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Abstract 

Crop disease detection methods vary from traditional machine learning, which uses Hand-Crafted Features 

(HCF) to the current deep learning techniques that utilize deep features. In this study, a hybrid framework is designed 

for crop disease detection using feature fusion. Convolutional Neural Network (CNN) is used for high level features 

that are fused with HCF. Cepstral coefficients of RGB images are presented as one of the features along with the 

other popular HCF. The proposed hybrid model is tested on the whole leaf images and also on the image patches 

which have individual lesions. The experimental results give an enhanced performance with a classification accuracy 

of 99.93% for the whole leaf images and 99.74% for the images with individual lesions. The proposed model also 

shows a significant improvement in comparison to the state-of-art techniques. The improved results show the 

prominence of feature fusion and establish cepstral coefficients as a pertinent feature for crop disease detection. 
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1. Introduction  

Agriculture is the main source of living for a major portion of India’s population and contribute significantly to the 

country’s GDP. However, the balance between the demand and supply of food due to the ever increasing population is a 

worrying issue. One of the reasons for this imbalance is crop loss due to pests and diseases that cause significant yield loss. 

Secondly, the impacts of climate changes make the conditions more alarming for the rapid spread of diseases. These diseases, 

if detected in the early stages, can help maintain the yield and control the economic loss. The traditional way of detecting 

diseases by a plant pathologist is time consuming and costly. The other traditional method is using pesticides. Normally, 

however, pesticides are used randomly on the entire canopy, and if they are used in excess, soil pollution can be caused and the 

soil quality can be degraded. Since the past few decades, crop disease detection using image processing techniques has been 

proved to be fast and accurate to overcome the constraints of the conventional methods. 

All the earlier work done in this field focused on the traditional machine learning algorithms using Hand-Crafted Features 

(HCF) that required domain knowledge to reduce complexities in the input data. However, a much bounded aspect of the 

problem is covered by these features and their capability degrades on substantial datasets. Recently, the advent of deep learning 

technology has resulted in remarkable improvement in a broad range of computer vision problems. In the agriculture domain, 

the significance of deep learning has been proved [1]. Deep learning techniques hierarchically learn sophisticated features from 

the input data by the convolutional kernel as the network goes deeper. If these deep features having high representative abilities 

are fused with HCF, more extensive information related to the data can be captured. Recently, researchers in many domains 
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[2-3] have started exploring the potential of fusion at different levels to increase classification accuracy. Just as in numerous 

other domains, e.g., in the plant pathology sector, researchers have attempted to improve the classification performance by 

various fusion techniques. 

Cruz et al. [4] presented an algorithm for detection of olive quick decline disorder by data fusion with deep learning. The 

authors fused relevant HCF at various levels of abstraction to enhance the detection performance. The study fused the order 

statistics, texture, shape features, and geometric relationships at the fully connected layers of a modified LeNet and achieved an 

improved accuracy of 98.60%. Çuğu et al. [5] fused deep features and HCF for leaf based plant classification. They combined 

56 features (shape, contour, color, and texture) obtained by using several image processing methods and deep features (4096) 

obtained by using fine tuning of Caffe framework to train a Linear Support Vector Machine (LSVM) for classification of 57 

tree species. The work fused HCF with the features obtained from the first fully connected (fc6) and the second (fc7) fully 

connected layer, and the comparison of these results found that the fusion with the fc6 layer gave the highest accuracy of 90.5% 

on the Treelogy dataset and 99.68% on the Flavia dataset. 

Zhang et al. [6] proposed a model with multi-scale convolution (inception) and feature fusion (concat) layer for cucumber 

leaf disease detection. The inception layer extracted multi-scale features while the concat layer fused those features to get a 

comprehensive feature map that helped the model learn complete features of the input data giving an accuracy of 94.65%. 

Jiang et al. [7] used an inception module to extract multi-scale features of apple leaf diseases and the feature fusion was 

achieved by rainbow concatenation giving an improved detection performance of 78.80% maP. Genshang et al. [8] fused the 

traditional machine learning and deep learning methods for disease detection of tea leaves. They extracted color features and 

texture features and segmented the lesion using a support vector machine while they used the deep learning VGG16 model to 

recognize the disease resulting in an average classification accuracy of 90%. Hu et al. [9] used multi-feature fusion for rape 

plant disease recognition. By using color and texture features and utilizing the Dempster-Shafer rule of evidence, feature fusion 

was achieved that gave a recognition rate of 97.09%. Bansal and Kumar [10] proposed plant disease recognition using post 

processing fusion. The work combined the prediction output of multiple deep learning algorithms and assigned the maximum 

score as the final class output. Liu and Wang [11] fused features of different levels of the image pyramid of Yolo v3 model to 

get feature maps of different scales for tomato disease and pest detection. 

While all the work mentioned in the literature related to feature fusion techniques make use of the traditional spatial 

features like texture, color, shape, geometric properties, etc., recent research is being focused on analyzing how features 

extracted in other domains can be used with deep architectures. Cepstral analysis is the most widely used technique in speech 

processing applications. However, the use of 2D cepstrum analysis has been studied for feature extraction in 2D images as well.  

Cakır [12] used 2D cepstrum based technique for extracting features for face recognition. Gupta et al. [13] used Mel 

Frequency Cepstral Coefficients (MFCC) for hand gesture recognition. The work converted hand gesture images into 1D 

signal for extracting cepstral features and used support vector machine for classification. Hashad et al. [14] used cepstral 

features for fingerprint recognition, while Barpanda et al. [15] used wavelet cepstrum features for iris recognition. They 

extracted wavelet MFCC from the images. Their experiments gave superior results when compared to the state-of-art 

techniques. Awad et al. [16] used MFCC for resolution enhancement in images for pattern recognition applications. Their work 

converted the image into 1D signal which was used for extracting features. 2D cepstrum is an extension of 1D frequency 

cepstrum and is defined as the Discrete Cosine Transform (DCT) or Inverse Discrete Fourier Transform (IDFT) of logarithm of 

power spectrum of the image. 2D cepstrum is computationally effective and involves logarithmic operation that makes it 

amplitude invariant which also leads to illumination invariance. As it is based on frequency domain, it is shift and scale 

invariant in which the high frequency components give the fine details while the low frequency components represent the large 

scale information in the image.  
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Motivated by the work done in literature, in this study, a hybrid model for crop disease detection based upon the fusion of 

HCF and deep features is presented. The work done in literature for feature fusion focuses on the fusion of standard HCF with 

deep features. However, the proposed model suggests the use of cepstral coefficients as one of the HCF along with the other 

standard texture and shape features. The deep features are extracted from a Convolutional Neural Network (CNN) [17] while 

the use of cepstral coefficients is done as one of the HCF. Experimental analysis is done using two datasets, one with whole leaf 

images and the other with image patches of lone lesions and spots. The experimental results show remarkable advancements 

with the fusion framework and prove cepstral coefficients as a viable feature for image classification in crop disease 

recognition. The results also demonstrate the significance of the features extracted in the frequency domain in deep 

architectures. Comparative experiments with the state-of-art techniques also show substantial improvement with the fusion of 

both types of features. 

The major contributions of the study are: 1) A hybrid framework is proposed to fuse deep features with the extracted HCF 

to enhance the classification performance. 2) The potential of cepstral coefficients as one of the HCF for crop disease detection 

using RGB images is studied. The arrangement of the study is as follows: Material and methods are described in section 2. 

Results and discussion are presented in Section 3 followed by the conclusion in section 4. 

2. Materials and Methods 

This section gives details of the database used for the work and explains the HCF and deep features utilized for the 

classification of crop diseases. 

2.1.   Dataset 

The work uses the Plant Village database [18] and the Digipathos database (database for plant disease symptoms (PDDB)) 

[19-21] for training and testing the hybrid model. The Plant Village dataset (dataset 1) has healthy and diseased whole leaf 

images for 38 categories with 54,308 total images. The Digipathos dataset (dataset 2) has image patches of lone lesions and 

spots of 53 categories and 43,106 total images. The use of the whole leaf images and the image patches having individual 

lesions and spots is done to assess the efficiency of the proposed model in capturing global as well as local patterns. Dataset 1 

has an image size of 256×256 while images in dataset 2 are of varied sizes. All the images are preprocessed to make their sizes 

compatible according to the model architecture. Fig. 1 shows the sample images of the two datasets. 

  
(a) Plant Village dataset (dataset 1) (b) Digipathos dataset (dataset 2) 

Fig. 1 Sample images  

2.2.   Hand-crafted features (HCF) 

Two groups of conventional HCF of texture and shape are used in the work. Gray Level Co-occurrence Matrix (GLCM) 

and Gabor filters are applied for extraction of texture features while for extracting shape features Hu moments and region 

properties are used. Along with these standard features, the work proposes the use of cepstral coefficients as one of the 

effective HCF. 
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2.2.1.   Standard texture and shape features 

The study of texture in an image helps get knowledge about the spatial alignment of color or intensities while shape 

features are visual features that helps explain the object. Several techniques are used in literature for extracting texture features. 

In the present work, texture features are obtained using GLCM and Gabor filters. Using GLCM, four statistical features,namely 

contrast, correlation, energy, and homogeneity at four orientations 0°, 45°, 90°, and 135° are used to get 16 features. Gabor 

filters, another popular technique used for extracting texture, have prominent responses at edges and also at points of texture 

changes. Five scales and eight orientations are used in the work to get 202 features. Hu moments and region properties like area, 

convex hull, perimeter, etc. are used as shape features. The seven Hu moments are the shape descriptors that give an advantage 

of invariance to translation, scale, and rotation. 

2.2.2.   The proposed cepstrum analysis 

Cepstrum analysis is one of the standard and widely-used techniques used for speech processing applications. However, 

studies have also used cepstral analysis for 2D images and its implementations, e.g., face recognition [12], hand gesture 

recognition [13], fingerprint recognition [14], iris feature extraction [15], resolution enhancement [16], etc. 

Influenced by the achievements of cepstrum analysis in several areas, its exploitation as one of the possible HCF to access 

its effect on crop disease detection is proposed. 2D cepstrum is defined as the DCT or IDFT of logarithmic power spectrum of 

the image. It is a spectrum of log spectrum that is similar to the inverted frequency and hence is called the quefrency domain. 

2D cepstrum is a computationally efficient technique and involves using Fourier transform and logarithm operation. It gives 

the structural information where the high frequency components show the fine details while low frequency components give 

the large scale information. Most of the natural images are low pass by their nature and their energy drops at high frequency, 

because of which the higher values of low frequency components subdue the impact of high frequency components. In the 

proposed cepstrum analysis, the Discrete Fourier Transform (DFT) domain data is normalized to overcome the dominance of 

low frequency components, and is divided into blocks to compute the power of each block. The Fourier transform involved in 

the process makes the features invariant to translation while the logarithm operation makes them invariant to amplitude 

changes (scale invariance). The invariance to amplitude changes also leads to illumination invariance [12].  

Although all the work in literature on 2D cepstrum is done on gray images, in this work, the use of RGB images for 

extracting cepstral coefficients to assess the correlation between the color components for crop disease detection is proposed. 

Fig. 2 shows the procedure for cepstral coefficient extraction, and the algorithm below explains the steps for feature extraction 

using the proposed cepstral analysis process. All the images used for the work are of size 128×128. As far as is known, the 

proposed technique is the first effort in existing literature to exploit cepstrum analysis on RGB images. 

 
Fig. 2 Process of cepstral coefficient extraction  
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Algorithm 1: cepstral coefficients extraction 

Input: RGB image of size 128×128×3 

1. Determine the DFT of the image. 
2. Calculate the power spectrum of the Fourier transformed image. 
3. Compute the logarithmic power spectrum ��. 

4. 
Divide each R, G, and B plane of the logarithmic power spectrum (��) into 8×8 non-overlapping blocks to 
calculate the average block power (���), where row = col = 128. 

 a. ��� = { } or Ф 
 b. for i←0 to row step r do 
 c. for j←0 to col step c do 
 d. for z←0 to 2 do 

 e.  � �
��	
��
�:�����,�:�����,���

���
, r←8, c←8 

 f.                  ��� ∪ � 
 g. end for 
 h. end for 

 i. end for 
 j.  return 	��� 
5. Calculate the DCT of the average block power vector (���) of size 768×1 to get the cepstral coefficients. 

Output: cepstral coefficients of size 768×1 
 

2.3.   Deep features 

CNN is amongst the major deep learning methods. It typically includes convolutional layers, pooling layers, and fully 

connected layers. Using suitable filters, the convolutional layers capture the most significant features that represent the input 

data. The initial convolutional layers learn the lower level features while more prominent features related to the data are 

extracted at higher layers. Rectified Linear Unit (ReLu) activation, filter size of 3×3, and default stride rate of 1 are used for the 

convolutional layers in the presented work. The filter numbers are 32, 64, 128, and 192 for the four convolutional layers. The 

pooling layer reduces the size of the extracted features for dimensionality reduction. To reduce the required computational 

power, Max pooling is used with a filter dimension of 2×2. Depending upon the input data, the number of convolutional and 

pooling layers can be increased to capture details even more. However, this increases the cost of computations. Fig. 3 shows 

the technique of deep feature extraction. The achieved feature map is of the size 4800×1. 

 
Fig. 3 Deep feature extraction  

2.4.   The proposed fusion procedure 

The framework for the fusion of HCF and deep features for crop disease detection is shown in Fig. 4. Initially, the images 

are resized to the size of 128×128. As can be seen from Fig. 4, there are three main phases in the proposed work. In the first 

phase, the images are used for extracting the standard handcrafted texture and shape features and the suggested cepstral 

coefficients. In the second phase, deep features are extracted using the CNN architecture as shown in Fig. 3. In the third phase, 

both types of features are flattened and fused into a feature vector. Fully connected layers with a softmax classifier are used to 
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categorize the crop diseases. The use of batch normalization is done with each convolutional layer and fully connected layer. A 

drop-out with 0.5 probability is used after the fully connected layers to avoid overfitting. The loss function used is cross 

entropy and the adaptive moment estimation optimizer is used with a learning rate of 0.0001. The batch size is fixed at 32. 

 
Fig. 4 Framework for feature fusion  

3. Results and Discussion 

This section presents the classification results for HCF, deep learning features, and the fusion of both features. The results 

are also checked with the existing advanced CNN architectures. The classification performance is assessed using accuracy, 

positive predictive value (precision), sensitivity (recall), F-score, and the area under the Receiver Operating Characteristic 

(ROC) curve. As classes in both datasets are of different sizes, the Matthews Correlation Coefficient (MCC) is also utilized to 

evaluate the classifier performance. 

3.1.   Cepstarl coefficients compared with standard HCF 

In correspondence with cepstral coefficients, there are two variable parameters namely, block size and the overlap 

between adjoining blocks. The work is tested for varied block sizes and overlapping percentages, and it is found that a block 

size of 8×8 and non-overlapping blocks give the best results. Therefore, this combination is used to get the optimal results. The 

classification performance of cepstral coefficients is compared with the popular HCF using the traditional machine learning 

algorithm. The experimental outcomes for dataset 1 are shown in Table 1. As reflected in the table, the suggested cepstrum 

analysis gives the best efficiency compared to the standard HCF. 

Table 1 Comparison of cepstral coefficients with conventional HCF using traditional machine learning algorithm 

Ref. Crop Feature type Classifier Result 

[22] Citrus 
Color, texture, and 
geometric features 

SVM Average accuracy = 92.435% 

[23] Multiple crops 
Texture features using color 

co-occurence matrix 
SVM with the proposed GA 

method 
Accuracy = 95.71% 

[24] Tomato Textural patterns SVM Accuracy = 91.5% 

[25] Multiple crops LBP histogram 
One-class SVM with the nearest 

support vector 
Accuracy = 95% 

[26] Not specified Region growing algorithm 
Bacterial Foraging Optimization 

Based Radial Basis Function 
Neural Network (BRBFNN) 

Accuracy (validation evaluation 
partition coefficient) = 0.8621 

[27] Tomato Texture and color SVM Accuracy = 85.1% 

This 
study 

Multiple crops 
Texture features using 

GLCM (HCF1) 
ANN Accuracy = 96.1% 

This 
study 

Multiple crops 
Texture features using 
Gabor filters (HCF2) 

ANN Accuracy = 94.4% 

This 
study 

Multiple crops Hu moments (HCF3) ANN Accuracy = 95.1% 

This 
study 

Multiple crops 
Region (geometric) 
properties (HCF4) 

ANN Accuracy = 93.6% 

This 
study 

Multiple crops 
Cepstral coefficients 

(HCF5) 
ANN Accuracy = 96.8% 
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3.2.   Performance using deep features 

A CNN model [17] as shown in Fig. 3 is used to check the performance of the deep features. The performance comparison 

of the model shown in Fig. 3 with other CNN architectures mentioned in literature is shown in Table 2. As indicated in the table, 

the deep model gives the best performance for the whole leaf images as well as for the images of individual lesions and spots, 

indicating that it can successfully capture the global as well as local pattern in the image and use them for classification. A 

comparison of Table 2 with Table 1 indicates the superiority of deep features over HCF. 

Table 2 Comparison of CNN model with other deep architectures 

Ref. Crop Dataset Model/architecture Result 

[7] Apple Whole leaf GoogLeNet (inception module) mAP = 78.80% 

[21] 14 crops Individual lesion and spots GoogLeNet Accuracy > 75% 

[28] 13 crops Whole leaf CNN Accuracy = 96.46% 

[29] 
Pearl 
millet 

Millet crop CNN (VGG16) 
Accuracy = 95%, Precision = 90.50% 
Recall = 94.50%, F1-score = 91.75% 

[30] Banana Various parts of plants 
CNN (ResNet50, InceptionV2, 

and MobileNetV1) 
Accuracy = 70% - 99% 

[17] 14 crops Whole leaf CNN Accuracy = 99.85% 

[17] 16 crops Individual lesion and spots CNN Accuracy = 99.6% 
 

3.3.   Fusion of deep features and HCF 

The results obtained in sections 3.1 and 3.2 are the motivation for carrying out the fusion of HCF and deep features for 

crop disease detection. The fusion framework is tested for various HCF used in section 3.1. The classification results for 

dataset 1 and dataset 2 are demonstrated in Table 3 and Table 4 respectively. As reflected in the tables, the fusion of deep 

features with Gabor features, Hu moments, and regional properties do not show any improvement in the classification 

performance when compared to deep features alone. The fusion of deep features with texture features and cepstral coefficients 

show the improved results for dataset 1. The fusion of deep features (4800×1) with cepstral coefficients (768×1) gives the best 

efficiency for both datasets. Thus, all the further experimentations are done by using the fusion of deep features with cepstral 

coefficients with final feature vector size of 5568×1.  

Table 3 Classification performance of feature fusion for dataset 1 

Features Accuracy Positive predictive value Sensitivity F-score MCC 

Only deep features 0.9985 0.97 0.97 0.97 0.9872 

Fusion of deep features with HCF1 0.9987 0.97 0.97 0.97 0.9837 

Fusion of deep features with HCF2 0.992 0.95 0.95 0.95 0.9831 

Fusion of deep features with HCF3 0.9891 0.94 0.94 0.93 0.9823 

Fusion of deep features with HCF4 0.9883 0.9 0.89 0.89 0.978 

Fusion of deep features with HCF5 0.9993 0.99 0.99 0.99 0.9912 
* HCF1 = Texture features using GLCM, HCF2 = Texture features using Gabor filters, HCF3 = Hu moments,  

HCF4 = Region properties, HCF5 = Cepstral coefficients 
 

Table 4 Classification performance of feature fusion for dataset 2 

Features Accuracy Positive predictive value Sensitivity F-score MCC 

Only deep features 0.996 0.94 0.93 0.93 0.9829 

Fusion of deep features with HCF1 0.9923 0.93 0.93 0.93 0.9811 

Fusion of deep features with HCF2 0.9911 0.92 0.91 0.91 0.978 

Fusion of deep features with HCF3 0.986 0.89 0.89 0.88 0.964 

Fusion of deep features with HCF4 0.986 0.88 0.87 0.87 0.961 

Fusion of deep features with HCF5 0.9974 0.95 0.94 0.94 0.9852 
* HCF1 = Texture features using GLCM, HCF2 = Texture features using Gabor filters, HCF3 = Hu moments,  

HCF4 = Region properties, HCF5 = Cepstral coefficients 
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The convolutional layers in the deep learning models capture the spatial information of images while the cepstral analysis 

captures the discriminative frequency features. The combination of the information obtained from both domains gives a more 

comprehensive representation of the input data thus improving the evaluation results. It also illustrates how frequency domain 

features are useful with deep architectures. The performance of the model for the whole leaf images is higher than that obtained 

for the individual lesions, as the model extracts different levels of information in both cases. In the case of whole leaf images, 

the model captures global features that describe the comprehensive structure while in the case of individual lesions and spots 

the model tends to capture only local details. In both cases, the proposed work gives an improved performance.  

Figs. 5 and 6 present the ROC curves for both datasets with and without fusion (only deep features). The ROC curve for 

each output class is represented by a different color as indicated in Tables 5 and 6. Fig. 5 (a) and Fig. 6 (a) show the Area Under 

the Curve (AUC) for various output classes using only deep features. Fig. 5(b) and Fig. 6(b) show the AUC for various output 

classes using feature fusion. As can be seen from the figures, the AUC for various output classes using feature fusion is 

superior as compared to the AUC using only deep features indicating improved distinguishing capability of the proposed 

model with feature fusion. Tables 5 and 6 show the performance evaluation for dataset 1 and dataset 2 respectively. As the 

datasets are imbalanced, the weighted average is considered for performance metrics. Dataset 2 with images of individual 

lesions and spots attains a weighted precision average of 0.95 while dataset 1 with whole leaf images attains 0.99. Lower 

precision and accuracy for images with individual lesions and spots is evident due to two reasons: only local information is 

captured, and multiple plant species can have similar disease symptoms. 

A comparison of the proposed hybrid model with the state-of-art CNN methods mentioned in the literature is shown in Fig. 

7. As indicated in the figure, the proposed fusion model (the fusion of cepstral coefficients with deep features) gives the best 

result. 

  
(a) Only deep features (b) Fusion of deep features and cepstral coefficients 

Fig. 5 ROC for dataset 1 (output classes are indicated by various line colors) 
 

  
(a) Only deep features (b) Fusion of deep features and cepstral coefficients 

Fig. 6 ROC for dataset 2 (output classes are indicated by various line colors) 
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Table 5 Performance evaluation for dataset 1 (using Plant Village database for the whole leaf images) 

Group Group name Positive predictive value Sensitivity F-Score ROC_AUC 
ROC_AUC 
line color 

W0 Scab in apple 0.96 1 0.98 0.99  

W1 Cedar apple rust in apple 0.97 0.94 0.95 0.99  

W2 Healthy apple 1 0.96 0.98 0.99  

W3 Frogeye spot in apple 1 0.98 0.99 0.99  

W4 Healthy blueberry 0.99 1 0.99 0.99  

W5 Healthy cherry 1 1 1 1  

W6 Powdery mildew in cherry 1 1 1 0.99  

W7 Gray leaf spot in corn 0.92 0.76 0.84 0.99  

W8 Common rust in corn 1 0.99 1 0.99  

W9 Healthy corn 0.89 0.97 0.92 0.99  

W10 Northern leaf blight in corn 0.99 1 0.99 0.99  

W11 Black rot in grape 1 0.99 0.99 0.99  

W12 Esca black measles in grape 1 1 1 0.99  

W13 Healthy grape 1 1 1 0.99  

W14 Leaf blight in grape 1 1 1 1  

W15 Citrus greening in orange 1 1 1 1  

W16 Bacterial spot in peach 1 1 1 0.99  

W17 Healthy peach 1 1 1 1  

W18 Bacterial spot in pepper bell 1 0.97 0.98 0.99  

W19 Healthy pepper bell 1 1 1 0.99  

W20 Early blight in potato 0.98 1 0.99 0.99  

W21 Healthy potato 0.97 0.96 0.97 0.99  

W22 Late blight in potato 0.91 0.93 0.92 0.99  

W23 Healthy raspberry 0.95 0.99 0.97 0.99  

W24 Healthy soybean  0.99 1 1 0.99  

W25 Powdery mildew in squash 1 1 1 0.99  

W26 Healthy strawberry 0.99 0.99 0.99 0.99  

W27 Leaf scorch in strawberry 0.99 1 0.99 1  

W28 Bacterial spot in tomato 1 0.98 0.99 0.99  

W29 Early blight in tomato 0.93 0.94 0.94 0.99  

W30 Healthy tomato 0.97 0.94 0.96 0.99  

W31 Late blight in tomato 0.97 0.99 0.98 0.99  

W32 Leaf mold in tomato 0.98 0.98 0.98 0.99  

W33 Septoria leaf spot in tomato 0.98 0.97 0.97 0.99  

W34 Spider mites in tomato 0.95 0.96 0.96 0.99  

W35 Target spot in tomato 1 1 1 0.99  

W36 Mosaic virus in tomato 0.97 1 0.99 0.99  

W37 Yellow leaf curl virus in tomato 0.98 1 0.99 0.99  

- Average (weighted) 0.99 0.99 0.99 - - 

* The ROC_AUC column in the table is with reference to Fig. 5. 
 

Table 6 Performance evaluation for dataset 2 (using Digipathos database for spots and lesions) 

Group Group name Positive predictive value Recall F-Score ROC_AUC 
ROC_AUC 
line color 

S0 Alternaria leaf spot in cabbage 1 0.97 0.97 0.99  

S1 Algae in cashew 0.96 0.92 0.92 0.98  

S2 Angular leaf spot in cashew 0.95 0.94 0.94 0.99  

S3 Anthracnose in cashew 0.93 0.94 0.93 0.99  

S4 Black mould in cashew 0.94 0.88 0.88 0.99  

S5 Bacterial blight in cassava 0.91 0.91 0.89 0.99  

S6 Green mite in cassava 0.95 0.92 0.93 0.99  

S7 White leaf spot in cassava 0.93 0.91 0.9 0.99  
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Table 6 Performance evaluation for dataset 2 (using Digipathos database for spots and lesions) (continued) 

Group Group name Positive predictive value Recall F-Score ROC_AUC 
ROC_AUC 
line color 

S8 Algae in citrus 0.94 0.96 0.91 0.99  

S9 Canker in citrus 0.95 0.95 0.95 0.99  

S10 Greasy spot in citrus 0.96 1 0.96 0.99  

S11 Mosaic in citrus 0.95 0.92 0.92 0.98  

S12 Scab in citrus 0.93 0.92 0.92 0.95  

S13 Sooty mold in citrus 0.94 0.92 0.93 0.99  

S14 Variegated chlorosis in citrus 0.96 0.96 0.96 0.99  

S15 Cylindrocladium leaf spot  
in coconut 0.93 0.91 0.91 0.99 

 

S16 Lixa grande in coconut 0.94 0.92 0.91 0.99  

S17 Lixa pequena in coconut 0.91 0.89 0.89 0.98  

S18 Bacterial blight in coffee 0.93 0.9 0.89 0.99  

S19 Blister spot in coffee 1 0.9 0.92 0.99  

S20 Rust in coffee 0.91 0.92 0.91 0.99  

S21 Northern corn leaf blight  
in corn 0.9 0.88 0.88 0.97 

 

S22 Phaeosphaeria leaf spot in corn 0.95 0.93 0.92 0.99  

S23 Physoderma brown spot in corn 0.94 0.93 0.92 0.98  

S24 Southern corn rust in corn 0.89 0.89 0.88 0.98  

S25 Southern leaf blight in corn 0.89 0.89 0.89 0.98  

S26 Tropical rust in corn 0.92 0.9 0.9 0.99  

S27 Areolate mildew in cotton 0.94 0.92 0.93 0.99  

S28 Myrothesium leaf spot  
in cotton 0.92 0.94 0.92 0.99 

 

S29 Anthracnose in dry bean 0.91 0.91 0.9 0.99  

S30 Hedylepta indicata in dry bean  0.92 0.92 0.91 0.99  

S31 Phytotoxicity in dry bean 0.96 0.96 0.96 0.99  

S32 Powdery mildew in dry bean 0.91 0.91 0.91 0.99  

S33 Rust in dry bean 0.89 0.89 0.88 0.99  

S34 Target leaf spot in dry bean 0.93 0.93 0.91 0.99  

S35 Bacterial canker in grapevine 0.89 0.88 0.88 0.98  

S36 Downy mildew in grapevine 0.93 0.89 0.9 0.99  

S37 Powdery mildew in grapevine 0.91 0.92 0.91 0.95  

S38 Rust in grapevine 0.91 0.9 0.9 0.99  

S39 Bacterial spot in passion fruit 0.93 0.91 0.93 0.99  

S40 Blast in rice 0.92 0.91 0.91 0.99  

S41 Bacterial blight in soybean 0.95 0.93 0.92 0.98  

S42 Brown spot in soybean 0.92 0.92 0.92 0.97  

S43 Downy mildew in soybean 0.96 0.98 0.97 0.99  

S44 Mosaic virus in soybean 0.98 0.98 0.97 0.99  

S45 Phytotoxicity in soybean 0.96 0.97 0.94 0.99  

S46 Powdery mildew in soybean 0.95 1 0.94 0.99  

S47 Rust in soybean 0.91 0.9 0.9 0.99  

S48 Red stripe in sugarcane 0.93 0.91 0.91 0.99  

S49 Ring spot in sugarcane 0.91 0.88 0.89 0.99  

S50 Rust in sugarcane 0.91 0.91 0.91 0.99  

S51 Powdery mildew in wheat 0.92 0.91 0.9 0.99  

S52 Rust in wheat 0.92 0.89 0.91 0.99  

- Average (weighted) 0.95 0.94 0.94 - - 

* The ROC_AUC column in the table is with reference to Fig. 6. 
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Fig. 7 Comparison of the proposed fusion model with the state-of-art methods 

4. Conclusions 

The study presented an efficient utilization of deep learning potential with traditional machine learning methods by 

combining deep features with HCF. A framework for automatic crop disease detection using feature fusion is proposed in the 

study. All the experiments were carried out by using two datasets, one with the whole leaf images and the other with the image 

patches of lesions and spots, to check the efficacy of the model in handling the global as well as local structure.  

In the first part of the experimentation, the utility of cepstral coefficients is compared with the popular HCF using 

conventional machine learning algorithms. Results indicated that the cepstral coefficients gave the best results compared to 

other conventional features. In the next phase of the experimentation, CNN architecture was used and its performance was 

checked with other models suggested in literature. The CNN model used in this study outperformed the suggested models in 

literature and traditional machine learning algorithms. The last phase involved the fusion of handcrafted cepstral coefficients 

with deep features. It was seen that the proposed hybrid model gave the improved results when compared to the performance of 

only deep features. The hybrid model was also checked with the other CNN architectures, and it was seen that the suggested 

fusion framework achieved better results than the existing architectures.  

The results obtained from the first and last phase suggested the use of cepstral coefficients as a relevant feature for crop 

disease detection. The results also showed the efficient utilization of the hybrid model for crop disease detection for the whole 

leaf images as well as for the image patches of lesions and spots, thus contributing to the control of crop diseases to limit 

agricultural and economic loss. The future work will aim to test complex background images with real field conditions to make 

the model robust for all image types. 
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