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Abstract  

In this study, the robot arm control, computer vision, and deep learning technologies are combined to realize an 

automatic control program. There are three functional modules in this program, i.e., the hand gesture recognition 

module, the robot arm control module, and the communication module. The hand gesture recognition module 

records the user’s hand gesture images to recognize the gestures’ features using the YOLOv4 algorithm. The 

recognition results are transmitted to the robot arm control module by the communication module. Finally, the 

received hand gesture commands are analyzed and executed by the robot arm control module. With the proposed 

program, engineers can interact with the robot arm through hand gestures, teach the robot arm to record the trajectory 

by simple hand movements, and call different scripts to satisfy robot motion requirements in the actual production 

environment. 

 

Keywords: deep learning, hand gesture recognition, human robot interaction, YOLO 

 

1. Introduction  

Human-robot interaction (HRI) is mostly achieved in current manufacturing environments through teach pendants, 

buttons, or graphical user interfaces, and can only be controlled by a professionally trained operator. The process is tedious and 

time-consuming, and requires the operator to have relevant technical knowledge. For robot arm applications, however, the 

simplicity of control will affect the benefit significantly. In the future trend, HRI is developing toward the “person-centered” 

composite control mode, with the expectation that humans and robots can interact more intuitively [1]. Although it is 

widespread to use voice commands to control robots in the home environment, there are still limitations in using voice 

commands to control robot arms, computer numerical control (CNC), and other machines in the manufacturing environment. 

For example, in noisy industrial environments, it is difficult for even machine operators to communicate orally. It is less 

feasible for such unclear voice messages to be recognized by robots. Even when environmental noise is excluded, voice 

commands are suitable only for controlling call-and-come services and not for continuous remote control. Therefore, 

researchers have pointed out that it would be better to use hand gestures to give instructions in the continuous control of robots 

[2]. Many relevant studies are also being carried out. 

Most of the hand gesture recognition methods adopted in research can be classified into two categories. The first is to 

collect the parameters of hand movement by wearable devices. For example, Rahim et al. [3] and Mardiyanto et al. [4] used 

accelerometers and gyroscopes for gesture recognition to realize human-machine interaction (HMI). The second method is 

based on computer vision. For example, Sarker et al. [5] realized the information collection of hand movements with Microsoft 
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Kinect. Due to the progress of computer vision technology, the identification speed and accuracy of object detection 

technology have been greatly improved, making the hand gesture recognition method based on computer vision more and more 

popular. Therefore, this research also adopts computer vision to realize hand gesture recognition. To reduce the difficulty of 

introducing the program into the actual production environment, the cost and benefit in the development cycles are also 

considered. The researchers decide to realize the goal of gesture recognition by a general webcam instead of using an RGBD 

camera such as the Kinect.  

In traditional computer vision object detection, it is necessary to judge the object features by human beings and design 

appropriate image data pre-processing and feature extraction methods to realize the identification. The feature extraction 

processes designed by humans are heavily relied on these methods. Each process can only be applied to specific environments 

and does not have good generalization ability and robustness. Moreover, the detection speed and accuracy are not sufficient to 

be applied in robots in most cases. With the rapid development of deep learning network technology, traditional image 

recognition methods have been gradually replaced in recent years. The researchers only need to input a large number of 

pre-processed sample images into convolutional neural network (CNN), then the feature extraction can be completed by CNN 

itself. The manual design process is no longer required in selecting features, and the generalization ability of the extracted 

features is also better.  

The technique “you only look once (YOLO)” [6-7] is used to perform real-time object detection with artificial intelligence 

technology. It can be applied to specific object detection [8-9], traffic flow calculation [10-11], self-driving applications 

[12-13], product defect detection [14-15], medical image analysis [16], etc. Creating a one-stage detection and classification 

process is the main developmental purpose of YOLO, which is different from most traditional detection networks. The whole 

image is taken as the input of the deep learning neural network. The regression on the positions and categories of bounding 

boxes is directly implemented at the output layer. Because only one CNN architecture is needed to determine the object 

position and category in the graph, the computing speed of object recognition can be improved. Since the first version released 

in 2015, YOLO has been widely used by developers and regarded as an important milestone for computer vision technology. 

The improved version of YOLOv4, released this year, is more powerful and tested by the Microsoft common objects in context 

(MS COCO) dataset. The result shows that the object recognition speed and accuracy are increased obviously, and the 

advantages over other object detection algorithms are considerable. As shown in Fig. 1 [7], YOLOv4 is twice as fast as 

EfficientDet and has a similar performance. Compared with the third generation, YOLOv4 has improved average precision 

(AP) and frame per second (FPS) by 10% and 12%, respectively.  

 

Fig. 1 The comparison of YOLOv4 and other recent object detection technology [7] 
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The main purpose of this study is to propose an automatic control program of robot arms based on hand gesture 

recognition, which makes the interaction between human and robot arms more effective. The program has the characteristics of 

an intuitive and convenient operation process, which can reduce the complexity of the control process of the robot arm and 

reduce the operator’s technical requirements. In this research, the popular one-stage object detection method YOLO is used to 

realize the gesture recognition module to achieve the recognition effect that cannot be achieved by traditional object detection 

technology.  

2. Literature Review 

With the development of gesture recognition related technology, the related applications and research are increasing 

rapidly. Yasen et al. [17] collected and discussed the research related to gesture recognition published in IEEE Explore during 

2016 and 2018, and 11 of them were related to robots. In the research, gesture recognition is mostly achieved by wearing 

devices or depth cameras. For example, in the study of Zhu et al. [18], the wristband equipped with pressure sensors was used 

to obtain the pressure distribution of the wrist muscles of the experimenter, and the gesture was analyzed accordingly. The 

gestures identified in this experiment can be divided into three kinds: wrist gestures, single finger flexions, and Chinese 

number gestures. Wrist gestures involve the whole hand turning the wrist, and the Chinese number gestures seem to be more 

complex. In the above experimental results, the wrist gestures and single finger flexions can achieve more than 95% accuracy, 

as shown in Table 1. However, for the more practical Chinese number gestures, only 90% accuracy, 88% recall, and 88% 

precision were obtained.  

Table 1 Classification accuracy for each kind of gestures [18] 

Subject # 
Wrist gestures  

(%) 

Single finger 

flexions (%) 

Chinese number  

(%) 

1 100 99 95 

2 100 99 90 

3 100 100 89 

4 100 92 95 

5 96 89 81 

6 94 97 90 

7 94 100 94 

8 100 99 93 

9 97 88 79 

10 98 91 91 

Average 98 95 90 
 

Similar gesture recognition methods are also investigated in the studies of Pinzón-Arenas et al. [19] and Chung et al. [20]. 

In these two studies, the forearm electromyographic (EMG) data of users was collected by the Myo Armband sensor made by 

Thalmic Labs and used as the input of the deep learning model to realize gesture recognition. The accuracy of the supported 

gestures was about 85% and 99%, respectively. Although the above research achieved good accuracy, the gesture type 

supported by EMG is relatively simple, which can be seen in Fig. 2. Therefore, it is not possible to identify more complex and 

slightly varied gestures. Besides, the hand gesture recognition devices used in these studies were complex to wear, 

time-consuming to wear, and uncomfortable for engineers to use. Some of the wearable devices even require repeating the 

complex calibration process when changing operators. Therefore, using wearable devices for gesture recognition are 

considered unsuitable in the application environment of this research. 

In the study of gesture recognition based on image vision, Luan et al. [21] used the dynamic gesture recognition system to 

realize the application of the robot arm picking task. They proposed a hand gesture recognition system based on an improved 

long-term recurrent convolutional network (LRCN) model combined with the MobileNet (V2) and long short-term memory 

(LSTM). Eight gestures were identified in the study, including waving the arm in different directions and gripping and relaxing 
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the palm. The user’s image is captured with a 100fps high-speed camera. The dynamic gesture model in this research achieved 

a good recognition effect (about 90.62% accuracy). However, the application value of dynamic gestures in a real industrial 

environment is not clear. As a result, this research suggests that static gesture recognition, which can be realized by a low-cost 

webcam, is more suitable for HMI in this kind of application. 

   
(a) Up (b) Down (c) Stop 

   
(d) Left (e) Right (f) None 

Fig. 2 Gestures to be recognized [19] 

3. Methodology 

The proposed robot arm control program consists of three functional modules: a hand gesture recognition module which is 

responsible for recognizing and receiving control commands from the images of the machining environment, a robot arm 

control module that analyzes and executes the received hand gesture commands, and a communication module which is 

responsible for information transmission between the other two modules. The module diagram of the proposed program is 

shown in Fig. 3.  
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Fig. 3 Module diagram of the proposed program  
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3.1.   The hand gesture recognition module 

In this study, the YOLOv4 model is trained with a customized image data set, in which Tensorflow and Keras framework 

are used for model training. The data set is sorted out regarding the VOC-2007 standard format proposed by Pascal 

organization, while the image labeling tool LabelImg is used for image labeling. Considering that a depth camera is not often 

used in the robot control interface in the real manufacturing environment, the hand gesture data collection in this study is only 

carried out through a 2D webcam. 

As shown in Fig. 4, the proposed hand gesture recognition module supports a total of eight control gestures. Through this 

module, the robot arm operator can interact with the program by making various gesture combinations that conform to the 

program specifications. The program will analyze the content of hand gesture instructions, accurately control the gripper of the 

robot arm to move to the ideal position, adjust the rotation speed of each axis of the robot arm, trigger the conveyor of the 

production line, etc. Besides, to make the program practical and effective in the actual processing environment, the program 

also has the function of path teaching and recording so that users can store the movement process into a motion-states list. After 

storing all the states required by the machining process, the program can execute a complete and repeated processing program 

only by calling the motion-states list and setting the number of repeated execution. 

    
(a) Gesture-0 (b) Gesture-1 (c) Gesture-2 (d) Gesture-3 

    
(e) Gesture-4 (f) Gesture-5 (g) Gesture-6 (h) Gesture-OK 

Fig. 4 Hand gestures used to interact with the control program 

During gesture image collection, the researcher stands in a controlled laboratory environment and record videos about one 

minute and 40 seconds for each of the eight gestures designed for the program. During the process, the researcher changes the 

position, orientation, and distance from the camera by moving or rotating the wrist from time to time to obtain a more 

generalized data set. After recording all the gesture videos, the videos are converted into images at the frequency of 30 frames 

per second to generate an image data set of about 3,000 images for each category and a total of about 24,000 images, which are 

randomly assigned to test sets, validation sets, and training sets at a ratio of two to two to six. The hardware specifications used 

in the training model in this research are shown in Table 2. A total of 50 epochs are trained for about 23 hours. 

The deep learning model after training is applied to realize the gesture recognition function of this module. This module’s 

gesture recognition program obtains the user’s real-time video stream through a webcam set up in the manufacturing 

environment, divides the video into frames, and inputs the frames to the object detection model. Besides, to make limited 

gesture commands more diversified, the program determines whether users are making gestures with both two hands, or their 

left and right hands, through the amount and coordinate positions of their bounding box. 
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Table 2 Hardware specifications 

Processor i7-9700 

Generation 9th Generation Intel Core 

Number of cores 8 

Clock rate 3.00 GHz 

Random access memory 

(RAM) 
16 GB DDR4 

Graphic processing unit 

(GPU) 
NVIDIA GeForce GTX 1660 Ti 

GPU memory 6GB GDDR6 

Multiprocessor count 24 

Compute unified device 

architecture (CUDA) cores 
1536 

GPU boost clock 1770 MHz 
 

3.2.   The robot arm control module 

The robot arm control module in this program is responsible for analyzing the actual instruction content of the user after 

receiving hand gestures and sending the motion control instruction based on joint coordinates to the robot arm. Gesture 

instructions will be analyzed following the design of Tables 3, 4, and 5. Users select the control mode with alternating left and 

right hand gestures first, and then trigger the desired function according to the rules of the selected mode. 

There are two control modes in the robot arm control module: direct control mode and teach control mode. In the direct 

control mode, the user can call various control functions in the robot arm’s motion control library through a hand gesture 

command to direct remote control of the robot arm and the conveyor. After the arm gripper moves to the target position, the 

user can record the program’s states into the state list. In the teach control mode, the user can call each state of the program 

recorded in the list through simple gesture instructions so that the robot arm and the conveyor can quickly execute the 

processing tasks taught in advance. 

With the gesture instructions designed for this module, users can easily switch control modes and control the robot arm 

and conveyor by referring to the above list and making the correct hand gestures to the webcam set up in the manufacturing 

environment. The list of hand gesture instructions designed in this control module is shown in Tables 3, 4, and 5.  

3.3.   The communication module 

Because the hand gesture recognition module of this program is implemented with Tensorflow and Keras framework, and 

the robot arm control module is designed with .NET framework. Therefore, to make the program operate properly, a 

communication module that is responsible for transmitting the commands from the hand gesture recognition module to the 

robot arm control module is needed to be designed. In this study, the Socket interface is used in the communication module as 

the data transmission pipeline. Firstly, the Socket server is established at Keras terminal, and the port number is bounded. After 

the program starts, the port number is continuously monitored to wait for receiving the connection demand. Then, the Socket 

Client is established in the .Net framework. When the user starts the program’s gesture control function, the client will transmit 

the connection demand to the port number monitored by the server. Then, the information exchange between the two ends can 

be established. After realizing the communication between the two modules, the mode of exchanging data and the 

corresponding actions after receiving different commands can be defined according to the program’s requirements. 

Table 3 List of control instructions for mode selection state 

Hand gesture command Function 

Make gesture-1 by the left hand, then make gesture-OK by the right hand. Select and start direct control mode 

Make gesture-2 by the left hand, then make gesture-OK by the right hand. Select and start teach control mode 

Make gesture-0 by the left hand, then make gesture-OK by the right hand. Close the program 
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Table 4 List of control instructions for direct control mode 

Hand gesture command Function 

Make gesture-1/2 by the left hand, and make gesture-1/2/3/4/5/6 by the right hand. Jog continuously 

Make gesture-1/2/3/4/5 by the left hand. Adjust speed 

Make gesture-0 by the right hand. Pause 

Make gesture-OK by the right hand. Original return 

Make gesture-0 by the left hand when the robot arm pauses. Gripper clamp 

Make gesture-5 by the left hand when the robot arm pauses. Gripper release 

Make gesture-1 and OK by the left hand when the robot arm pauses. Conveyor turns forward 

Make gesture-2 and OK by the left hand when the robot arm pauses. Conveyor turns backward 

Make gesture-3 by the left hand when the conveyor is turning. Conveyor stops 

Make gesture-6 and OK by the left hand when the robot arm pauses. Record the status 

Make gesture-6 by the right hand, then make gesture-OK by the left hand when the robot arm pauses. Output the macro 

Make gesture-0 by two hands. Close mode 

 

Table 5 List of control instructions for teach control mode 

Hand gesture command Function 

Make gesture-0 by the right hand. Original return 

Make gesture-1/2/3/4/5/6 by the right hand. Call state 

Make gesture-OK, then make gesture-1/2/3/4/5/6 by the right hand. Call macro 

Make gesture-1/2/3/4/5 by the left hand. Adjust speed 

Make gesture-0 by two hands. Close mode 
 

4. Experiments and Discussion 

In this study, a robot arm control program with direct control mode and teach control mode is finally realized. Users can 

switch between both control modes with simple two-hand gestures. The control functions include continuous jog, motion 

suspension, original return, motion-state record, gripper control, conveyor control, and rotation speed regulation. The function 

list of each control function is shown in Tables 6 and 7. Users can call all control modes through hand gesture commands and 

interact with the program using only one-hand or two-hand gestures. 

Table 6 Functions of direct control mode 

Function Description 

Jog continuously Control one axis of the robot arm to jog continuously in a positive or negative direction. 

Adjust speed Adjust the rotation speed of all axes of the robot arm. 

Pause Pause the current motion of robot arm. 

Call-and-come function Description 

Original return Control all axes of the robot arm to return to the original point. 

Gripper clamp Control the gripper of robot arm to clamp with I/O signal. 

Gripper release Control the gripper of robot arm to release with I/O signal. 

Conveyor turns forward Control the conveyor to turn forward with I/O signal. 

Conveyor turns backward Control the conveyor to turn backward with I/O signal. 

Conveyor stops Control the conveyor to stop turning with I/O signal. 

Record the status 
Record the required robot arm mechanical coordinates, gripper state, and conveyor 

state to the motion state list, which can be called in teach control mode. 

Output the macro 
Output the states recorded in the state list into a motion command macro file, which can 

be called in teach control mode. 

Close mode Close the direct control mode and return to the mode selection state. 

 

Table 7 Functions of teach control mode 

Function Description 

Adjust speed Adjust the rotation speed of all axes of the robot arm. 

Call-and-come function Description 

Call state Call the corresponding program state recorded in the state list. 

Call macro Call the corresponding motion command macro file. 

Original return Control all axes of the robot arm to return to the original point. 

Close mode Close the teach control mode and return to the mode selection state. 
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Finally, an experiment of grasping and transferring aluminum objects is designed to verify the effectiveness of the control 

functions of the program based on gesture recognition. The experiment is divided into two steps. The first step aims to teach the 

program how to process grasping aluminum objects. The experimenter first turns on the direct control mode of the program and 

specifies the rotation axis of the robot arm with the right hand and the rotation direction with the left hand so that the robot arm 

can move in the expected direction. During the process, the experimenter can also adjust the speed of the robot arm or pause the 

current action to ensure that the robot arm can reach the ideal position. After reaching each target position in the process, the 

experimenter will issue the program state recording command. The current state of each axis of the robot arm, gripper, and 

conveyor will be added to the motion-state list then. 

The second step of the experiment is to use the recorded commands to carry out the complete process of clamping 

aluminum objects. The experimenter first activates the teach control mode and then starts to call the program states recorded in 

the list of the state with a simple single-hand command. The robot arm and the conveyor will then act in a predetermined way. 

Finally, the gripping of aluminum objects is complete and the objects are sent to the experimenter through the conveyor. Fig. 5 

shows the interface when the instruction of original return is conducted in the teach control mode, and Fig. 6 shows the gesture 

recognition results at this time. 

  

Fig. 5 The program interface when the instruction of original 

return is conducted in the teach control mode 

Fig. 6 The output of gesture recognition when the command  

of original return is given in the teach control mode 
 

To evaluate the performance of the gesture recognition model, the mean average precision (MAP) of the model is 

calculated using the test set in the data set after the training. In the calculation process, the Intersection over Union (IOU) is set 

as 0.5. An example of the calculation results is shown in Fig. 7. The input of the model is one of the pictures in the gesture-5 

test set. The green box is the position of the gesture predicted by the model, and the light blue box is the ground truth. The 

statistical graph of the calculated results of MAP is shown in Fig. 8. 

  

Fig. 7 Example of MAP calculation results Fig. 8 Statistical graph of MAP calculation results 
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There is still room for improvement in the generalization ability of the trained YOLOv4 model. The above MAP is 

calculated using only the test set of the data set but not the gesture data of different lighting and background. Besides, because 

of the design of the program control function, it can only receive two-hand instructions from a single operator at present, and 

there is no design for the control function of multiple people and multiple gestures at the same time. Furthermore, only the 

pre-set specific commands can be recognized by the recognition and robot arm control modules. Users will be limited by this 

shortcoming and will not be able to interact freely with the program. Nevertheless, the above MAP calculation results prove 

that the model of the proposed robot arm control program can be introduced into the actual manufacturing environment and 

effectively perform hand gesture recognition. Future research will improve the above problems and optimize the overall 

program functions and user interface to get a perfect operation experience.  

5. Conclusions 

This research realized a program through visual perception function, which is different from the traditional robot arm 

control program, enabling the program users to control the robot arm more intuitively in the manufacturing environment. The 

gesture recognition function proposed in this study provides a natural human-machine interaction mode. It avoids using 

wearable devices such as sensor bracelets or gloves to reduce the cost and inconvenience. Through the eight gestures, users can 

intuitively teach the robot arm to record the trajectory, and can store the teaching results for future use. 

Although the realized gesture recognition function can accurately identify the eight gestures, due to the characteristics of 

the recognition mode used, it cannot identify the gestures that are not among the eight gestures. If the results of this study are 

applied to different application environments, it is possible to expand the types of recognizable gestures according to new user 

requirements. 

Using gestures to control a robot arm has potential applications in many fields. For example, it can be used in the medical 

field to prevent doctors from becoming infected while dealing with viruses, in factories to move heavy equipment, in the 

military field to deal with dangerous goods such as explosives, in the houses to automatically assist in cleaning and other 

household work, in long-term care to assist the elderly and the physically disabled, and so on. In the future, researchers can 

further develop the applications based on this study and extend the value of this study. 
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