracy so that the effect of different parameters can be studied 

using it. 

The examination of the force-slip curves presented in Fig. 7 for steel and SMA fibers shows that for the same fiber 

properties, the pull-out force of the SMA fibers is greater than the corresponding values of steel fibers. For example, for fibers 

with a diameter of 0.5 mm, the maximum pull-out force of the SMA fibers is about 13% higher than that of the corresponding 

steel fibers, which can be attributed to the strong surface pull-out forces between the SMA fibers and the concrete. Also, results 

show that the amount of displacement required for separation of the SMA fibers is higher than the corresponding steel fibers, 

which is 0.59 mm and 0.78 mm for the SMA and steel fibers, respectively. Therefore, the use of SMA fibers increases the 

displacement of fibers by about 32%, which is considerable. 
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Table  4 ITZ model parameters for defining the interaction of fibers with UHPC matrix 

𝐺𝑐 𝛿𝑚a𝑥 𝑇𝑚a𝑥 Fiber type 

0.21 MPa.mm 3×10-3 mm 9.04 MPa SMA fiber 

0.18 MPa.mm 2.6×10-3 mm 7.15 MPa Steel fiber 
 

  
(a) SMA fibers (sample No. 01) (b) Steel fibers (sample No. 13) 

Fig. 7 Force-slip curve of the finite element model and results of the experimental pull-out test 

In Fig. 8, the distribution of plastic stresses for different values of pull-out strength for sample No. 03 is shown. As can be 

seen at the beginning of applying the pull-out force, the upper parts of the fibers are first affected by higher stresses, and by 

overcoming the chemical and frictional adhesion forces, the plastic stress distributions gradually increase along the fibers. By 

more increasing the applied force, the contact surface of the fibers is completely removed from the concrete and the fibers 

begin to be completely separated from concrete, in which case the mechanical adhesion created at the hooked-end bending 

location forms the force transfer local points between the fibers and the matrix. According to the stress distribution in the 

hooked-end SMA fibers demonstrated in Fig. 9, it is observed that the maximum stresses in the fibers are at the bending 

location of the fibers. By increasing the hooked angle, the maximum stresses increase due to increasing the mechanical 

adhesion of the fibers with concrete. The results show that the maximum stresses in the SMA fibers with angles of 20, 40, and 

90 degrees are 444 MPa, 610 MPa, and 906 MPa, respectively. Given that these stress values are higher than the stresses of 

SMA fibers direct phase conversion, it can be concluded that when removing the SMA fibers from concrete, the austenite to 

martensite phase conversion occurs in these fibers, resulting in different adhesive behavior depending on displacement.  
 

Pull-out force: 100N   200N   230N  260N  290N  330N   350N   370N

 

Fig. 8 SMA fiber pull-out steps with 40-degree hook angle (No. 11) for different applied force values 

 

   
(a) 20 degrees (b) 40 degrees (c) 90 degrees 

Fig. 9 Distribution of generated stress in hook-shaped SMA fibers with different angles  
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Figs. 10 and 11 show the slip-force curves for different SMA and steel fiber samples, respectively. By examining the 

pull-out behavior of simple and hooked-end fibers, it is observed that in simple fibers (straight fiber), slipping out occurs 

depending on the amount of frictional resistance of the fibers, resulting in slip failure. In hooked-end fibers, in addition to 

chemical adhesion and frictional stability, mechanical fastening between concrete and the hooked-end part of the fibers 

increases bond strength. Among the adhesive mechanisms, the shear bond of hooked-end fibers to concrete is particularly 

important because it creates the greatest bond stress. In this bond mechanism, the force is transmitted by engaging the curved 

portion of the fibers and concrete plastic hinges. 

 
(a) Force-slip curve for samples No. 01 to No. 04 

 

  
(b) Force-slip curve for samples No. 05 to No. 08 (c) Force-slip curve for samples No. 09 to No. 12 

Fig. 10 Force-slip curve for different samples of the SMA fibers (based on Table 3) 

 
 

 
(a) Force-slip curve for samples No. 13 to No. 16 

 

  
(b) Force-slip curve for samples No. 17 to No. 20 (c) Force-slip curve for samples No. 21 to No. 24 

Fig. 11 Force-slip curve for different steel fiber specimens (based on Table 3) 
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The notable result of the slip-force curves is that there are different mechanisms of fiber pull-out depending on the 

diameter and hook angle of the fiber. As an example, for No. 04, it is observed that three different mechanisms occur during the 

pull-out of these fibers: 1) Elastic shear bond between the fibers and the matrix at the contact surface. 2) Frictional shear bond 

that allows relative slip at the interface of the fibers and the matrix, and occurs when the primary adhesion is eliminated. 3) 

Mechanical bond that creates the force transfer local points between the fibers and the matrix. These three different bond 

mechanisms are illustrated in Fig. 12(a). Also, the study of SMA fiber pull-out behavior shows that in some cases there are two 

different mechanisms for interfacial separation of these fibers. The first mechanism is complete separation before the 

martensitic phase conversion, and the other mechanism is the separation after the martensitic phase conversion. According to 

the slip-force curve shown for sample No. 12 (Fig. 12(b)), it is observed that the surface separation occurs up to point A, but the 

surface bond stresses increase again due to the conversion of the martensite phase of the SMA fibers to austenite. After this 

point, the shear bond between the fibers and concrete decreases as the force is increased, and the fibers begin to separate from 

concrete. The examination of the results of different samples shows that in some cases the shear bond is large enough, and 

phase conversions of the SMA fibers occur. The phase conversion of the SMA fibers from martensite to austenite increases the 

maximum separation force, and for sample No. 12, the magnitudes of this force for the martensite and austenite phases are 471 

N and 436 N, respectively. 

1

2 3

Debonding11

22

33

Friction Bond and 

Mechanical Anchorage

Friction Bond

  
(a) SMA with df = 0.5 mm and angle 90° (No. 04) (b) SMA with df = 2 mm and angle 90° (No. 12) 

Fig. 12 Different mechanisms created in the pull-out behavior of the fibers 

In order to study more precisely the effect of different fiber parameters on the bond properties of the fibers with concrete, 

the effect of fiber hook angle, fiber diameter, and its material on pull-out responses, including pull-out force, slip related to the 

maximum pull-out force, pull-out energy, and effective pull-out stress, are shown in Table 5 for each case. Results show that 

pull-out force and total pull-out work (the area under the force-slip curve up to displacement of 10 mm) increase with 

increasing hook angle for both the steel and the SMA fibers. As an example, it is observed that for the fibers with a diameter of 

0.5 mm, by increasing the hook angle from 0 to 40°, the pull-out force for the SMA and the steel fibers increases by about 33% 

and 30%, respectively, while further increasing the hook angle decreases the pull-out parameters of the hooked-end fibers. In 

addition, it is observed that the work required for the SMA fibers pull-out is always greater than the corresponding value for the 

steel fibers. Therefore, it can be concluded that the use of SMA fibers significantly improves the pull-out of fibers. In the 

simulations performed in this study, due to the sufficient embedded length of the fiber (at least 10 mm) and the complete hook 

movement during its pull-out and elongation, the maximum pull-out force occurs up to the angles about 40 degrees. However, 

the results of Soetens et al. [30] show that when the embedded length of the fiber is not sufficient to provide the bond in the 

matrix, and the hook end is not fully moved, the inclination angle has a minor impact on the pull-out behavior, and the 

maximum pull-out force remains almost unchanged according to the inclination angle. 

In this study, finite element analysis has been used, so in order to further comprehensively investigate the results, more 

hook angles have been investigated and the important parameters of the pull-out force-displacement curve are summarized in 

Fig. 13. Fig. 13 summarizes several important pull-out parameters of SMA and steel fibers in UHPC according to the fiber 
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diameter and hook angle. As shown in Fig. 13, the highest maximum pull-out force and pull-out work are found for hooked 

fibers at the angles about 40°, followed by the SMA and steel fibers. The maximum fiber bond stress of the hooked SMA fibers 

with df = 0.5 mm, 1.5 mm, and 2 mm is found to be 4.98 MPa, 2.53 MPa, and 2.86 MPa, respectively, and it slightly decreases 

as the hook angle increases owing to the formation of matrix spalling. In addition, Fig. 13 shows that the fibers undergo a 

complete pullout process under 0 and 40 degrees, while sudden drops occur in the cases of 40 degrees because of fiber rupture 

or matrix spalling. As suggested by Robins et al. [31], fiber rupture and matrix spalling are the consequence of an accelerated 

intercrystal slippage due to additional bending stresses in the non-straight fiber. To be more specifically, fiber yield is the result 

of crystal slip caused by atomic-level dislocation movements. This slippage can be significantly accelerated when shear 

stresses are imposed on the fiber. For hooked fibers, the additional shear stresses on the fiber bending point can aid the slippage 

process and lower the strength of the metal. Consequently, the hooked fiber reaches the yield condition at a lower value of the 

applied load, thus a lower fracture load is achieved [31]. Furthermore, as it is seen from Fig. 13, for the SMA fibers, as the fiber 

diameter increases, the pull-out force increases, while the slip displacement or critical separation decreases.  

Table 5 Effect of fiber hook angle, fiber diameter and its material on the pull-out force,  

slip of the maximum force point, pull-out energy, and effective pull-out stress 

Sample 

ID 

Fiber 

type 

Fiber diameter 
(mm) 

Hook angle 

(degree) 

Pull-out 

force (N) 

Critical 

separation (mm) 

Pullout work 

(N.mm) 

Bond stress 

(MPa) 

No. 01 SMA 

0.5 

0 
132.4 0.59 708 3.12 

No. 13 Steel 116.7 0.78 376 2.88 

No. 02 SMA 
20 

148.2 0.84 792 3.78 

No. 14 Steel 141.6 0.97 675 3.61 

No. 03 SMA 
40 

195.6 1.12 1126 4.98 

No. 15 Steel 180.2 1.34 1043 4.59 

No. 04 SMA 
90 

174.7 0.92 952 4.45 

No. 16 Steel 154.8 1.15 743 3.94 

No. 05 SMA 

1.5 

0 
169.3 0.40 893 1.44 

No. 17 Steel 156.8 0.56 467 1.33 

No. 06 SMA 
20 

189.1 0.42 1043 1.61 

No. 18 Steel 182.3 0.81 728 1.55 

No. 07 SMA 
40 

297.4 0.73 1608 2.53 

No. 19 Steel 233.7 0.98 1405 1.98 

No. 08 SMA 
90 

229.4 0.44 1380 1.95 

No. 20 Steel 200.8 0.87 1076 1.71 

No. 09 SMA 

2 

0 
239.3 0.29 1209 1.52 

No. 21 Steel 221.5 0.08 978 1.41 

No. 10 SMA 
20 

298.2 0.21 2050 1.90 

No. 22 Steel 266.7 0.18 1624 1.70 

No. 11 SMA 
40 

449.7 0.08 2952 2.86 

No. 23 Steel 395.1 0.04 2762 2.52 

No. 12 SMA 
90 

367.2 0.12 2143 2.34 

No. 24 Steel 335.4 0.10 2005 2.14 
 

  
(a) Maximum pull-out force (b) Critical separation vs. hook angle 

Fig. 13 Effect of hook angle and fiber diameter on the pull-out characteristics of SMA and steel fibers 
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(c) Total work during pullout as functions of hook angle (d) Bond stress vs. hook angle 

Fig. 13 Effect of hook angle and fiber diameter on the pull-out characteristics of SMA and steel fibers (continued)  

5. Conclusions 

This study investigated the effects of fiber-end shape on the pull-out resistance of the steel and super-elastic SMA fibers. 

For recognizing and realizing the pull-out behavior of the SMA fibers, a finite element model of pull-out has been performed 

by numerical model and employing single-fiber specimens. The interaction between the fibers and concrete has been simulated 

using the concept of bilinear cohesive zone model whose parameters have been obtained by using the results of experimental 

tests performed on a single fiber sample. Direct tensile and uniaxial compression tests have also been used to determine the 

tensile strength of UHPC. After the validation of the finite element model results with experimental data, the effect of fiber 

material, fiber diameter, and hook angle on the pull-out resistance are studied. The results show that: 

(1) The SMA fibers have better pull-out resistance than the corresponding steel fibers.  

(2) The maximum pull-out force is created at hook angles of about 40 degrees, which is due to the mechanisms such as the 

reduction of the pull-out force along with the fiber, the fiber bending at the curvature points, and the increase in frictional 

stress resulted from the component of the force perpendicular to the fiber at its curvature point.  

(3) For the SMA fibers, as the fiber diameter increases, the pull-out force increases while the slip displacement decreases.  

(4) Regarding the pull-out energy absorption of the hook-shaped fibers, the inclination fibers tend to absorb more energy than 

the straight fibers, and the maximum pull-out energy occurs at the inclination angles of about 40 degrees. 
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