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Abstract  

The security and energy efficiency of resource-constrained distributed sensors are the major concerns in the 

Internet of Things (IoT) network. A novel lightweight compressive sensing (CS) method is proposed in this study for 

simultaneous compression and encryption of sensor data in IoT scenarios. The proposed method reduces the storage 

space and transmission cost and increases the IoT security, with joint compression and encryption of data by image 

sensors. In this proposed method, the cryptographic advantage of CS with a structurally random matrix (SRM) is 

considered. Block compressive sensing (BCS) with an SRM-based measurement matrix is performed to generate the 

compressed and primary encrypted data. To enhance security, a stream cipher-based pseudo-error vector is added to 

corrupt the compressed data, preventing the leakage of statistical information. The experimental results and 

comparative analyses show that the proposed scheme outperforms the conventional and state-of-art schemes in terms 

of reconstruction performance and encryption efficiency.  
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1. Introduction  

In recent years, Internet of Things (IoT) has been developing at an exponential speed, impacting people’s lives. IoT is a 

gigantic network of connected devices with a combination of different technologies and systems. Particularly, it is a network of 

“things” or “devices” used to transmit data among each other in the form of signal, text, audio, image, and video. The IoT 

network is mixed with distinct components like sensors, mechanical and digital machines, computing devices, Internet, etc. 

The total number of connected devices in IoT is increasing exponentially and will reach 75.44 billion by the end of 2025 [1].  

The wireless sensor network (WSN) is among the imperative elements of the IoT network. A general WSN consists of a 

data processing center or fusion center and many resource-constrained distributed sensors. The sensor nodes transmit the 

collected observation data over the wireless channel to the fusion center. They have a low-powered limited transmission range. 

Since the data is transmitted wirelessly over insecure channels, it can be very easily intercepted by an attacker. Therefore, 

security and energy efficiency become the major concerns in IoT-based WSNs. The WSN technology is used to perform 

healthcare monitoring, surveillance, environmental or atmosphere monitoring, process control, performance monitoring, and 

emergency management in e-healthcare, military, environmental, industrial, home, and other commercial applications [2]. 

This research proposes a joint compression and encryption scheme with the use of block compressive sensing (BCS), 

structurally random matrix (SRM), and stream cipher [3]. SRM is used to generate the random measurement matrix. Then, the 

BCS technique is applied to perform the initial encryption and compression. Further, the pseudo-random error is added to the 
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compressed measurement to ensure the final encryption. The encryption provides two-layer security by adding random errors 

and generating the measurement matrix. With the correct keys, the original image is reconstructed after performing the 

decryption and compressive sensing (CS) recovery processes.  

The remaining sections of this study are organized as follows. Section 2 presents the literature review. BCS, SRM, and 

stream cipher are described in section 3. In section 4, the proposed lightweight CS scheme is explained with a detailed 

description. The experimental results and analyses of the proposed new scheme are discussed in section 5. In the end, section 6 

provides the concluding remarks.  

2. Literature Review 

In WSN, multi-hop routing is used to deliver data from sensors to sink nodes. This increases the number of transmissions 

and consequently the energy consumption in the network. To overcome this issue, the data observed from different sensors 

should be compressed. The CS scheme is the best match to compress the gathered and transmitted data, wherein sampling and 

compression are done in one step [4-5].  

Currently, to improve the industrial environment in Industry 4.0, IoT provides system security using cyber-physic 

systems (CPS). IoT has played a key role in the growth and development of Industry 4.0, especially in real-time monitoring and 

cybersecurity. A new IoT architecture is proposed for online status monitoring of gas-insulated switchgear (GIS) instead of the 

conventional observation methods [6]. Also, a novel IoT architecture is provided for secure and reliable online monitoring of 

induction motor status [7]. These architectures are utilized in modern machine learning techniques to detect cyber-attacks. 

New and improved security mechanisms based on machine and deep learning techniques need to be further developed.  

Security is another concern because the data is wirelessly transmitted over insecure channels. Hence, energy efficiency 

and security become the main challenges in IoT-based WSNs [8]. CS can also be considered an encryption scheme when the 

measurement matrix is used as a key [9]. Consequently, joint encryption and compression of data can be achieved at the same 

time to increase energy efficiency. 

Reducing the amount of stored and transmitted data and conserving the devices are the essential challenges in the growth 

of IoT systems. The majority of IoT applications had an independent implementation of data encryption and data compression. 

CS is the best choice for IoT devices due to its capability of joint compression and encryption. Recently, some lightweight CS 

schemes have been proposed for joint compression and encryption [10-11]. Bellasi and Benini [12] analyzed the energy 

efficiency of CS in wireless sensors, developed the power estimation models, and derived a framework for the total 

consumption of different CS architectures. 

Recently, Kaur et al. [13] proposed a secure and energy-efficient model for e-health IoT networks. The secure 

transmission of biomedical images is achieved with CS and a hyper-chaotic map. CS is applied to the biomedical images to 

generate the compressed images. To encrypt the biomedical images, the compressed images are initially diffused and 

permutated row-wise to generate the scrambled images. Finally, the scrambled images are diffused and permutated 

column-wise to generate the encrypted images. Zhang et al. [14] proposed an enhanced CS-based data collection method in 

WSN by using asymmetric semi-homomorphic encryption to improve security. The sparse compressive matrix is used to 

reduce the computation cost. 

The security and energy efficiency of lightweight CS-based schemes are highly dependent on the implementation of CS 

and the generation of measurement matrices. In recent studies, CS is replaced with BCS for making the scheme much more 

energy-efficient [15-16]. In BCS, an image is partitioned into non-overlapping blocks, and CS is applied independently on 

each block with a different or same measurement matrix. 
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Measurement matrices are categorized into two types: random and deterministic. Independent identically distributed 

(i.i.d.) Gaussian random matrices, partial Fourier matrices, and Bernoulli matrices are widely used as random measurement 

matrices. Circulant matrices, Toeplitz matrices, and binary matrices are used as deterministic measurement matrices. There are 

other methods to generate measurement matrices, such as chaos [17] and linear feedback shift register (LFSR) [18]. SRM is 

used for fast and efficient real-time CS applications which have merits like block-based processing and fast computation [19]. 

In CS, a measurement matrix is used for the compression of an original image. The measurement matrix can be used as a 

key in performing simultaneous compression and encryption of images. However, the simultaneous encryption and 

compression method using a measurement matrix as a key does not guarantee security. With the observation of information 

leakage and histogram analysis, the information about the original image is revealed, showing that CS compression schemes 

require additional encryption to accomplish confidentiality. 

3. Preliminaries  

3.1.   Block compressive sensing (BCS) 

A signal acquisition and processing scheme which aims to sample and reconstruct a sparse signal below the Nyquist rate 

of sensor data is called CS. Using a measurement matrix (�) of size m × n (m << n), a high-dimensional sparse signal x of size 

n × 1 is converted into a lower-dimensional signal y of size m × 1. This dimensionality reduction procedure shown in Eq. (1) is 

called CS encoding or CS compression. 

1 1m nm ny x×× ×= φ  (1) 

The accurate recovery of x from the measurement vector y is accomplished through the solution of the l1-optimization problem, 

which is shown in Eq. (2). 

1
arg minx x=  s.t. y x= φ  (2) 

Most sensor signals are not sparse. To make them sparse, the signal of interest into another transform domain uses a sparsifying 

basis Ψ. Then, the signal recovery problem becomes: 

1
arg minx x=  s.t. 

1
y x x

−
Ψ= =φ φ  (3) 

The two-dimensional signal recovery using Eq. (3) is a computational burden process. In BCS, the image acquisition is 

accomplished through the same operator in the block-by-block method. The image is divided into c non-overlapping blocks of 

size b × b, and CS is applied independently on each block with the following measurement matrix: 

1

2

0 0 0
0 0 0

0 0 0 c

BCS

 
 
 
 
  

=
⋯ ⋯ ⋱ ⋮

φ
φ

φ
φ  (4) 

The information carried out by the non-overlapping BCS empowers parallel sampling and reconstruction. Finally, image 

reconstruction is conducted through the simultaneous recovery of each block using Eq. (3).  

The fundamental definition of CS is converting high-dimensional data into lower-dimensional data. This dimensionality 

reduction procedure generates the compressed data smaller than the original ones. These compressed data reduce the storage 

space when stored in a hard disk or memory card, and minimize the transmission cost when transmitted over the channel. Thus, 

by using the CS method, the storage space is reduced and the transmission cost is minimized. 
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3.2.   CS with structural random matrix (SRM) 

SRM is a novel method for fast and efficient CS. The measurement matrix using SRM is denoted as (����), and is a 

product of random permutation matrix (R), fast computable transform (F), and random subsampling matrix (D). The 

mathematical representation is as follows.  

SRM
DFR=φ  (5) 

SRM pre-randomizes the signal of interest by multiplying it with the matrix R, and then applies a fast computable 

transform on a randomized signal to spread the information to all measurement coefficients. Finally, the operator D is 

multiplied by randomly selected transform coefficients. The structure of SRM is depicted as:  

1 1 1

2 2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 cc c

SRM

D F R
D F R

RD F

     
     
     
         

=
⋯ ⋯ ⋱ ⋮ ⋯ ⋯ ⋱ ⋮ ⋮

φ  (6) 

The advantages of SRM are block-based processing support, high computational speed, less complexity, and ease in hardware 

implementation.  

3.3.   Stream cipher 

Stream cipher is a cryptographic method used to encrypt and decrypt the data based on a symmetric key. Stream cipher 

can encrypt plaintext messages of variable length into a ciphertext. The scheme of stream cipher is shown in Fig. 1. The 

keystream generator produces a pseudo-random sequence (keystream) using a secret key. The generated keystream bit is 

XORing with plaintext bit to create a ciphertext bit. At the end of this one-bit-at-a-time process, the ciphertext is generated, 

which is called stream cipher encryption. In the decryption process, the same original plaintext is regenerated from the 

ciphertext using the same key. Stream cipher is most suitable for high-speed and low-complexity operations. 

 

 

 

 

 
 

Fig. 1 Stream cipher scheme  
 

4. Proposed Lightweight Scheme 

In this section, the SRM-based BCS scheme is discussed, and a novel lightweight CS scheme is proposed. In the 

SRM-based BCS scheme, as shown in Fig. 2, a 32 × 32 block diagonal Walsh-Hadamard transform (WHT) is considered for 

the generation of the measurement matrix. The compressed bitstream is generated with CS projection and SRM. Due to the 

inherent property of CS, it yields the initial encryption. There is a possibility of information leakage because the linear 

combination of input samples urges the CS encoder to preserve some original image characteristics. To restrict the information 

leakage, the SRM-based BCS scheme requires additional encryption of compressed samples.  
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Fig. 2 SRM-based CS scheme 
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The proposed lightweight CS scheme is shown in Fig. 3. The image captured from the sensor node is applied to BCS 

projection to generate the measured coefficients with the help of an SRM-based measurement matrix, which results in the 

initial encryption and compression. Further encryption is obtained by encrypting the measured coefficients with symmetric 

key-controlled stream cipher. The step-wise procedure of the proposed scheme is as follows. 

Step 1: Pre-process the captured image 

The captured image from the sensor node is considered the original image (X) of size N × N, which is divided into equal 

and non-overlapping blocks of size b × b. Then, the total number of blocks is B = N
2 
/ b

2
. Each block is vectorized into a column 

vector of size (b
2
 × 1) of a preprocessed matrix of size (b

2
 × B).   

{ } iX x=  s.t.   1, 2, ..,i B= …  (7) 

where xi is the coefficient vector of the i
th

 block. 

Step 2: Generate the measurement matrix  

The random permutation matrix (R) and random sub-sampling diagonal matrix (D) can be generated using a secret key K1. 

Each row and column of R and D have only one position of value 1. A 32 × 32 block diagonal WHT is used as a fast transform 

(F) to generate the measurement matrix. The size of D determines the size of the � matrix. SRM requires storing only the 

diagonals of D, R, and F instead of the entire matrices, which greatly reduces the storage space and computational complexity. 

In this SRM method, each block is equally important, because of the random selection of sub-sampled signals from the original 

signal. The size of the measurement matrix (����) is M × b
2
, where M = CR × b

2
. CR refers to the compression ratio (CR), 

which is the number of measurements over the total number of coefficients. 

2 2 2 2 2 
S R M M b b b b b

D F R
× × ×

=φ  (8) 
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Fig. 3 Proposed lightweight CS scheme 
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Step 3: Obtain the measured coefficient matrix through BCS 

BCS is performed by superimposing the coefficient vector on the measurement matrix, which results in the corresponding 

compressed measured coefficient vector of size M × 1. 

iS Mi Ry x= φ  (9) 

where yi is the measured coefficient vector of the i
th

 block. With the sequential procedure, at the end of all the blocks, a 

compressed image (Y) of size M × b is generated. The measured coefficient matrix is formed as:  

{ }iyY =  s.t.   1, 2, ......,i B=  (10) 

This results in the compression and initial encryption of the original image. The histogram analysis in section 5.2.1 shows that 

the histogram of the compressed image is not uniformly distributed. In other words, CS measurements reveal some of the 

characteristics of the original image, which is why further encryption is required. 

Step 4: Encrypt the measured coefficients 

The compressed coefficients are encoded to generate a bitstream. The resultant bitstream is randomly corrupted through 

the addition of key-controlled pseudo-random error to get the uniform distribution of CS measurements. If K2 is considered the 

key for pseudo error vector (�) generation, the individual pseudo-random error bits are XORed with the individual bits of the 

encoded measured coefficients, and the resultant encrypted vector stream is as follows. 

ˆ iiy y= ⊕ η  (11) 

Stream cipher is used to generate one row of the matrix at each clock cycle. After that, the encrypted image Ye is generated. 

{ }ˆ s.t. 1, 2, ......,
ieY y i B= =  (12) 

This lightweight encryption process restricts the leakage of statistical information. 

Step 5: Decrypt the measured coefficients 

The same and opposite of the encryption process is produced by the decryption process. With the correct key K2, the pseudo 

error vector is generated and XORed with the encrypted measured coefficients, resulting in the decrypted measured coefficients. 

ˆ iiy y= ⊕ɶ η  (13) 

Then, the decrypted image Yd is generated as: 

{ } s.t. 1, 2, ......,id iY y B== ɶ  (14) 

Step 6: Recover the measurement coefficients 

The optimization problem defined in Eq. (2) is applied with the correct key K1 on the decoded-decrypted measured 

coefficients to recover the measurement coefficient vectors of size (b
2
 × 1). Then, the size of the resultant recovered coefficient 

matrix is (b
2
 × B). 

Step 7: Reconstruct the original image 

The reconstructed image �� of size N × N is generated by converting the recovered vector data into the corresponding 

blocks of b × b size.  
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The above step-wise procedure of the proposed scheme is represented with pseudo-code. The pseudo-code of the 

encoding process for estimating the encrypted image is summarized in Algorithm 1, and the pseudo-code of the decoding 

process for reconstructing the original image is summarized in Algorithm 2.  

Algorithm 1: Encoding process 

Inputs: The original gray image X of size N × N, keys K1 and K2, and block size b 

Initialize Y = [ ], Ye =[ ]; 

1: B = N
2 
/ b

2
                                                              Compute the total number of blocks  

2: X = im2col (X, [b b], 'distinct')                             Rearrange the image blocks into columns 

3: X ={ xi }                                                                xi is the coefficient column vector of the i
th

 block 

4: Phi = DFR                                                            Calculate the measurement matrix using K1 

5: Calculate the compressed data segment: 

for  i = 1: B  do 

yi = Phi × xi                                                       yi is the compressed column vector of the i
th

 block 

Y(:, i) = yi                                                         Compressed image 

end for 

6: Generate the pseudo error vector (Eta) using K2  

7: Estimate the encrypted data segment:  

for  i = 1: B  do 

yenc_i = xor(Y(:, i), Eta) 

Ye (:, i) = yenc_i                                                 

end for 

Output: The encrypted image Ye  

 

Algorithm 2: Decoding process 

Inputs: The encrypted image Ye, keys K1 and K2, and block sizes b and N 

Initialize Yr = [ ], Yd =[ ]; 

1: B = size (Ye, 2)                                                       Compute the column size  

2: Generate the pseudo error vector (Eta) using K2  

3: Estimate the decrypted data segment:  

for  i = 1: B  do  

ydec_i  = xor(Ye(:, i), Eta) 

Yd (:, i) = ydec_i                                                

end for  

4: Phi = DFR                                                             Calculate the measurement matrix using K1 

5: Yr = l1 minimization (Yd, Phi)                                Recovered image 

6: N = sqrt((B × b
2
)) 

7: Xr = col2im(Yr, [b b], [N N], ‘distinct’)                 Rearrange the columns into image blocks 

Output: The reconstructed image Xr 

 

5. Experimental Results and Analyses 

This section provides experimental results to assess the performance of the proposed scheme. The standard “Lena” image 

and some other images from the dataset Miscellaneous [20], with 8 bits/pixel grayscale of size 512 × 512, are used. The 

original image is partitioned into 32 × 32 size blocks. The total number of blocks becomes 256. Each block is converted into a 

1024 × 1 vector and then formed into a pre-processed matrix of size 1024 × 256. A 128- bit secret key (K1) is used to generate 

the diagonal elements of D and R. The size of the SRM-based measurement matrix is 358 × 1024 with CR = 0.35 resulting in 

the compressed image of size 358 × 256.  

The stream cipher that produces the bitstream is a good candidate for the generation of pseudo-error vectors. Among 

various stream ciphers, Bivium with a 128- bit secret key (K2) is considered because of its high throughput and medium 

hardware complexity [21]. The iterative l1 norm minimization algorithm is considered to restore the coefficient matrix of size 
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1024 × 256, and a 512 × 512 image is reconstructed with vector to block conversion. A set of simulations is carried out through 

MATLAB R2019a in Intel(R)Core(TM) i7-6700CPU, 64-bit windows 10 with 8 GB RAM desktop to validate the 

effectiveness of the proposed scheme.  

A 512 × 512 pixels “Boat” image, as shown in Fig. 4(a), is considered the captured original image. After successful 

compression and encryption, the generated encrypted image of size 358 × 256 is shown in Fig. 4(b). The peak-to-signal noise 

ratio (PSNR) value is 31.6244 dB with CR = 0.35. The encrypted image is corrupted and there is no correct information 

leakage of the original image. With the correct key value, decryption and decompression are performed to get the recovered 

image, as shown in Fig. 4(c). The proposed scheme has 2
256

 keyspace, which is adequate to resist brute attacks. The recovered 

image, which is not correlated with the original image, is shown in Fig. 4(d) and is obtained by a single-bit change in the key 

value of K2. Hence, the proposed scheme is key-sensitive and provides better security. 

  

(a) Original image (b) Encrypted image with CR = 0.35  

and PSNR = 31.6244 dB 

  

(c) Reconstructed image with  

correct keys 

(d) Reconstructed image with  

one-bit change in K2 

Fig. 4 Experimental results on the “Boat” image 

5.1.   Performance analyses 

The performance analyses of the proposed scheme are measured in two metric values. PSNR is used to evaluate the 

reconstruction performance, and the structural similarity index measure (SSIM) is used to measure the image quality. The 

PSNR value is defined as: 

1020log (255 / )PSNR MSE=  (15) 

where MSE is the mean squared error, which is estimated as:  

0

1 1 2

0

1
( , ˆ) ( , )

N N

i j

MSE X i j X i j
N N =

− −

=

= −
× ∑∑  (16) 

The graph shown in Fig. 5(a) represents the PSNR curve as a function of CR. The x-axis value represents CR and the 

y-axis value represents PSNR. The PSNR curves depicted in Fig. 5(a) represent the image recovery of different images with 

different CRs. It is observed that, with the least CR, the PSNR value is more than 25 dB, which is a competent performance 

value in image recovery. Hence, the proposed scheme has good image recovery performance with fewer measurements. SSIM 

is a quality measurement used to find the similarity between two images by comparing the resultant image with the reference 

image. The SSIM graph shown in Fig. 5(b) represents the reconstructed image quality of different images with different CRs. 

The value of SSIM is more than 0.5 in all cases, meaning that the proposed scheme has stable image reconstruction.  
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(a) PSNR (b) SSIM 

Fig. 5 Performance evaluation of the proposed scheme with PSNR and SSIM values 

5.2.   Security analyses 

The reliability of the proposed scheme is verified with security analyses. The security analyses are examined in terms of 

the histogram analysis, correlation coefficient analysis between two adjacent pixels, information entropy analysis, diffusion 

analysis, and timing analysis.   

5.2.1.   Histogram analysis 

An image histogram represents the pictorial distribution of pixel intensities. The distribution pattern of pixels determines 

the quality of encryption. The peaks in the non-uniform histogram reveal the most information. The histogram of the plain 

image, the compressed image, and the encrypted image are shown in Figs. 6(a)-(c) respectively. The histogram of the 

compressed image contains peaks and it is easy for an eavesdropper to get any information, whereas the encrypted image 

histogram is uniformly distributed and does not contain any peaks, which restricts the statistical attacks.  

   

(a) Original image (b) Compressed image (c) Encrypted image 

Fig. 6 Histogram analysis of the “Boat” image 

5.2.2.   Correlation coefficient analysis 

Correlation coefficients (CC) are analyzed to measure the correlation between two adjacent pixels in horizontal, vertical, 

and diagonal directions. Theoretically, the CC value is very low (near 0) in an encrypted image and high (near 1) in a plain 

mage, which means that pixels are not close to each other in the encrypted image and are very close to each other in the plane 

image. The mathematical expression for the CC of two adjacent pixels is defined as: 

[ ][ ]

[ ] [ ]

1

2 2

1 1

1
( ) ( )

1 1
( ) ( )

S

i ii

S S

i ii i

p E p q E q
SCC

p E p q E q
S S

=

= =

− −
=

− −

∑

∑ ∑
 (17) 
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1
( )

S

ii
E p p s== ∑  (18) 

1
( )

S

ii
E q q s== ∑  (19) 

where p and q are grayscale values of two adjacent pixels. S is the total number of selected adjacent pixel pairs. E(p) and E(q) 

are the mean values of pi and qi respectively.  

8,000 pairs of neighboring pixels in each direction are randomly selected to calculate the CC values in both the encrypted 

image and its corresponding original image. The CC values of different original images and their corresponding encrypted 

images are tabulated in Table 1. From Table 1, it can be seen that the original images’ CC values are very close to 1 and the 

encrypted images’ CC values are very close to 0, which indicates that the proposed scheme can resist statistical attacks. Table 

2 shows the pixel distribution of the original “Boat” image and encrypted “Boat” image in all three directions. The pixel 

distribution of the original image has a unique pattern, whereas the pixel distribution of the encrypted image has a uniform 

pattern in all three directions.  

Table 1 Cross-correlation values of original and encrypted images in  

horizontal, vertical, and diagonal directions  

Image 
Horizontal Vertical Diagonal 

Original Encrypted Original Encrypted Original Encrypted 

Boat 0.93711 0.00054 0.97182 -0.00416 0.97827 0.00065 

Lena 0.96627 -0.00135 0.96896 0.00173 0.93571 -0.00142 

Airplane 0.95596 0.00171 0.95547 -0.00261 0.93143 0.00065 

Truck 0.98652 0.00035 0.95287 0.00072 0.91589 -0.01258 

 

Table 2 Pixel distribution of encrypted and original “Boat” images in horizontal, vertical, and diagonal directions  

Image Horizontal Vertical Diagonal 

Encrypted 

 
 

 
 

 
 

Original  

 
 

 
 

 
 

 

5.2.3.   Information entropy analysis 

The information entropy is a statistical quantity of the pixel distribution used to evaluate the performance of the 

encryption scheme and it is expressed as: 
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2 1

2
0

( ) log )(

k

j j
j

E p A p A
−

=
= −∑  (20) 

where p(Aj) is the probability of (Aj). The standard value of entropy is 8 because 2
8
 possible values are presented in the image. 

The entropy values before and after encryption are presented in Table 3. From Table 3, the entropy of the encrypted image is 

close to 8, i.e., there is more randomness in the encrypted image as compared to the original image. Thus, the proposed scheme 

is secure against entropy attacks. 

Table 3 Information entropy values of different original images  

and their corresponding encrypted images 

Image Original image Encrypted image 

Boat 7.2189 7.9915 

Lena 7.8055 7.9997 

Airplane 7.3298 7.9995 

Truck 7.1532 7.9938 

5.2.4.   Diffusion analysis 

The strength of an encryption scheme is measured with diffusion performance. The differential attack is used to determine 

the diffusion performance. The impact of a small change in the plain image on the corresponding encrypted image determines 

the ability of the proposed scheme to resist differential attacks. The difference between the original image I1 (i, j) and encrypted 

image I2 (i, j) is measured by the number of pixel change rate (NPCR) and unified average changing intensity (UACI). These 

values are defined as: 

1 1

1
100%( , )

N M

i j

NPCR D
NM

i j
= =

= ×∑∑  (21) 

1 2

1 2

( , )
0 ( , ) ( , )

1 ( , ) ( , )
i j

I i j I i j
D

I i j I i j





≠
=

=
 (22) 

1 2

1 1

1 ( , ) ( , )
100%

255

N M

i j

I i j I i j
UACI

NM = =

−= ×∑∑  (23) 

Theoretically, the NPCR and UACI values are 99.6094% and 33.4635% respectively. Table 4 shows that the NPCR and UACI 

values are near the theoretical values. This shows that the proposed scheme has better resistance to the differential attacks. 

Table 4 NPCR and UACI values for plain image sensitivity test 

Image NPCR UACI 

Boat 99.6018 33.5523 

Lena 99.6041 33.4898 

Airplane 99.6095 33.4912 

Truck 99.6063 33.5524 

5.2.5.   Timing analysis 

In real-time, for processing images, the encryption scheme should be implemented as quickly as possible. The simulation 

is carried out twenty times, and the average execution time for the encryption process, decryption process, and total time is 

displayed in Table 5. 

Table 5 Total execution time (in sec.)  

Image Encryption Decryption Total 

Boat 2.1643 0.9276 3.0919 

Lena 1.6351 1.0901 2.7252 

Airplane 2.8074 2.2970 5.1044 

Truck 2.8022 1.6296 4.4318 
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5.3.   Average evaluation results across whole datasets 

To verify the superiority of the proposed scheme, the evaluation metrics are measured across datasets [20]. Different 

datasets, namely Textures, Aerials, Sequences, and Miscellaneous, are considered. The simulation is carried out over 20 times 

to remove the randomness, and all the evaluation metrics as shown in Table 6 are averaged over all the images in the datasets.  

Table 6 Evaluation metrics averaged over all images for different datasets 

Image 

dataset 
PSNR SSIM 

Correlation coefficients 
Information 

entropy 
NPCR UACI 

Total  

execution  

time 
H V D 

Textures 28.4885 0.9380 0.00008 -0.00015 -0.00013 7.9968 99.6032 33.15 3.140483 

Aerials 31.7218 0.9751 0.000645 0.00925 -0.00410 7.9935 99.6089 31.48 3.502147 

Sequences 30.7502 0.9535 0.000042 -0.000001 0.00017 7.9918 99.6015 33.49 2.933631 

Miscellaneous 30.3295 0.9894 -0.00051 0.00172 0.00853 7.9925 99.6046 31.55 3.664448 

5.4.   Comparative analyses 

A comparison is made in terms of two aspects: reconstruction performance and encryption efficiency. In this comparative 

analysis, various approaches are compared with the help of an image database that has 512 × 512 size images like ‘‘Boat”, 

‘‘Lena”, ‘‘Airplane”, and ‘‘Truck”. BCS is considered with non-overlapping and independently-sampled 32 × 32 size blocks, 

and different CR values are compared. In recent years, the most popular iterative image recovery algorithm, i.e., the BCS based 

on the smoothed projected Landweber (BCS-SPL) algorithm, had Wiener filtering for smoothness and hard thresholding 

operations for sparsity in every iteration. Information loss is possible due to hard thresholding, which results in a reduction in 

image recovery. The suggested BCS-focal underdetermined system solver (BCS-FOCUSS) algorithm is compared with the 

BCS-SPL algorithm with discrete wavelet transform (DWT), discrete cosine transform (DCT), and dual tree discrete wavelet 

transform (DDWT), resulting in significant performance gain and better reconstruction quality [16]. 

  
(a) Boat image (b) Lena image 

  
(c) Airplane image (d) Truck image 

Fig. 7 Comparison between the reconstruction performance of the proposed scheme and other schemes  

by using PSNR vs CR for images 
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(a) Boat image (b) Lena image 

  
(c) Airplane image (d) Truck image 

Fig. 8 Comparison between the image quality of the proposed scheme and other schemes  

by using SSIM vs CR for images 
 

The proposed scheme is compared with other schemes wherein a random sensing matrix is generated with different 

implementations, such as partial fast Fourier transform (PFFT) in the time domain, PFFT in the wavelet domain (WPFFT), and 

SRM with 32 × 32 block diagonal WHT [18, 22].  

The proposed scheme is compared with BCS-FOCUSS and other sensing matrix approaches in terms of PSNR and SSIM. 

The PSNR and SSIM comparison graphs using “Boat”, “Lena”, “Airplane”, and “Truck” images are shown in Fig. 7 (a)-(d) 

and Fig. 8 (a)-(d) respectively. With this comparison, the proposed scheme has better reconstruction performance. The 

proposed scheme is compared with other state-of-art encryption techniques using 512 × 512 “Lena” image to verify the level of 

encryption efficiency. A lightweight cryptosystem, based on a new chaotic S-box and advanced encryption standard, is 

explained in the highly constrained IoT devices scenario [23]. Khan and Munir [24] proposed a new technique for image 

encryption, wherein advanced encryption standard (AES) was extended to the Galois field of any characteristic. An encryption 

scheme with Lorenz system chaos-based logarithmic key generation as described by Tariq et al. [25] had reasonable digital 

multimedia security over the existing benchmark techniques. 

Table 7 Encryption efficiency for different encryption schemes  

Algorithm 
Correlation coefficients Information  

entropy 

Recovered image  

PSNR (dB) 
NPCR UACI 

Horizontal Vertical Diagonal 

Proposed -0.0013 0.0017 -0.0014 7.9997 31.62 99.60 33.48 

[23] -0.0636 0.0465 0.0669 7.9401 - - - 

[24] -0.0147 -0.1297 0.0027 7.9522 - 99.52 33.51 

[25] −0.0026 0.0031 −0.0043 7.9974 - 99.62 31.03 

[26] 0.0053 0.0078 0.0042 7.9895 28.95 99.52 32.71 

[27] -0.0022 0.0023 0.0034 - 31.15 99.56 33.45 
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An efficient, lightweight, and robust technique for image encryption using 2-D von-Neumann cellular automata (IEVCA) 

is suggested for IoT applications [26]. The meaningful image encryption scheme is implemented based on BCS and singular 

value decomposition (SVD) embedding [27]. The comparison made in terms of the CC in all three directions, information 

entropy, recovered image performance, NCPR, and UACI are provided in Table 7. Experimental results show that the 

proposed scheme has improved reconstruction performance and better encryption efficiency. 

6. Conclusions 

In this study, a novel lightweight CS scheme is proposed for simultaneous compression and encryption of sensor data in IoT. 

Firstly, BCS with SRM-based measurement matrix is applied to the captured image to generate the compressed and initial 

encrypted image. Then, a stream cipher-based pseudo-error vector is intentionally added to corrupt the compressed data, which 

yields further encryption. Finally, with the correct key values, the reconstructed image is obtained after successful decryption and 

CS recovery. The experimental results give the PSNR value in the range of 25-40 dB depending on the compression ratio. With 

the experimental results and analyses, the proposed two-layered lightweight encryption scheme shows improved reconstruction 

performance and better encryption efficiency compared to the conventional and other state-of-art methods. There is a possibility 

of reduced storage space and minimized transmission cost due to the usage of BCS. The proposed study is limited to the 

encryption of grayscale images. The proposed method can be applied to the encryption of color images with different sizes and 

further extended to video encryption. The proposed lightweight CS method provides a promising solution to be implemented on 

other security applications in the future, especially in IoT-based Industry 4.0 using advanced machine learning algorithms.    
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