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Abstract  

The objective of this study is to propose a hybrid model based on self-organized maps (SOM) and fuzzy time 

series (FTS) for predicting the reliability of software systems. The proposed SOM-FTS model is compared with 

eleven traditional machine learning-based models. The problem of selecting a suitable software reliability prediction 

model is represented as a multi-criteria decision-making (MCDM) problem. Twelve software reliability prediction 

models, including the proposed SOM-FTS model, are evaluated using three MCDM methods, four performance 

measures, and three software failure datasets. The results show that the proposed SOM-FTS model is the most 

suitable model among the twelve software reliability prediction models on the basis of MCDM ranking. 
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1.  Introduction 

Human society has become extremely dependent on reliable software systems for economic and social activities, and the 

software industry has to respond rapidly to ever-changing business and social environments. An important question for software 

industry professionals is how much testing should be done and when it is appropriate to release the software so that users do not 

face any software failures when using the software, as failures may cause huge losses to human life and business. To aid software 

industry professionals in this critical decision-making problem, researchers have proposed many software reliability predictive 

models for estimating the software testing resources and release time. As per IEEE literature, the definition of software reliability 

is the “probability with which the software has an operation without experiencing any failures for a measured time and under 

unambiguously specified operating environment” [1]. Therefore, achieving high software reliability through understandable and 

accurate models for software reliability is a key agenda for software quality researchers [1].  

In the initial seminal works on the development of software reliability models, the emphasis was to represent the failure 

phenomenon during the testing process as a non-homogeneous poison process (NHPP) [2]. This resulted in extreme difficulty 

to validate underlying assumptions about software failure phenomenon and led to the introduction of non-parametric 

non-linear tools such as artificial neural networks (ANNs), which could generate a software reliability model from historical 

data of observed failures [3]. However, ANNs have the problem of getting stuck in a local minimum and slow convergence, 

which leads the software reliability researchers to explore ensemble and hybrid techniques for estimating software reliability. 

Current initiatives in software reliability research are directed towards more accurate hybrid techniques based on integrating 

ANNS with other computational intelligence techniques [3-4, 5-6]. 
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This study contributes to the problem of developing accurate software reliability models based on the hybridization of 

self-organizing maps (SOM) and fuzzy time series (FTS). The prediction capabilities of the intelligent techniques built around 

the state-of-the-art machine and deep learners are highly varied depending on the datasets of different software products and 

the prediction accuracy or model performance measures. It is difficult to find an intelligent technique that performs better than 

all other techniques across all conflicting model performance measures for a particular application domain. Thus, the selection 

of an optimal software reliability modeling technique is challenging. To get around this challenge, a multi-criteria 

decision-making (MCDM)-based approach is used in this study. 

The organization of this study is as follows. Section 2 describes the related work and highlights the contribution of this 

study in software reliability prediction. Section 3 presents the hybrid SOM-FTS approach, the performance measures, and the 

MCDM methods used in this study. Section 4 provides the datasets used in this study. Section 5 discusses the experimental 

results. Finally, section 6 concludes the study. 

2.  Related Work 

A considerable body of research work is dedicated to the development and assessment of deep neural-based techniques 

for software reliability prediction. Related work is summarized as follows. Roy et al. [5] proposed a software reliability 

prediction model by incorporating neighborhood particle swarm optimization (PSO) in an ANN to determine the optimal 

weights of the network. They concluded that the neighborhood PSO-ANN approach performed better than the standard 

PSO-ANN approach and singular ANN approach on the average error performance metric. However, it is difficult to determine 

the optimal architecture of ANNs in terms of the number of layers in the network and the number of neurons in each layer. 

Rani and Mahapatra [6] developed a hybrid model using a feed-forward neural network (FFNN) and PSO algorithm for 

software reliability prediction. Their experimental study determined that the hybrid model (FFNN-PSO) can be used as an 

efficient method for software reliability prediction. 

Wang et al. [7] proposed a deep learning model, namely DNN-RED, using a recurrent neural network (RNN) encoder-decoder 

for predicting software failure counts and assessing the reliability of a software system. They compared their proposed DNN-RED 

model with various software reliability models, including parametric models (i.e., an exponential model, a logarithmic model, a 

delayed S-shape model, an inverse polynomial model, and a power model) and non-parametric models (i.e., FFNN-Prediction, 

FFN-Generalization, JordanNet-Prediction, and JordanNet-Generalization), considering the average error as evaluation criteria. The 

experimental study concluded that the DNN-RED model outperformed all the models used in their comparative study.  

For enhancing the prediction accuracy of existing software reliability growth models (SRGMs), Jabeen et al. [8] proposed 

a high precision error iterative analysis method (HPEIAM). They combined the residual errors obtained from the estimated 

results of SRGMs with the ANN sign estimator for enhancing the prediction accuracy of SRGMs. After applying HPEIAM on 

various SRGMs (J-M, GO, Littlewood, Musa, and Jinyong-GO), they concluded that HPEIAM enhanced the performance of 

these traditional SRGMs models.   

Zhen et al. [9] developed a hybrid model by integrating two swarm intelligence algorithms, namely the wolf pack 

algorithm (WPA) and PSO, for estimating the parameters of software reliability models. They applied the WPA-PSO model to 

estimate the parameters of the classical GO model. They concluded that the hybrid model WPA-PSO could improve the 

parameter estimation and prediction of traditional SRGMs. 

In a more recent study, Kassaymeh et al. [10] proposed a hybrid model for software reliability prediction by integrating 

the salp swarm algorithm (SSA) with backpropagation neural network (BPNN) to determine the optimal weights of the 

network. After a comparative study based on various performance measures, they concluded that the hybrid model SSA-BPNN 

performed better than the BPNN.  
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Pai and Hong [11] investigated the support vector regression (SVR) technique for software reliability prediction. They 

concluded that SVR performed better than Kalman filter-based models. However, the determination of SVR parameters like 

penalties for estimation errors and kernel bandwidth itself are open research areas, and there is no simple way to determine 

these parameters. 

Lou et al. [12] applied relevance vector machine (RVM) for software reliability prediction. Although RVM shares 

functional similarities with support vector machine (SVM), it is a probabilistic model. RVM requires more training time than 

SVM because of the optimization of a non-convex function, but it does not require the use of free parameters. Regardless of the 

advantages of RVM over SVM, it requires the selection of a number of kernel parameters that vary according to the type of 

kernel used [10]. 

Zhang et al. [13] proposed a framework to evaluate software reliability by applying software metrics to RNN. They 

evaluated their proposed model on two open-source projects and concluded that the RNN-based approach enhanced the 

prediction ability of traditional SRGMs. 

Mohammed et al. [14] developed a software reliability prediction model using time series and machine learning. To 

improve software reliability prediction, they explored the ability of machine learning techniques to learn from past experience 

and to predict future patterns. Based on their experimental results, they concluded that SVM outperformed the random forest 

(RF), linear discriminant analysis (LDA), k-nearest neighbors (KNN), autoregressive integrated moving average (ARIMA) 

(1,1,1), and classification and regression trees (CART) models.  

Clearly, there are no silver bullet intelligent techniques for software reliability prediction, and it is imperative to 

explore competitive and alternative techniques. In addition to the high accuracy of a predictive model, the efficiency, 

robustness, and ease of interpretation for intelligent techniques are also desired. This motivates researchers to explore 

alternate techniques for software reliability prediction, which are based on a hybrid of intelligent techniques in different 

categories. 

The motivation for applying an FTS approach is that fuzzy systems are easily interpretable in contrast to neural 

networks, which are regarded as black boxes and very difficult to interpret. In recent research, Kumar and Kaur [15] 

demonstrated the efficiency of applying the hybrid SOM-FTS technique to a complex time series problem. 

This study presents an empirical study to investigate the SOM-FTS technique for software reliability prediction. The 

performance of predictive modeling techniques varies depending on different performance measures [16]. It is important to 

select a modeling technique that is optimal when considering all performance measures. To deal with the issue of conflicting 

performance across various measures, this study also presents an MCDM-based approach for the evaluation and selection of 

software reliability prediction models. The MCDM-based approach can be a valuable decision support system for software 

quality assurance teams to aid the selection of the most appropriate software reliability prediction model. 

3.  Research Methods 

3.1.   Proposed hybrid model for software reliability prediction 

SOM is an unsupervised two-layered neural network based upon the principle of competitive learning [17]. The first layer 

is designated as the input layer, and the second layer is designated as the output layer. The output layer is also called a feature 

map. Usually, the output layer of SOM is a one-dimensional or two-dimensional lattice of neurons. The crux of the SOM 

neural technique is to map each training vector onto a feature space. SOM tries to visualize the similarity between data vectors 

within a low-dimensional feature space.  
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Fig. 1 Brief description of the proposed software reliability prediction model  
 

In the context of this study, the SOM technique is integrated with FTS to predict software reliability. The SOM technique is 

applied to effectively fuzzify the time between failure (TBF) datasets of software systems. In this study, SOM is implemented on 

MATLAB 2021a version 9.10. The Euclidean distance is used as the distance measure for feature selection, and an array of size 

10 × 10 is taken as the size of the output neurons. Values of additional parameters such as the number of epochs, learning radius, 

and learning rate are taken as 200, 3, and 0.5 respectively. The hybrid SOM-FTS technique can be well understood in Fig. 1. 

The detailed stepwise process is explained as follows. 

Step 1: TBF series dataset is taken as the input for SOM-FTS. 

Step 2: The minimum and maximum values are obtained from the software reliability dataset. Also, a universe of discourse U 

= [p, q] is set up, where p is the minimum value of the dataset and q is the maximum value of the dataset. 

Step 3: The SOM procedure given in the work of Singh [17] is used to divide U into intervals. SOM is applied as an 

unsupervised learning algorithm for clustering on the universe of discourse U to obtain the number of partitions of U, 

which can be considered n number of intervals of different lengths as f0, f1, f2, ……, and fn-1. Now all the time series 

values of the software reliability dataset are assigned to their respective intervals. Each interval centroid can be 

calculated by averaging all values which belong to the corresponding interval.  

Step 4: Linguistic terms are defined for the intervals obtained from Step 3 to make them fuzzy sets. n linguistic terms F0, F1, 

F2,……, and Fn-1 are defined for n number of intervals f0, f1, f2, ……, and fn-1 respectively. Fuzzy sets for these linguistic 

terms are defined as follows: 
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where the interval fi has the maximum degree of membership of the fuzzy set Fi and 0 ≤ i ≤ n.    

Step 5: The fuzzified values are assigned to the data points of the software reliability dataset. The triangular membership 

function is used to fuzzify the software reliability dataset. In Eq. (1), for example, the value of membership degree 

of interval f0 in fuzzy sets F0 and F1 are 1 and 0.5, respectively, and the membership value is 0 for the remaining 

fuzzy sets. The degree of membership values of each fuzzy set is considered 0, 0.5, or 1 for easy calculation. 

Step 6: Fuzzy logical relationships (FLRs) are established for the software reliability dataset. FLRs can be established 

between two consecutive fuzzified values of software reliability datasets by using the definition of FLR given in the 

work of Song et al. [18]. Considering that F(t-1) = Fi and F(t) = Fj are two consecutive fuzzy values, the FLR 

between these two consecutive fuzzy values can be represented as follows: 

Software 

reliability dataset 

Set up a universe of 

discourse (U) = all data 

points in ascending order 

Partition U into 

intervals with SOM 
Define linguistic 

terms for intervals 

Fuzzify the data points as per 

the corresponding intervals 
Establish FLRs and FLRGs 

Perform defuzzification to 

predict software reliability 
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i j
F F→  (2) 

where Fi and Fj are the previous state and current state of FLR.   

Step 7: Fuzzy logical relationship groups (FLRGs) are constructed for the software reliability dataset. According to the 

definition of FLRGs given by Chen [19], FLRs having the same previous state can be grouped together in the same 

FLRG. The following FLRs are considered. 
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Now, these FLRs can be grouped together in the same FLRG as: 

1 2 3
,  ,  ,  ......,  

i k k k km
F F F F F→  (4) 

Step 8: The defuzzification technique used in the work of Chen [19] is applied to predict the software reliability from the 

fuzzified values of the software reliability dataset. In this step, the defuzzification technique is applied on the FLRGs 

obtained from Step 7 for the defuzzification of the fuzzified value of the software reliability dataset and is finally used 

to predict software reliability. For the prediction of software reliability at the time t, the fuzzified value at the time (t-1) 

is required. The defuzzification is done as follows. 

Case 1: This case is applicable when the current state has more than one fuzzified value. A detailed stepwise explanation of this 

case is given below: 

Step i: The Y(t-1) fuzzified software reliability value is obtained at the time (t-1) as Fi. 

Step ii: The FLRG of the form “Fi → Fj0, Fj1, ……, Fjp” is obtained.   

Step iii: The intervals fj0, fj1, ……,  fjp are obtained for the maximum membership value of fuzzy sets Fj0, Fj1, ……, Fjp 

respectively, and the centroids cj0, cj1, ……, cjp are obtained for these intervals. 

Step iv: Fpredict is computed by using the following formula. 

0 1 ......j j jpc c c
Fprecdict

p

+ + +
=  (5) 

where p denotes the total number of fuzzy sets in the current state of FLRG. 

Case 2: This case is applicable when the current state has only one fuzzified value. A detailed stepwise explanation of this 

case is given below: 

Step i: The Y(t-1) fuzzified software reliability value is obtained at the time (t-1) as Fi. 

Step ii: The FLRG of the form “Fi → Fj” is obtained.   

Step iii: Software reliability is predicted using the following formula. 

jFprecdict C=  (6) 

where Cj denotes the centroid of interval fj corresponding to the maximum membership value of fuzzy set Fj. 
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Case 3: This case is applicable when the previous state fuzzified value is not present in FLRGs. A detailed explanation of this 

case is given below: 

Step i: The Y(t-1) fuzzified software reliability value is obtained at the time (t-1) as Fi. 

Step ii: As there is no rule in FLRGs corresponding to Fi as the previous state, the centroid of interval fi is taken as the 

predicted value. 

3.2.   Other software reliability modeling techniques   

In this study, other eleven modeling techniques are also evaluated in addition to the proposed SOM-FTS model for a fair 

comparison with a wide range of modeling techniques. Among these eleven techniques, two are classical techniques (i.e., 

ARIMA and multiple linear regression (MLR)), six are based on machine learning (i.e., multilayer perceptron (MLP), SVR, 

additive regression (AR), bagging, regression by discretization (RegbyDisc), and decision table (DT)), and the rest are the FTS 

forecasting models proposed by Yu [20], Cheng et al. [21], and Efendi et al. [22]. 

3.3.   Performance measures    

To evaluate the twelve software reliability modeling techniques, four performance measures are used as evaluation 

criteria. Two are cost criteria, and two are beneficial criteria. For cost criteria, minimization is desired. For beneficial criteria, 

maximization is desired. The performance measures are described as follows.  

(1)  Cost criteria: 

The cost criteria include normalized root mean square error (NRMSE) and standard deviation of absolute residual error 

(SdARE). NRMSE is expressed as Eq. (7) and the absolute residual error (ARE) is given by Eq. (8).  �� and  �� are the actual 

value and predicted value, and n is the number of data points.  
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(2)  Beneficial criteria: 

The beneficial criteria include correlation coefficient (r) and Pred (0.20). Correlation coefficient (r) gives the strength of 

the relationship between two variables (i.e., the actual value and predicted value in this study). Pearson’s correlation coefficient 

is used and can be calculated using the following equation. 
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(9) 

where u and v are the actual and predicted values and n is the number of observations. 

Pred (0.20) is the number of predicted values for which the magnitude of relative error (MRE) ≤ 0.20 is divided by the 

number of observations. MRE is given by Eq. (10). 

/i i iM R E u v u= −  (10) 
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3.4.   MCDM-based evaluation of software reliability modeling techniques 

This section describes the MCDM methods used for the evaluation of twelve models, including the proposed model 

SOM-FTS, as described in section 3.1 and section 3.2. These twelve modeling techniques are applied on the three software 

reliability datasets, Musa-1 (DS1) [23], Musa-2 (DS2) [23], and Iyer and lee (DS3) [24], to obtain the values of four 

performance measures. Fig. 2 demonstrates the entire approach followed for the MCDM-based evaluation of software 

reliability modeling techniques. 

 

 

 

 

 
 

Fig. 2 MCDM approach for evaluating the software reliability prediction models  
 

This study chooses three MCDM methods, namely the weighted sum model (WSM) [25], technique for order preference 

by similarity to ideal solution (TOPSIS) [26], and evaluation based on distance from average solution (EDAS) [27], for the 

evaluation of software reliability prediction models. These MCDM methods use a decision matrix, say Da×c,  as an input, where 

a represents the number of alternatives (software reliability prediction models) and c represents the number of criteria 

(performance measures). In this matrix, each entry Dij represents the value of a performance measure j for the corresponding 

software reliability prediction model i. Further detailed procedure of three MCDM methods is explained as follows. 

3.4.1.   Weighted sum model (WSM) 

Step 1: The normalized decision matrix ���×	 is calculated by using the following formula. 
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Step 2: The total benefit and total cost of twelve software reliability prediction models (alternatives) are calculated using the 

following equations. 
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where wj, m, and n represent the weight of criteria j, the number of beneficial criteria, and the number of cost criteria, 

respectively. In this study, the value of m and n is two. Correlation coefficient (r) and Pred (0.2) are beneficial criteria. 

NRMSE and SdARE are cost criteria.   

Step 3: The following equation is used for calculating the WSM score. 

wsm-score total benifit total cost
i i iA A A= −  (14) 

Step 4: The software reliability prediction models are ranked based on the WSM score. The model with the highest score is 

considered the best. 

Twelve software reliability  

prediction models (alternatives) 

MLR, MLP, SVR, AR, bagging, RegbyDisc,  

DT, ARIMA, Yu’s model, Cheng’s model,  

Efendi’s model, and SOM-FTS 

Four performance measures  

(evaluation and selection criteria) 
NRMSE, SdARE, r, Pred (0.2) 

Selection of the 

software reliability 

prediction model 

Three MCDM methods WSM, TOPSIS, EDAS 
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3.4.2.   Technique for order preference by similarity to ideal solution (TOPSIS) 

Step 1: The weighted normalized decision matrix is calculated by multiplying all the values in each column of the normalized 

decision matrix  ���×	 (obtained from Eq. (11) as described in section 3.4.1) by the corresponding weight of each criterion. 

Step 2: The positive ideal value and negative ideal value are obtained for each performance measure (criterion). In the case of 

negative criteria (also called cost criteria), the minimum value will be the positive ideal value, and the maximum value will 

be the negative ideal value. In the case of positive criteria (also called beneficial criteria), the maximum value will be the 

positive ideal value, and the minimum value will be the negative ideal value. 

Step 3: The Euclidean distance of each alternative is calculated from the positive ideal solution and the negative ideal solution. 

Step 4:  In this step, a score of performance is calculated for each software reliability modeling technique (alternative). The 

score is expressed as a ratio of the distance of each alternative from the negative ideal solution to the difference 

between the distance from the negative ideal solution and the distance from the positive ideal solution. 

Step 5: Finally, each software reliability prediction model (alternative) is ranked according to its performance score, where the 

highest score is ranked as the best. 

3.4.3.   Evaluation based on distance from average solution (EDAS) 

In this method, the best alternative is selected on the basis of distance from the average solution (AVG). Two measures, 

namely positive distance from average solution (PDAVG) and negative distance from average solution (NDAVG), play a key 

role in selecting the best alternative. An alternative with a higher value of PDAVG and a lower value of NDAVG is considered 

a superior solution than the AVG. The detailed procedure is described as follows. 

Step 1: The AVG for performance measure j is calculated by using the following equation. 

1

a

ij
i

jAVG
a

D
==


 

(15) 

where ��
  represents the value of performance measure j for the corresponding software reliability prediction model i, 

and a represents the number of software reliability prediction models. In this study, the value of a is twelve. 

Step 2: PDAVG is calculated by using the following equation. 
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ij j
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max(0, ) 
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ijj
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j

AVG D
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AVG

−
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where ���
��
  represents the positive distance for software reliability prediction model (alternative) i from the AVG 

for jth performance measure. 

Step 3: The weighted sum of PDAVG is calculated by using the following equation. 

1

c

i j ij
j

WSP w PDAVG
=

= ×  (18) 

where ����  represents the weighted sum of PDAVG of ith alternative (software reliability prediction model), and c 

represents the number of performance measures. In this study, the value of c is four and wij = 0.25. 
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Step 4: NDAVG is calculated by using the following equation. 

max(0, ) 
 for benificial criteria

ijj
ij

j

AVG D
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max(0, )
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ij j
ij

j

AVGD
NDAVG

AVG

−
=  (20) 

where ���
��
  represents the negative distance for software reliability prediction model (alternative) i from the AVG 

for jth performance measure. 

Step 5: The weighted sum of NDAVG is calculated by using the following equation. 
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c

i j ij
j

WSN w NDAVG
=

= ×  (21) 

where ���� represents the weighted sum of NDAVG of ith alternative (software reliability prediction model), and c 

has the same meaning as in Step 3. 

Step 6: The weighted sums of PDAVG and NDAVG are normalized using the following equations. 
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For the ith alternative (software reliability prediction model), �����  and ����� represent the normalized value of 

the weighted sum of PDAVG and the weighted sum of NDAVG, respectively. 

Step 7: The evaluation factor (���) for the ith alternative (software reliability prediction model) is calculated by using the 

following formula. 

( )

2

i i
i

NWSP NWSN
EF

+
=  (24) 

Step 8: The software reliability prediction models (alternatives) are ranked based on the value of the evaluation factor, 

where the highest value gets the first rank. 

4.  Software Reliability Datasets 

4.1.   Overview of datasets 

For the validation of the proposed approach, this study chooses three software failure datasets, namely Musa-1 (DS1), 

Musa-2 (DS2), and Iyer and Lee (DS3). All three datasets are the TBF datasets, where the time unit is the CPU time (in 

seconds). The detailed description of datasets is given in Table 1. 

Table 1 Description of datasets 

Name of dataset Failure count Testing time (s) Type of project Development phase 

DS1 101 1035.2 Military system System test operations 

DS2 163 1742.6 Military system System test operations 

DS3 191 2238.7 Iyer et al. [24] System test operations 
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4.2.   Hypothesis testing  

As discussed in section 4.1., all the datasets are software failure datasets with TBF. These datasets can be treated as 

univariate time-series datasets for software reliability prediction. For time series forecasting, a stationarity check is an essential 

step. A dataset is said to be stationary if it has a constant mean and variance over the entire time period.  

For ensuring that the datasets are stationary, the following hypothesis is tested:  

(1)  H0: Given dataset is non-stationary. 

(2)  H1: Given dataset is stationary. 

This is done by applying a well-known statistical significance test called augmented Dickey-Fuller (ADF) test on each 

dataset [28]. Results of the hypothesis test on each dataset are listed in Table 2. From Table 2, it can be observed that for all 

three datasets, there is no strong evidence to reject H0 as p-value > 0.05. Log transformation, followed by first difference 

transformation, is applied to make all datasets stationary. Next, the ADF test is applied on all datasets after transformation. 

Now, there is strong evidence to reject H0 and accept H1 as p-value < 0.05. Therefore, all datasets after transformation are 

stationary and can be used further for software reliability prediction. However, in the case of fuzzy-based software reliability 

prediction models, this assumption of stationarity is not necessary [29]. 

Table 2 Results of hypothesis testing 

Dataset/p-value (ADF test) Original dataset Dataset after transformation 

DS1 0.7626 ( > 0.05) 3.887e-08 ( < 0.05) 

DS2 0.1809 ( > 0.05) 6.214e-16 ( < 0.05) 

DS3 0.6312 ( > 0.05) 6.231e-17 ( < 0.05) 
 

5.  Experimental Study and Results  

5.1.   Experimental study 

An overview of the experimental study is shown in Fig. 3. As can be seen from the figure, the experimental study can be 

divided into two phases. The detailed explanation is provided as follows. 

Phase 1: Twelve modeling techniques are applied on three software reliability datasets to obtain the results of four performance 

measures. The motivation for selecting the models is to make a fair comparison of the proposed SOM-FTS technique 

with existing techniques. The results are compared with distinct types of statistical techniques (ARIMA and 

RegbyDisc), tree-based models (decision tree), various categories of neural networks (MLP and SVR), and ensemble 

learning techniques (bagging), and are stored in a 12 × 4 matrix for each dataset. The SOM-FTS technique is 

implemented on MATLAB R2021 version 9.10. MLR, MLP, SVR, AR, bagging, RegbyDisc, and DT-based models 

are implemented using WEKA version 3.8.3. The open-source package R version 4.0.2 is used to implement the 

ARIMA-based software reliability model. The open-source package PyFTS is used to implement the FTS forecasting 

models proposed by Yu [20], Cheng et al. [21], and Efendi et al. [22]. 

Phase 2: Twelve software reliability prediction models are evaluated using MCDM. The 12 × 4 matrix obtained from Phase 1 is 

used as the input for MCDM methods for selecting the most suitable software reliability prediction model taking all 

four performance measures into consideration.  

To justify the best software reliability prediction model, the software reliability prediction models are ranked by applying 

three MCDM methods, i.e., WSM, TOPSIS, and EDAS, as described in section 3.4. At last, the ranking index for software 

reliability prediction models in the form of a 12 × 1 matrix is obtained as the output of three MCDM methods for three datasets 

used in this study. 
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Fig. 3 An overview of experimental study 

5.2.   Results and discussion  

This section is further divided into two parts. The first part reports the experimental results with respect to various 

performance measures mentioned in section 3.3. for twelve software reliability prediction models for three datasets. The 

second part presents the MCDM ranking of all software reliability models. 

5.2.1.   Results of software reliability prediction  

Tables 3-5 report the experimentally obtained values of the four performance measures used in this study, namely 

NRMSE, SDARE, correlation coefficient (r), and Pred (0.2) as described in section 3.3, for twelve modeling techniques for 

three datasets (DS1, DS2, and DS3). Observations from the experimental results of Tables 3-5 are as follows:  

DS1: The proposed modeling technique SOM-FTS is the most accurate technique when considering NRMSE and correlation 

coefficient (r), whereas RegbyDisc is the most accurate technique when considering SdARE and Pred (0.2). 

DS2: The proposed modeling technique SOM-FTS is the most accurate technique when considering NRMSE, SdARE, and 

correlation coefficient (r), whereas RegbyDisc is the most accurate technique when considering Pred (0.2). 

DS3: The proposed modeling technique SOM-FTS performs best in terms of NRMSE and correlation coefficient (r), whereas 

RegbyDisc performs best in terms of SdARE. In terms of Pred (0.2), Yu’s model has the best performance [18]. 

From the above observations, it is evident that no software reliability prediction modeling technique achieves the best 

performance across all measures and across all three datasets. This motivates the authors to use MCDM methods for selecting the 

optimal software reliability prediction modeling technique in the presence of varying performance across different measures. 

Table 3 Results of software reliability prediction for DS1 

Model/performance measures NRMSE SdARE r Pred (0.2) 

MLR 0.1585 1.0613 0.6062 0.8100 

MLP 0.1506 1.0142 0.6576 0.8100 

SVR 0.1593 1.1349 0.6158 0.7900 

AR 0.1318 0.8604 0.7498 0.8500 

Bagging 0.1394 0.9170 0.7198 0.8400 

RegbyDisc 0.1106 0.8068 0.8320 0.8900 

DT 0.1267 0.8886 0.7721 0.8600 

ARIMA 0.1676 0.9949 0.5851 0.7700 

Yu [20] 0.1685 1.1872 0.5520 0.7700 

Cheng et al. [21] 0.1700 1.1801 0.5356 0.7900 

Efendi et al. [22] 0.1622 1.1123 0.5803 0.7900 

SOM-FTS (proposed model) 0.1034 0.8241 0.8546 0.8800 

Obtain the ranking index of software 

reliability models as 12 × 1 matrix by 

each MCDM method 

Apply MCDM method 

on 12 × 4 matrix for 

each dataset  

Recommend the best 

software reliability model 
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as 12 × 4 matrix for 
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Twelve software reliability prediction models 
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r 

Pred (0.2) 

Four performance measures 

Phase-1 Apply software reliability models to obtain results of four performance measures.  
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DS3 

WSM 

TOPSIS 

EDAS 



International Journal of Engineering and Technology Innovation, vol. 12, no. 4, 2022, pp. 308-321 319

Table 4 Results of software reliability prediction for DS2 

Model/performance measures NRMSE SdARE r Pred (0.2) 

MLR 0.1371 0.9405 0.6614 0.8642 

MLP 0.1451 0.9189 0.6753 0.8395 

SVR 0.1378 0.9786 0.6643 0.8704 

AR 0.1211 0.8247 0.7500 0.8889 

Bagging 0.1163 0.8244 0.7762 0.9074 

RegbyDisc 0.1095 0.8614 0.8005 0.9383 

DT 0.1320 0.9068 0.6918 0.8642 

ARIMA 0.1455 0.9411 0.6413 0.8272 

Yu [20] 0.1393 1.0289 0.6589 0.8580 

Cheng et al. [21] 0.1378 0.9984 0.6577 0.8519 

Efendi et al. [22] 0.1351 0.9560 0.6733 0.8580 

SOM-FTS (proposed model) 0.0906 0.7642 0.8685 0.9259 

 

Table 5 Results of software reliability prediction for DS3 

Model/performance measures NRMSE SdARE r Pred (0.2) 

MLR 0.1599 1.4429 0.6953 0.8421 

MLP 0.1593 1.5554 0.7172 0.8368 

SVR 0.1731 1.8204 0.6846 0.8421 

AR 0.1434 1.3053 0.7658 0.8737 

Bagging 0.1343 1.2252 0.7999 0.8842 

RegbyDisc 0.1459 1.3438 0.7549 0.8737 

DT 0.1547 1.4004 0.7184 0.8526 

ARIMA 0.1670 1.3740 0.6782 0.8368 

Yu [20] 0.1482 1.3860 0.7462 0.8895 

Cheng et al. [21] 0.1483 1.5008 0.7526 0.8632 

Efendi et al. [22] 0.1450 1.3700 0.7583 0.8842 

SOM-FTS (proposed model) 0.1230 1.2672 0.8344 0.8632 
 

5.2.2.   MCDM ranking  

In this section, three MCDM methods, i.e., WSM, TOPSIS, and EDAS, are applied to select the best model from twelve 

software reliability models, optimizing four conflicting performance measures as selection criteria and considering them 

together. Table 6 shows the ranking index for software reliability prediction models for all three datasets. From Table 6, it is 

clear that the proposed SOM-FTS model is ranked as the best among twelve software reliability prediction models for all three 

datasets by all three MCDM methods.  

Table 6 Ranking index of software reliability prediction models using MCDM methods 

Model/ranking 
Ranking for DS1 Ranking for DS2 Ranking for DS3 

WSM TOPSIS EDAS WSM TOPSIS EDAS WSM TOPSIS EDAS 

MLR 7 8 7 7 7 7 9 10 9 

MLP 6 6 6 6 8 9 11 11 11 

SVR 9 9 9 9 9 8 12 12 12 

AR 4 4 4 4 4 4 3 3 3 

Bagging 5 5 5 3 3 3 2 2 2 

RegbyDisc 2 2 2 2 2 2 5 4 5 

DT 3 3 3 5 5 5 8 7 8 

ARIMA 8 7 8 10 10 12 10 9 10 

Yu [20] 11 11 11 12 12 11 6 6 6 

Cheng et al. [21] 12 12 12 11 11 10 7 8 7 

Efendi et al. [22] 10 10 10 8 6 6 4 5 4 

SOM-FTS (proposed model) 1 1 1 1 1 1 1 1 1 
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6.  Conclusions  

This study proposes a hybrid neural-FTS (SOM-FTS) modeling technique to predict software reliability. The SOM-FTS 

technique is applied on three benchmark software reliability datasets. Also, an MCDM-based approach is applied to compare 

the SOM-FTS modeling technique with other modeling techniques in terms of various divergent performance measures. Based 

on the experimental study, the following conclusions are made: 

(1)  SOM-FTS is ranked as the best software reliability modeling technique across four conflicting performance measures 

through all the three MCDM methods (WSM, TOPSIS, and EDAS). 

(2)  This work will be helpful for software quality practitioners in two ways. Firstly, the SOM-FTS technique can be used by 

the software quality assurance teams as an efficient tool for software reliability prediction. Secondly, the proposed 

MCDM-based approach can be used for the selection of an appropriate software reliability model among various available 

software reliability prediction models considering various divergent performance measures. 

(3)  Although there are no silver bullets to predict software reliability for all conditions, the MCDM approach is an aid to 

handle this issue and select a prediction model taking into account multiple performance measures. MCDM handles this 

issue by selecting the most appropriate model among different available models for software reliability prediction by 

optimizing all performance measures. 

(4)  MCDM approach has many advantages. One of the most important key strengths of the MCDM method is that it provides 

a systematic way to select the best alternative against a set of decision criteria. Moreover, the MCDM approach can 

consider a wide range of criteria taking into account the relative importance of the different criteria. On the other hand, the 

potential weakness of the MCDM approach is that the subjectivity can be high in deciding the relative importance of 

different criteria. 

In the future, it is suggested applying the SOM-FTS modeling technique on a large number of reliability datasets of 

industrial and open-source software systems. For the datasets and software systems considered in this study, it is assumed that 

historical datasets are available. The design and development of techniques to handle sparse software failure datasets can be an 

interesting extension of this work. 
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