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Abstract 

A wireless sensor network (WSN) works continuously to gather information from sensors that generate large 

volumes of data to be handled and processed by applications. Current efforts in sensor networks focus more on 

networking and development services for a variety of applications and less on processing and integrating data 

from heterogeneous sensors. There is an increased need for information to become shareable across different 

sensors, database platforms, and applications that are not easily implemented in traditional database systems. To 

solve the issue of these large amounts of data from different servers and database platforms (including sensor 

data), a semantic sensor web service platform is needed to enable a machine to extract meaningful information 

from the sensor‘s raw data. This additionally helps to minimize and simplify data processing and to deduce new 

information from existing data. This paper implements a semantic web data platform (SWDP) to manage the 

distribution of data sensors based on the semantic database system. SWDP uses sensors for temperature, humidity, 

carbon monoxide, carbon dioxide, luminosity, and noise. The system uses the Sesame semantic web database for 

data processing and a WSN to distribute, minimize, and simplify information processing. The sensor nodes are 

distributed in different places to collect sensor data. The SWDP generates context information in the form of a 

resource description framework. The experiment results demonstrate that the SWDP is more efficient than the 

traditional database system in terms of memory usage and processing time. 
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1.  Introduction 

Air pollution has attracted many researchers in the past few years. There has been significant public concern 

surrounding serious community health risks (including heart disease, chronic obstructive pulmonary disease, stroke, and lung 

cancer) and their strong associations with air pollution. People breathing air of poor quality may suffer from difficulty 

breathing, coughing, wheezing, and asthma. In addition to human health, air pollution has a major influence on the global 

environment and economies around the world. Acid rain, haze, and global climate change are caused by air pollution [1]. 

The activities of a rapidly growing industry have recently resulted in high concentrations of carbon monoxide (CO) and 

carbon dioxide (CO2), which are very dangerous for human life. Oxygen (O2) in the air is carried by red blood cells to the 

tissues of the body through the respiratory system. When CO gas is absorbed by the red blood cells, the body will lack O2. 

Damage to the central nervous and cardiovascular systems occurs when the absorption of CO takes place over a period of 

time and may result in symptoms such as headache, drowsiness, weakness, dizziness, nausea, and fainting. Higher 

concentrations of CO can cause increased heart rate, heart failure, coma, and impaired respiratory function. Furthermore, 

high concentrations of CO2 in the air have the effect of trapping hot air inside the atmosphere, resulting in a rise in the 

earth's temperature [2].  
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A wireless sensor network (WSN) comprises small sensor devices used to collect and send data about environmental 

conditions including CO, CO2, O2, temperature, and humidity. The sensor nodes of the WSN are spatially distributed to 

facilitate the accurate monitoring and controlling of the physical conditions of the environment from remote locations. 

WSNs use dynamic sensors where the device may appear and disappear in a short period of time and even move to another 

destination. WSNs continue to gather information that combine to form large sets of sensory data. Different large sensory 

data obtained have problems too much data but not enough knowledge, lack of integration from different database sources, 

and communication between these networks [3-5].  

Semantic web uses representation languages, such as resource description framework (RDF) and web ontology 

language (OWL), to provide a formal description of data and knowledge. One of the semantic web goals is to provide 

intelligent search agents capable of processing and integrating data from heterogeneous resources—such as sensor 

networks—at a conceptual level. Semantic web is defined as an extension of the current web, where information is presented 

with well-defined meanings, and allows computers and people to work together. The system is a powerful method for users 

to filter information and large product space. The semantic web is used as background knowledge to extract data mining 

features that can improve the results of recommendations. The use of semantic web in sensor networks enables the discovery 

and analysis of sensor data based on spatial, temporal, and thematic information [6-10]. 

Many related projects and researches have actively progressed semantic services for sensor data. Rohloff et al. [11] 

performed a comparison of various triple-store technologies (such as Sesame, Jena, and AllogroGraph) to load data and 

respond to queries based on ontology, datasets, and standard queries of the Lehigh University Benchmark (LUBM) software 

tools. They used various metrics (such as cumulative load time, query response time, query completeness, and disk-space 

requirements) to show the performance. They found that the triple-stores based on the Sesame+DAML DB, Jena+DAML 

DB, and Sesame+BigOWLIM exhibited the best performance among those tested. Gray et al. [12] proposed a semantic web 

architecture for integrating different datasets such as sensor data, database, and map layers. Semantic Web service 

technology is used for querying, accessing, discovering, and integrating datasets of the flood response planning web 

application. This application (based on semantic sensor web) still needs to be improved to include a tool for selecting two 

sources of data discovered through the semantic registry and to dynamically request data from the semantic integration 

service. Moraru et al. [13] proposed a system for publishing data gathered from a sensor network comprised of sensing 

devices that monitor environmental conditions such as humidity, temperature, pressure, and luminance. They used a single 

sensor source and added a semantic layer for enriching the obtained sensor data properties by including the location of a 

sensor and environmental phenomena.   

Chenzhou et al. [14] proposed a semantic web of things framework that utilizes multiagent technology to facilitate 

human-to-human and human-to-machine collaboration. This study takes health as an example domain to describe the details 

of an active data-based semantic framework. The proposed framework is organized into three layers. The top layer is for 

presentations that contain active related data on different types of things, actions, and people. The lower layer represents the 

corresponding real-world objects—including people as active human-centric app participants—and features sensors and 

smart devices as the IoT infrastructure. The middle layer is used to connect the top and bottom layers, consisting of all the 

IoT device amplifiers required for data integration and functionality, as well as multiple agents running in a multiagent 

platform for service activation. Their research shows how technology and architecture significantly enhance the Web of 

Things capability for human-centric applications. Choi et al. [15] proposed a distributed semantic sensor web architecture 

called ―semantic sensor web platform‖ to provide a user-centric, context-aware, semantic web service. The goal of the 

semantic sensor web platform is to separate the processing of the context and service information of environmental data—

including sensor data. The semantic sensor web platform contains a sensor/device row data layer, context virtual sensor data 

layer, and context-based service information layer. Butt et al. [16] evaluated the existing semantic web databases (such as 
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Jena, Sesame, and AllegroGraph) to learn about their comparative behaviors and scalability trends. They introduced two core 

performance metrics: ―Resource Utilization‖ and ―Success Ratio‖; and one derived metric: ―Cumulative Query Performance.‖ 

Scalability analysis presented the clear idea that the time and resource utilization of each store increases with the number of 

triples to manage. They consider two important parameters as a measure of its execution cost for each proposed test case: 

execution time and resource usage. Their research result shows that Sesame is efficient in searching for the predicate of a 

triple and more effective than other semantic databases for complex queries. Okuno [17] proposed Linked Open Data for 

aggregation activities and the implementation of community tourism information content. This service offers sightseeing 

navigation using the ―Hakodate Machiaruki Maps‖ in providing tourist information around the route of Kakodate's official 

"Hakobura" guide site. Poslad et al. [18] proposed a novel IoT Early Warning System framework used for natural crisis 

management that addresses semantic challenges such as the need for scalable, time-sensitive data exchange and processing 

(especially involving heterogeneous data sources); and the need for resilience to changing ICT resource constraints in crisis 

zones. They proposed validated lightweight semantics and heavyweight semantics with related metrics (such as mean query 

time) for importing data into a database. Kwon et al. [19] proposed the best sleep pattern using a semantic sleep management 

service by analyzing data gathered from healthcare sensors including blood pressure, blood sugar, body temperature, snoring, 

and sleep apnea. Semantic Web technologies were used to detect the number of sleep apnea cases and snoring times. 

To improve the integration and communication among the various sensor node networks—particularly for 

environmental monitoring systems—this paper proposes a semantic web data platform (SWDP) for managing distributed 

data sensors—such as temperature, humidity, carbon monoxide (CO), carbon dioxide (CO2), luminosity (LUM), and noise 

(MCP) sensors—from different servers based on a semantic database system. This paper has the following contributions: 1) 

Develop an infrastructure for semantic sensor web with environmental sensor data from various sensor types and nodes to 

promote communication among different sensor node networks, supporting the decision-making process. 2) Rather than the 

traditional database, transform the process such that the real sensor data from the sensor node is stored in semantic database 

ontologies. 3) Integrate the sensor data from heterogeneous resources; extract meaningful, shared information from the 

sensor‘s raw data; and thus better enable smart web applications to find, access, and process the sensor data in order to 

realize the interconnectedness of sensor networks, achieve faster processing time, and reduce memory usage. 

Table 1 Comparison of this paper to others related works 

No. Research Application domain Input data 
The number of 

sensor sources 
QoS Analysis 

1 Bovet et al. [3] Smart Building Temperature, humidity 
Several Raspberry 

Pi node 
- 

2 Bispo et al. [4] 
Temperature, osciloscope, and 

anti Theft application 
Temperature, ambient light Six sensor nodes 

Power Consumption, The memory 

usage. 

3 Yadaf et al. [8] DBPedia WikiPedia - - 

4 Ali et al. [10] Smartphone Smartphone Sensors Data Smartphone sensors 
Accuracy and consistency of 

ontology 

5 Rohloff et al. [11] University datasets 
LUBM Lehigh University 

ontology datasets 
- 

Data load times, Query response 

times. 

6 Gray et al. [12] Flood monitoring 
Live sensor data, historic sensor 

data, databases, map layers 

Sea-state around the 

coast data sensors 
- 

7 Moraru et al. [13] Environment Monitoring 
Temperature, humidity, 

luminance, and pressure 
One sensor node - 

8 
Chenzhou et al. 

[14] 
Healthcare 

Diabetes, blood pressure, glucose, 

care plan 

Smart devices of 

patients 
- 

9 Butt et al. [16] MIT Libraries Barton catalog Barton library dataset - 
Resource utilization, Success ratio, 

Cumulative query performance. 

10 Okuno [17] Tourism 
Maps, film commission, heritages, 

travel guide 
- - 

11 Poslad [18] Geologic hazards Simulated tsunami data - Query time, utilization 

12 Kwon [19 Healthcare 
Acceleration,  breath and noise 

sensor 
One sensor node Sleep satisfaction 

13 
This reseach: 

SWDP 
Environment Monitoring 

CO, CO2, Humidity, temperature, 

Luminosity (LUM) and Noise 

(MCP) sensors 

Ten sensor nodes Processing time and memory usage 
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Table 1 shows the results of our paper compared to other related works in terms of application domain, input data type, 

the number of sensor sources, and quality of service (QoS) analysis. 

2.  The SWDP System Design 

This section presents the SWDP system design—a semantic web platform for environmental WSN that improves 

processing time and memory usage, and shares information between different sensor networks. This section explains the 

semantic web system and includes the case study, system architecture, information processing levels, the components of a 

system, volume data of distribution data sensor, ontology design, ontology RDF model, Sparql design, namespaces prefix, 

and relational database. 

2.1.   Case study 

With the growing use of WSNs, some countries have begun to monitor various environmental conditions such as CO, 

CO2, temperature, humidity, luminosity, and noise. In this research, we refer to a case study (as shown in Fig. 1) in which 

every country has its own monitoring server and database platform. As such, we need to utilize search engines to find the 

specific data. For example, a search for the greatest CO value in each location and the time that the data was retrieved is 

conducted by typing: ―location‖, ―co‖, ―largest‖, and ―retrieved,‖ into the search engine. 

 
Fig. 1 Semantic web database distribution 

Fig. 2 shows a related website of current existing web technology resulting from a search for the largest value of CO 

data from a CO sensor. If someone needs to know the environmental conditions of other countries, they are required to 

navigate through the banner link on the front page of the resulting monitoring site in order to access the front page of another 

country. Ideally, related environmental information should be aggregated and shareable. To achieve this, the implementation 

of the distributed semantic sensor web database is required to provide shareable and searchable data across country and 

application boundaries. The integration of data and the facilitation of the search for specific data are done through ‗Direct 

link,‘ which is implemented using the related website of the semantic web, as shown in Fig. 3. As a result, the user can easily 

obtain the largest and smallest data value, the country location represented by the value, the sensor type, and the location of 

the sensor within the country. 
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Fig. 2 Related website of current web technology 

 
Fig. 3 Related website of semantic web technology 

2.2.   System Architecture 

Currently, we are developing a WSN for the monitoring of environmental conditions in 10 different locations 

represented by 10 different sensor nodes, as shown in Fig. 4. Every gas sensor node contains a device consisting of a CO 

sensor (TGS2442), CO2 sensor (TGS4161), temperature sensor (MCP9700A), humidity sensor (808H5V5), luminosity 

sensor, noise sensor, waspmote gas 2.0 boards, and waspmote PRO 1.2. The gas sensor nodes are distributed and connected 

to form RDF ontologies as a means of data storage. All data is stored and processed with the SWDP method. The subsequent 

retrieval of data is conducted by the user with SPARQL. 

 
Fig. 4 Proposed system architecture 



International Journal of Engineering and Technology Innovation, vol. 8, no. 3, 2018, pp. 157- 172 

Copyright ©  TAETI 

162 

As presented in Fig. 4, the proposed system architecture is divided into three layers as follows: 

2.2.1.   Network data sensor system layer 

The network data sensor system layer consists of a heterogeneous WSN formed by distributed sensor nodes in different 

places. Each node has four sensors: one each for temperature, humidity, and carbon monoxide (CO); and one for carbon 

dioxide (CO2), luminosity, and noise. Data from the WSN are first grouped into different servers, and subsequently stored into 

one server in the form of a dataset. 

We use the TGS2442 sensor for sensing CO conditions, TGS4161 for CO2, and MCP9700A for temperature. The 

808H5V5 sensor is used for CO2, luminosity, and noise. These sensors are embedded in the Waspmote Gases 2.0 board 

which is connected to the Waspmote PRO 1.2 microcontroller. 

For communication between nodes and a computer server, we use the XBee module which uses MAC addresses to 

differentiate between devices. The XBee module is tasked with sending data wirelessly using the IEEE 802.15.4 Zigbee 

protocol to the server computer where another XBee module is used as the data receiving medium. Data retrieval by the 

sensor node is done every 60 s and is sent directly to a computer server. Subsequently, the data is processed, categorized, and 

stored in the semantic database through the information processing layer. 

2.2.2.   Information processing layer 

The information processing layer consists of four levels, as shown in Fig. 5. 

 
Fig. 5 Information processing levels 

(a)  Query Engine: The query engine is a system that functions to query the distributed data sensors. This system performs 

queries on all of the data collected by each of the distributed servers. 

(b)  Ontology Engine: The ontology engine is a system used to convert the sensor data into RDF form. The system will 

automatically generate a new relationship based on the data obtained, and some additional information not limited to that 

pertaining only to the deductive reasoning of the sensor data of each node, but also the combination of the terms, and 

their relationships.  

(c)  Database System: The semantic database system is responsible for the interface and method that handles all of the 

properties, rules, axioms, and relationships for all proposed classes of ontology. Data that has been processed is then 

stored in a semantic database. 

(d)  Network Domain Ontology: The network domain ontology serves to collect different uniform resource identifiers (URIs) 

from ontologies to be used as the overall data source. Each database in a semantic web architecture has a different URI. 

URIs are used as unique identifiers for concepts in the semantic web. 

2.2.3.   Monitoring application layer 

The monitoring application layer is a medium for displaying data query results from a semantic database. In the 

monitoring layer, no queries are performed directly on any WSN as presented in the architecture—only on the semantic 
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database. Query results can be from more than one WSN as data from the information processing layer is the result of a 

combination of multiple distributed WSNs. 

The information contained in the semantic database is displayed using PHP programming through the sparqllib library. 

The information is given in the form of the last value of environmental conditions to facilitate the user‘s evaluation of the 

information obtained. 

2.3.   Component of system 

All experiments were performed on sensor nodes, a gateway, and a computer-as-server with specifications as shown in 

Table 2: 

Table 2 The specifications of the hardware and software 

Software 

Computer as server Sensor node and Gateway 

a. CPU: i3-4030U CPU @ 1.90ghZ (4 CPUs) 

b. Memory: 4096 Mb RAM 

c. Apache Tomcat 

d.  Sesame 

e. Xampp 

f. Sparqlib 

g. Protégé 

a. Waspmote PRO 1.2 

b. Waspmote Gases 2.0 board  

c. CO sensor (TGS2442)  

d. CO2 sensor (TGS4161)  

e. Temperature sensor (MCP9700A) 

f. Humidity sensor 

g. Luminosity Sensor 

h. Noise Sensor 

i. Xbee S1 module 

Each node installation contains four sensor nodes, including Xbee to connect the node to a computer server. The 

computer server also has the XBee module used as the data receiving medium. We use Apache server as a web server, 

Sesame as a semantic data storage media, and SPARQL to query the data from the semantic database. 

2.4.    Volume data of distribution data sensor 

 
Fig. 6 Volume data of distribution data sensor 

Fig. 6 shows the data used to evaluate the proposed semantic query performance. We measured the processing time and 

memory usage necessary to conduct a search of the contents of 10 semantic databases. 
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We acquire data from multiple distributed servers, each of which has six sensors–CO, CO2, temperature, humidity, 

luminosity, and noise. The data is then represented by http://ubaidillahumar.pasca.student.pens.ac.id/server1/wsn_1# for the 

semantic database on server 1, http://ubaidillahumar.pasca.student.pens.ac.id/server1/wsn_2# for the semantic database on 

server 2, and likewise up to http://ubaidillahumar.pasca.student.pens.ac.id/server1/wsn_10# for the database on server 10, as 

shown in table 2. 

URI wsn_1 is derived from the database server 1 with the amounts of data at CO=500, CO2=500, temperature=500, 

humidity=500, luminosity=500, and noise=500 items. The URI wsn_2 is derived from the database server 2 with the 

amounts of data at CO=1000, CO2=1000, temperature=1000, humidity=1000, luminosity=1000, and noise=1000 items. The 

URI wsn_3 is derived from the database server 3 with the amounts of data at CO=1500, CO2=1500, temperature=1500, 

humidity=1500, luminosity=1500, and noise=1500 items. The URI wsn_4 is derived from the database server 4 with the 

amounts of data at CO=2000, CO2=2000, temperature=2000, humidity=2000, luminosity=2000, and Noise=2000 items. The 

URI wsn_5 is derived from the database server 5 with the amounts of data at CO=2500, CO2=2500, temperature=2500, 

humidity=2500, luminosity=2500, and noise=2500 items. The URI wsn_6 is derived from the database server 6 with the 

amounts of data at CO=3000, CO2=3000, temperature=3000, humidity=3000, luminosity=3000, and noise=3000 items. The 

URI wsn_7 is derived from the database server 7 with the amounts of data at CO=3500, CO2=3500, temperature=3500, 

humidity=3500, luminosity=3500, and noise=3500 items. The URI wsn_8 is derived from the database server 8 with the 

amounts of data at CO=4000, CO2=4000, temperature=4000, humidity=4000, luminosity=4000, and noise=4000 items. The 

URI wsn_9 is derived from the database server 9 with the amounts of data at CO=4500, CO2=4500, temperature=4500, 

humidity=4500, luminosity=4500, and noise=4500 items. The last URI, wsn_10, is derived from the database server 10 with 

the amounts of data at CO=5000, CO2=5000, temperature=5000, humidity=5000, luminosity=5000, and noise=5000 items. 

2.5.   Ontology design 

 
Fig. 7 Proposed ontology design 

Ontology is usually expressed in logical language to describe the detailed, accurate, consistent, healthy, and meaningful 

differences made between classes, properties, and relationships. The ontology of each sensor has a different URI. URIs from 

each of the different sensors are gathered through network domain ontology. The ontology can be represented in the form of 

several formats—namely RDF, resource description framework schema, and OWL. Fig. 7 shows the ontology for the 

domain of environmental health monitoring. In the ontology, there are four main classes that describe the knowledge base 

data from the sensors about environmental conditions—namely, classes CO2, CO, temperature, humidity, luminosity, and 

noise. The four classes contain each value, time, and location. 
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In this ontology, we propose a semantic system that controls the use of the information gathered and manages the data 

received by the server. In this system, we collect sensor data (such as temperature, humidity, CO, CO2, luminosity, and noise) 

from the sensor nodes. Subsequently, the data entry is processed, categorized with RDF, and stored in a semantic database. 

Sensors in this domain ontology are represented as a WSN node that is part of a class of data coverage of all sensors 

connected to send and receive messages from the sensor nodes. 

2.6.    Ontology RDF model 

OWL is a family of knowledge representation languages for authoring ontologies. Ontology is a format used to describe 

the taxonomy and classification network, and it essentially defines the knowledge structure for a variety of domains. It 

contains nouns, which represent the object classes, and verbs, which represent the relationships between objects. Ontology 

resembles the class hierarchy in object-oriented programming. 

A class hierarchy is meant to represent a structure used in the source code that evolved fairly slowly, while an ontology 

is meant to represent the information on the Internet and is expected to grow continuously. Similarly, an ontology is usually 

much more flexible because it is meant to represent the information on the Internet as coming from all sorts of heterogeneous 

data sources. Alternatively, a class hierarchy is meant to be fairly static, relying on much more diversified sources and more 

structured data. 

Each sensor—CO, CO2, humidity, temperature, luminosity, and noise—on http://ubaidillahumar.pasca.student.pens.ac.id/wsn_1 

had three data URI properties that include: http://ubaidillahumar.pasca.student.pens.ac.id/wsn_1#co_locate, to store location data about 

where the sensor is placed; http://ubaidillahumar.pasca.student.pens.ac.id/wsn_1#co_time, for storing retrieval data time; and 

http://ubaidillahumar.pasca.student.pens.ac id / wsn_1#co_value, to store sensor data values. 

2.7.    Sparql design 

SPARQL language allows us to perform a query consisting of three patterns: conjunctions, disjunctions, and optional 

patterns. Implementations for multiple programming languages exist. There are tools that allow one to connect and semi-

automate the building of a SPARQL query a to SPARQL endpoint (for example, ViziQuer). In addition, tools exist that 

translate SPARQL queries to other query languages. Code 1 shows a pseudocode SPARQL design to get data CO sensor 

from semantic. 

Query_value_time_datashet ()  
{ 

Step 1: Find all the co values found on datashet wsn_1. 
Step 2: Find all data when the sensor data retrieved in datashet wsn_1. 
Step 3: Save the search results co value found in datashet wsn_1 divariable resultvalue 
Step 4: Save the search results of the co value found in the datashet wsn_1 into the fieldsvalue 

variable in the form of the array. 
Step 5: Save search results data retrieval of sensor data contained in datashet wsn_1 divariabel 

resulttime. 
Step 6: Save the data retrieval results of sensor data contained in datashet wsn_1 into fieldstime 

variable in array form. 
} 

Fig. 8 Code 1: Pseudocode SPARQL design 

2.8.   Namespaces prefix 

Namespaces provide a method to avoid conflicting name review elements. We set the OWL to begin with a Namespace 

declaration, as shown in Fig. 9. 

The RDF uses the prefixes ―RDF‖ and ―wsn_1‖ to condense the full address URI. RDF refers to the RDF syntax, while 

wsn_1 refers to sensor data elements in wsn_1. Both of these prefixes are also called the namespace. In namespace, although 

we refer to the URI from a schema, the address does not always have to be present as there is no validation activity carried 
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out. This was done to avoid the use of ambiguous elements. The namespace prefix is part of the XML qualified name 

(QName), which is used to facilitate the writing of RDF. QName consists of a prefix and a local name. For example, wsn_1 

is the short name of the URI, http://ubaidillahumar.pasca.student.pens.ac.id/wsn_1#. 

 
Fig. 9 Namespaces prefix 

2.9.   Relational database 

In addition to the ontology RDF model design, we build a relational database to be compared with the semantic 

database in terms of processing time and memory usage. A relational database is a collection of structured data organized 

into tables which can be interconnected (related) with one another. This type is a form of conventional database—when 

someone mentions the word ―database,‖ the general public will imagine a relational database (a collection of tables), as 

shown in Fig. 10.  

 
Fig. 10 Relational database 

Each table has a primary key in the database. The primary key of a table provides the unique identifying value for a 

particular row. The relational database above is formed by making comparisons between the primary keys of each sensor 

table. Relationships between tables define the foreign keys (sensor CO, CO2, temperature, humidity, luminosity, and noise) 

and imply structural relationships.  

Relational databases require that data structures (schemas) are defined before data is entered in order to improve data 

integrity for application use. Relational databases cannot handle unstructured data which may lead to data storage systems 

that do not require the definitions of previous data structures [6]. 

3.  Experimental Procedure 

The purpose of this experimental evaluation is to compare the semantic and relational databases in terms of the 

processing time and memory usage required to process the sensor data. 
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In this section, we describe the test network topology that we use for testing a relational database against a semantic 

database. Fig. 11 shows the topology used to perform the test of the relational database. In this topology, Apache server is 

used as a web server, MySQL as the relational database, and SQL query to query the database. 

 
Fig. 11 Relational database topology test 

Fig. 12 shows the topology for the test of the semantic network database. In this topology, Apache Tomcat is used as 

the web server, Sesame as the semantic database, and SPARQL query to query the database. 

 
Fig. 12 Semantic database topology test 

To evaluate the performance of the proposed semantic database system, we take measurements of the processing time, 

search speed, and memory usage for the data search process. Measurements were made using two scenarios. The first 

involves taking measurements by counting the processing time and memory usage of all databases simultaneously, and can 

be described as follows: 

 

Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 + database 7 + database 8 + database 9 + 
database 10 

The second scenario is performed by measuring the alternate database by adding the previous database, as follows: 

1. Database 1 

2. Database 1 + database 2 

3. Database 1 + database 2 + database 3 

4. Database 1 + database 2 + database 3 + database 4 

5. Database 1 + database 2 + database 3 + database 4 + database 5 

6. Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 

7. Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 + database 7 

8. Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 + database 7 + database 8 

9. Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 + database 7 + database 8 + database 9 

10. Database 1 + database 2 + database 3 + database 4 + database 5 + database 6 + database 7 + database 8 + database 9 + 

database 10 
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To measure the processing time (PTime) required for querying, we use the following Eq. (1): 

PTime POpenConnection PExecuteQuery PPrintResultSet PCloseConnection     (1) 

where Processing Time (PTime) can be obtained by the addition of the open connection time (POpenConnection), execution 

time (PExecuteQuery), query results display time (PPrintResultSet), and disconnection time (PCloseConnection) of the 

query process.  

Subsequently, to the measure memory usage (MUsage) during the query process, we use the following Eq. (2): 

MUsage MEnd MStart   (2) 

where MUsage can be obtained from the reduction of the memory usage when the query is executed (MEnd) by the memory 

usage before the query is executed (MStart). 

Fig. 13 shows the resulting processing times from the relational and semantic databases using scenario 1. The data are 

taken for as many as 10 iterations where the average processing time is 0.1288 s for the relational database, and 0.0932 s for 

the semantic database. The processing time of the semantic database is less than that of the relational database. The values on 

the graph representing the relational database tend to rise and be unstable compared to the semantic database. 

Fig. 14 shows the resulting memory usage in scenario 1. The data are taken for as many as 10 iterations. On average, 

the memory usage required to run the relational database system is 868,160 bytes, while that of the semantic database is 

4,936 bytes—this result highlights the vast performance difference between the two. 

Then, Fig. 15 shows the resulting processing time using scenario 2. The average processing time required by the 

relational database for running the query is 3.9054 s, while that of the semantic database is 3.8428 s. In the second scenario, 

we see that the processing time of the semantic database is slightly lower than that of the relational database. 

 
Fig. 13 Processing time in scenario 1 

 
Fig. 14 Memory usage in scenario 1 
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Fig. 15 Processing time in scenario 2 

Fig. 16 shows the resulting memory usage in scenario 2. On average, the memory usage required to run the relational 

database system is 354,883 bytes, while that of the semantic database is 2,605 bytes. This result demonstrates that the 

memory usage of the semantic database is much less than that of the relational database. In this second scenario, the memory 

usage of the relational database tends to increase while that of the semantic database exhibits very little change. 

 
Fig. 16 Memory usage in scenario 2 

 
Fig. 17 Processing time on a specific data search process 

Fig. 17 shows the resulting processing times of the relational and semantic databases using scenario 1 to search for 

specific data in a location. Data were taken for as many as 10 iterations where the average processing time was 0.247 s for 

the relational database and 0.11 s for the semantic database. The processing time of the semantic database is lower than that 

of the relational database. The values on the graph representing the relational database tend to increase and are unstable 

compared to those of the semantic database. 

Fig. 18 shows the resulting memory usage required to search for specific data. Here, the average memory usage 

required by the relational database system is 7,848 bytes, while that of the semantic database system is 4,448 bytes. This 

result shows that the memory usage by the semantic database system is lower than that of the relational database. 
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Fig. 18 Memory usage on a specific data search process 

 
Fig. 19 Search result from semantic web database 

Fig. 19 shows the search results based on the relevance of the integrated data to the user. The user can easily find the 

locations that have the largest and smallest specific data. For example, Fig. 17 shows that the largest CO value is at location 

2, with a value of 9.92 PPM. 

This proves far more efficient than the type of relational database that requires entering commands like, ―location,‖ ―co,‖ 

―largest,‖ and ―Number‖ into the search form in order to produce this sort of result. 

For monitoring applications, we provide a publicly accessible website to display the sensor data stored in the semantic 

database. A dashboard containing the sensor menu will be displayed when a user accesses the website. We can see the results 

of data retrieval from the database of semantic web censorship, as shown in Fig. 20. There are four menus in the dashboard 

to display the sensor results for CO, CO2, humidity, temperature, luminosity, and noise for 10 locations. 

 
Fig. 20 Monitoring application 

To view the overall sensor values stored in the database, we provide a table view for the tenth location of each sensor, 

as shown in Fig. 21. 
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Fig. 21 CO sensor data table in the database 

4.  Experimental Procedure 

There are expanding requirements for sensor data to be sharable crosswise over various sensors, database systems, and 

application boundaries. In the relational database framework, these requirements are difficult to address. In this paper, we 

have proposed and implemented an SWDP to manage the distribution of sensor data from different sensor nodes, based on 

the semantic database system. The SWDP framework contains a network data system, information processing level, and 

monitoring application to both gather sensor information and minimize and simplify the processing of information. The 

nodes of the SWDP framework utilize temperature, humidity, CO, and CO2 sensors. The SWDP framework is expected to 

effectively monitor environmental conditions, and produce shareable, searchable sensor data from different servers and 

database platforms. The results demonstrated that the SWDP framework with the semantic database system performed better 

than the existing traditional database system in terms of memory usage and processing time.  
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