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Abstract  

This study proposes an ant colony optimization (ACO) denoising method with dynamic filter parameters. The 

proposed method is developed based on ensemble empirical mode decomposition (EEMD), and aims to improve the 

quality of vibrarthographic (VAG) signals. It mixes the original VAG signals with different white noise amplitudes, 

and adopts a hybrid technology that combines EEMD with a Savitzky-Golay (SG) filter containing the dynamic 

parameters optimized by ACO. The results show that the proposed method provides a higher peak signal-to-noise 

ratio (PSNR) and a smaller root-mean-square difference than the regular methods. The SNR improvement for the 

VAG signals of normal knees can reach 13 dB while maintaining the original signal structure, and the SNR 

improvement for the VAG signals of abnormal knees can reach 20 dB. The method proposed in this study can 

improve the quality of nonstationary VAG signals. 
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1. Introduction  

Knee disorders are often caused by the damage to cartilages and menisci, which leads to pain and disability in daily life 

activities [1]. In most cases of knee injury or disorder, the affected knees generate odd vibration or sound signals, which are 

referred to as vibrarthographic (VAG) signals. Although VAG signals are also present in healthy knees, the VAG signals from 

normal knees are regular and show insignificant amplitude. In contrast, the VAG signals from abnormal knees have features 

that are different from those of normal knees. Signal analysis technology can extract the features from abnormal VAG signals 

[2]. Notably, there is a long history of applying the vibration and sound of knee joints to the clinical diagnosis of knee disorders. 

Stethoscopes and palpation were used for diagnosis in the past, but the accuracy depends entirely on doctors’ experience. With 

the development of electronic technology, VAG signals can be digitized for data analysis. After signal processing and analysis, 

the damaged knee joints and healthy knee joints usually can be distinguished by extracting the features of VAG signals. 

However, it is challenging to analyse VAG signals that contain non-periodic and fast transient features [3].  

Some researchers argued that wavelet transform (WT) is useful for extracting the signals captured during dynamic knee 

movement. Indeed, WT has a higher accuracy resolution in terms of time and frequency scales than fast Fourier transform 

(FFT). The reason is that FFT decomposes a signal into its frequency components and loses information in the time domain. 

The continuous WT analysis is also considered to be a tool for the VAG signal analysis of knee joint pathology [4]. 

                                                           
*

 
Corresponding author. E-mail address: gong-rui@ed.tmu.ac.jp  

Tel.: +81-42-677-1801; Fax: +81-42-677-1801 



International Journal of Engineering and Technology Innovation, vol. 12, no. 1, 2022, pp. 01-15 
 

2 

Before signal analysis, there is a challenge in pre-processing biological signals when it comes to denoising. The biological 

signals are susceptible to the surrounding environment and the physical state of participants. In addition, VAG signals are 

unstable signals with low signal-to-noise ratio (SNR), similar to sonar signals [5]. Although VAG signals usually can be used to 

draw a distinction between aged and healthy knees, the denoising process for VAG signals still affects the overall classification 

accuracy [6]. Hence, a better pre-processing model for denoising VAG signals is required. Compared with the denoising process 

for electrocardiogram (ECG), the denoising process for VAG signals is harder because there are few fixed-shape waveforms and 

inconspicuous peaks and valleys in VAG signals [7]. The VAG signal waveforms vary significantly, depending on whether the 

knee joints are affected by cartilage or ligament disorders [8]. The most problematic VAG signals in the denoising process are 

from healthy and slightly damaged knees. The VAG signals in these knees have fewer peaks and lower amplitudes, and are more 

easily disturbed by environmental interference and random noise. Many studies have attempted to remove the noise by traditional 

filters, but it is still difficult to distinguish signals from noise in VAG signals [6].  

Therefore, this study develops a novel hybrid method that uses signal decomposition followed by filtering with optimal 

adaptive parameters. The representative decomposition method is empirical mode decomposition (EMD) method, which is 

often used to decompose biological signals and to combine well-designed filters for denoising. However, there is a 

mode-mixing problem that cannot be ignored [9]. The mode-mixing problem in VAG signals is caused by noise interference. 

There is a high-frequency noise discontinuity distribution in the original VAG signals, leading to make the signals to be 

localized high-frequency signals. As a result, the mode-mixing problem causes the point of the local extreme value of the 

original signal distribution to mutate, and trigger the envelope formed by the local extreme value point to exhibit jump 

phenomena. The resulting time-scale fit error causes a mode-mixing phenomenon occurred in the EMD process. When the 

mode-mixing phenomenon occurs, an intrinsic mode function (IMF) can cease to have physical meaning by itself, falsely 

suggesting that different physical processes are represented in a mode. Hence, an ensemble EMD (EEMD) method is 

developed as a modified method of EMD [10]. 

However, even with the use of EEMD-based hybrid denoising technology, the SNR improvement is not perfect for the 

VAG signals of healthy knees when the filter is with fixed thresholds and parameters. The denoising problem of abnormal 

VAG signals needs to be addressed as a priority. Therefore, researchers have sought help from evolutionary algorithms [11]. 

Some studies reported that a hybrid filter with a genetic algorithm (GA) has been successfully applied to ECG signals [10]. 

Nevertheless, there has been little progress in the noise reduction processing of VAG signals because of the inability to 

preserve real signal components while removing noise components. In addition, the noise components and real signals of VAG 

signals are not evenly distributed to each sub-signal by EEMD. Therefore, if a filter with adaptive thresholds can be added to 

each sub-signal, then it is possible to remove noise while preserving real signals to the greatest extent. An algorithm named 

zero-crossing rate (ZCR) is considered for verification. ZCR is the number of times within an epoch in which the signal crosses 

the zero-amplitude axis, to evaluate each sub-signal and the use of an optimized Savitzky-Golay (SG) filter to remove noise 

components. Thus, ant colony optimization (ACO) algorithm is used to select the optimal parameters in this study. 

ACO algorithm as a swarm intelligence algorithm has been applied to several combinatorial optimization problems [12]. 

Ants deposit pheromones to mark a favourable path that other members can follow [13]. In the proposed method, the high SNR 

is the “food,” and the parameters and threshold of a denoising filter are the “favourable path”. Accordingly, this study attempts 

to design a denoising filter that combines ACO, and uses the optimization parameters based on EEMD to obtain stable VAG 

signals with high quality after denoising. In this study, the proposed method not only improves the VAG signal quality, but can 

also be applied to other low-amplitude biological signals based on the results of this study. The proposed method may become 

an inspiration for noise reduction technology for low-amplitude signals. The study is organized as follows. Section 2 describes 

the methods, section 3 provides the results and discussion, and section 4 contains the conclusions. 
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2. Methods 

2.1.   VAG signal acquisition and pre-processing 

A sensor (7BB-20-6L0 piezoelectric sensor, Murata) is attached to the tibia of participants, which is 15 cm below the 

center of the patella using medical double-sided adhesive tape. An acceleration sensor (KXR94-2050 tri-axis accelerometer, 

Kionix) is attached to the thigh of each participant to measure the flexion-extension angle of the knee joint. The participants 

must keep their arms tight against the body and keep their feet shoulder-width apart while sitting down on a calf-length chair 

with armrests. The patients stand up and sit down as steadily as possible three times within 3 seconds [14]. Before the 

experiment, each participant has practiced the required movement with the same rhythm. During the experiment, a device is 

used to record VAG signals and angle signals at a sampling rate of 2000 Hz. 

In the data pre-processing step, to monitor the features of the interest from VAG signals, the flexion-extension movement 

must be repeated three times to determine the timestamp of angle signals. The raw VAG signals are interrupted according to 

the timestamp, and each VAG signal length is set between 5000 and 6000.  

Correcting the baseline wander is an essential step. A baseline wander is a typical artifact that causes the distortion of the 

recorded VAG signals and hinders the correct diagnosis of diseases [15]. The baseline wander is a low-frequency artifact in VAG 

signals that commonly arises from the amplifier or participant movement and is quickly removed by a moving-average filter in the 

present study. An example of the acquired VAG signals after cutting and correcting the baseline wander is shown in Fig. 1. 

In Fig. 1(a), although the VAG signals in the left and right knees do not differ significantly in stages (a)-(b), more 

substantial amplitude peaks are present in the left knee in stages (b)-(c). These peaks have a higher full width at half maximum 

(FWHM), which is probably the reason of the slight pain. The possibility of injury may be hidden by pain or discomfort in the 

knee joint, manifested as different frequency and amplitude peaks (particularly high FWHM peaks) in the VAG signal 

waveform [16]. For the denoising process, the signals without any particularly pronounced peaks are more difficult to handle. 

The present study prefers to use the normal knee VAG signals to test the denoising capability of the proposed algorithm. 

 
(a) Standing-up movement and sitting-down movement 

 
(b) VAG signals obtained from the left knee of a participant 

 
(c) VAG signals obtained from the right knee of a participant 

Fig. 1 VAG signals and bending angles during dynamic knee movement 
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Therefore, the present study uses 60 sets of VAG data obtained from 26 participants with normal knees. The participants 

are aged between 20 and 30, do not have any pain or discomfort in knees, and are not diagnosed with knee joint disorders 

before the experiment. For comparison, this study also uses 10 sets of VAG data obtained from three participants who are aged 

between 80 and 90 and have knee pain and limited mobility [6]. All the participants have provided informed consent, and the 

ethics review board of Tokyo Metropolitan University has approved the study design (approval number H2-111). 

Before the denoising algorithm is used, white noise signals are added to the original VAG signals. White noise is a 

random signal with a constant power spectral density. The power of the white noise signals in each frequency band is the same, 

and is often used to test the effectiveness of the denoising method [17]. In the present study, white noise is added in two ways. 

The first is to set the white noise amplitude based on the SNR of the noisy VAG signals and the original VAG signals. The 

second is to set the white noise amplitude based on the percentage of the peak value of the original VAG signals. The white 

noise added in this study does not influence the results. It is only used to test the effectiveness of the denoising method in 

various imaginary-noise environments.  

2.2.   Standard denoising method 

After completing the pre-processing work of all the collected VAG signals, the next stage is to conduct a denoising 

process. Denoising methods are usually classified into two types: a denoising process after decomposition and a direct 

denoising process, as shown in Fig. 2.  

 

 
Fig. 2 Denoising methods 

As the name implies, a direct denoising process is performed on the original signals. In contrast, with the denoising 

process after decomposition, the original signals are firstly decomposed into sub-signals, and then the denoising process is 

conducted on these sub-signals. The denoising process after decomposition (path (b) in Fig. 2) is chosen as the standard 

denoising method in this study. Because any signal can be assumed to consist of different sub-signals of an oscillation, the sum 

of the information from the sub-signals is greater than that from the original signals [18]. The proposed method not only 

decomposes VAG signals using EEMD, but also selects the decomposed sub-signals. Unlike the standard method, the 

proposed method uses the optimized filter parameters for different sub-signals. 

2.3.   Proposed denoising method 

As shown in Fig. 3, the proposed method for the denoising process can be divided into three phases: decomposition, 

optimization, and denoising. In the decomposition phase, the noisy VAG signals are decomposed into several sub-signals by 

EEMD, and the classification of the sub-signals is conducted by ZCR. An additional note is that ZCR carries frequency 

information in the time domain, but does not change the frequency-domain components. The optimization phase involves 

finding and outputting the optimal parameters for the denoising filter. Finally, the denoising phase involves adapting the filters 

with optimal parameters to reduce the noise of each sub-signal and reconstruct clean VAG signals. 
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Fig. 3 Flowchart of the proposed ACO-EEMD hybrid technique for the denoising process  

2.3.1.   Decomposition phase 

In this phase, the main task is to decompose the noisy VAG signals using the EEMD method. The EEMD algorithm can 

usually be described as: 

[ ] [ ] [ ]
i i

x n x n G n= +  (1) 

where the target signal ���� and ������� 	 1,… , � are different realizations of white Gaussian noise. The standard deviation 

��  of white Gaussian noise ����� is relative to the absolute amplitude of ����. This study multiplies the absolute amplitude 

using a multiplier to denote the noise width. The multiplier in this study is � 	 0.05, which is lower than the recommended 

value of � 	 0.2 [19]. 

ˆ | ( [ ]) ( [ ]) |m m max x n min x n= ⋅ −  (2) 

The crucial components of VAG signals are mainly concentrated at high frequencies. Consequently, the filtered 

high-frequency white Gaussian noise strength must be reduced to detect VAG signals. Therefore, the threshold is set for the 

maximum filtered white noise level. A 5% absolute amplitude is chosen for noise standard deviation. In fact, the additional 

noise enhances the decomposition method to avoid mode-mixing and improve the performance of the EEMD algorithm. 

However, the impact outside the decomposition process is minimal after the ensemble average [19]. 

Each ������� 	 1,… , � is completely decomposed by EMD, giving the modes ���
���� of the signals (where � 	

1,… , � denotes the modes). This study defines ���������� as the k
th mode of ����, which is obtained as the average of the 

corresponding ���
�  as follows: 

1

1
[ ] [ ]
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i
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(3) 

In the proposed method, the signals are decomposed into 10 IMFs using EEMD, and the deviation values of their ZCRs 

are calculated. The ZCR of a signal frame is the rate of signal changes of the signal during a frame, which reflects the number 

of times that the signal changes from positive to negative, divided by the length of the frame [20]. Letting ����� 	 0, 1, … , � �

1 be the sample of the i
th

 frame, the ZCR is defined by the following equation: 



International Journal of Engineering and Technology Innovation, vol. 12, no. 1, 2022, pp. 01-15 
 

6 

[ ] [ ]
1

0

1
( ) ( ) ( 1)

2

N

i i

n

ZCR i sgn y n sgn y n
N

−

=

= − −∑  (4) 

where 

[ ] 1, ( ) 0
( )

1, ( ) 0
i

i

i

y n
sgn y n

y n

≥
= − <

 (5) 

Then, all the deviation values of �� ��� are arranged from large to small, and the five largest IMFs are labeled through 

�!" and �!#. The five smallest IMFs are combined into one IMF, and the result is labeled as ��!$%&'�() . In addition, a 

denoising filter must be prepared for the IMFs, where the SG filter is chosen as the base filter. 

The SG filter is often used to smooth biological signals for the SNR improvement [21]. The SG filter is also referred to as 

the least-squares smoothing filter, which performs better for VAG signals than traditional moving-average filters, with a 

particular advantage in the high-frequency domain. The SG filter is not very good at rejecting noise, but is more effective for 

preserving high-frequency information components [22]. In addition, because the SG filter is particularly good at preserving 

the line shape, this filter is conducive to the signal reconstruction processing in the next step. Finally, the SG filter has few 

parameters that can reduce the optimal calculation time. Therefore, the SG filter is chosen for the present study. 

2.3.2.   Ant colony optimization (ACO) 

Further explanation of ACO is needed to understand the process shown in Fig. 4. Ants will set out in groups to carry the 

food through the path without a bar. When the bar appears, the initial generation of ants will randomly choose a new path with 

a certain probability, but the pheromones remaining on the path will continue to decrease over time. The shorter path will have 

more pheromones remaining, and the selection probability will be more transparent towards this path, eventually reaching an 

optimal solution. Therefore, parameters such as the number of generations, number of ants per generation, pheromones, 

weights, and selection probabilities will appear in the next algorithm. 

 
 

(a) Ants find no obstacles on the path (b) Ants find obstacles on the path 

 
 

(c) More residual pheromones when choosing  
the shorter path 

(d) Ants choose the shorter path 

Fig. 4 Schematic diagram of ACO  

2.3.3.   Optimization phase 

The SG filter is referred to as the objective function (�%'*)$+�,)) of the ant colony system. There are two main dynamic 

parameters of �%'*)$+�,) : the frame length . (which must be odd) and the polynomial order /. The dynamic parameters must be 

set within a reasonable range. In addition, there is a parameter that returns the 0+1 derivative of the convolution coefficients. 

The derivative order is set to zero for the filter to smooth the curve. 
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The ACO algorithm continuously optimizes the dynamic parameters to achieve a better noise reduction effect. A 

condition function (called the fitness function in the evolutionary algorithm) must be manually set to accomplish this goal. The 

choice of the condition function is essential because this function directly affects the logical structure of the whole algorithm. 

In the present study, spectral flatness is chosen as a condition function �$%(2�+�%( to plan the best path for the ant colony system. 

Typically, the spectral flatness is calculated by dividing the geometric mean into the power spectrum using the arithmetic mean. 

[23]. The spectral flatness is defined as follows: 

1
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where � represents the length of the power spectrum 3���, and � represents the value of a discrete sample of 	3���, where 

� 	 1, 2, 3, … , �.  

The combination of the condition and objective functions can export the cost function �$%6+  to the ACO algorithm. The 

minimum value of the cost function ���	��$%6+� is also referred to as the favorable path of the ant colony system. Here,	�$%6+  is 

described as: 

( ) ( )
5

1

, , , ,
i

i

cost condition objective condition objective combine F F F imf F F imf
=

= +∑ λ ξ λ ξ  (7) 

where . ∈ �5, 21� and / ∈ �2, 5�. The term . is specified as a positive odd integer, and / must be a positive integer that is 

smaller than . � 1; it can also be summarized as a two-dimensional search space with constraints in the ACO algorithm [13]. 

In the initialization of the ACO algorithm, some parameters must be adjusted to balance the computation speed and 

accuracy. This study prefers to control the number of generations of ants rather than the number of ants. As such, the 8 	 100 

ants are set in each generation, which are equivalent to 25 generations. After the pheromone path is randomly generated for the 

first generation of ants in each search space, the step solutions s1 and s2 for each ant must be computed based on �$%(2�+�%(. In 

the pheromone path for the first generation of ants, the solutions increase in order in the archive according to the quality 

(minimum pheromone evaporation) and are indicated by the rank as l. The probability 9:;<=  of choosing the path for each ant 

as a prototype for the next generation is calculated by the weight >= , and is consistent with a Gaussian distribution function, as 

follows: 

2

2

1 ( 1)
exp

2( )2
l

l
w

qq

 −= − 
 δδ π
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1

l
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l

W
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w

=
∑
δ  
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where ? ∈ �0, 1�. When ? is small, the best-ranked solutions are strongly preferred, and when ? is large, the probability 

becomes more uniform. q = 0.2 is set to adjust the probability towards a more uniform distribution. 

The optimal parameters are obtained by the iteration of the better solutions, choosing sl as the prototype. This process is 

achieved by adding the standard deviations @=
� of each solution. This process is referred to as the pheromone update in ACO 

[24]. However, the pheromones evaporate over time. If the pheromones are not updated by the next generation of ants, the 
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pheromone path will decrease at a constant evaporation rate A. For A > 0, which is the same for all dimensions (the higher the 

value of A, the lower the convergence speed of the algorithm), A 	 0.5. To establish the value of the standard deviation @=
� at 

the construction step � ∈ {1, 2}, the average distance is calculated from the chosen solution sl to other solutions in the archive, 

and this distance is multiplied by the evaporation rate A. The standard deviation is calculated as follows: 

1 1

i i
v li

l
j

s s

j=

−
=

−∑
δ

σ η  (10) 

After removing the same number of worst solutions, the total size of the solutions does not change. This process ensures 

that only the best solutions are maintained so that these solutions effectively guide the ants in the search process [25]. When all 

the generations of ants are exhausted or three consecutive generations of ants return to the same solutions, the loop will be 

stopped. Because �$%6+  is the sum of all values of �$%(2�+�%(, the optimal solutions of �$%6+  can also be found as dynamic 

parameters. When the ACO process stops, the dynamic parameters need to be removed and returned to the SG filter to denoise 

each corresponding IMF. Finally, clean VAG signals are obtained by reconstructing each denoised IMF. 

2.3.4.   Evaluation for the effectiveness of the proposed method 

SNR and signal structural similarity are typically used to evaluate the denoising process. In this study, the peak SNR 

(PSNR) method is also used to evaluate the denoising process. PSNR can be seen as the ratio between the maximum possible 

power of a signal and the power of the corrupting noise. Although PSNR is often used for two-dimensional image processing, 

it is also convenient for one-dimensional VAG signals.  

Because VAG signals have few fixed-shape waveforms, low-amplitude signals are easily masked by high-amplitude 

noise. The mean squared error (MSE) measures the signal process quality of an estimator, which is also the noise power in 

PSNR. MSE can be defined as follows. 

( )2

1

1 N

i i

i

MSE a b
N =

= −∑
 

(11) 

where � is the number of signal data points,	E�  is returned by the process, and <� is the actual value for the data point i. MSE is 

always non-negative and yields a better result for values closer to zero. 

The one-dimensional PSNR process can be defined by the peak value and MSE, as follows: 

( )
1020 log i

MAX a
PSNR

MSE

 
 


=


⋅  (12) 

The method of comparing signal structural similarity is mainly performed using the Pearson correlation coefficient (PCC). 

PCC is used to measure the strength of a linear association between two signals, where : 	 1 indicates a perfect positive 

correlation and : 	 �1 indicates a perfect negative correlation. The term r is obtained as follows: 

( )( )
( ) ( )22

i i

i

i i

i i

c c d d

r

c c d d

− −
=

− −

∑

∑ ∑
 (13) 

where F� and G� are the individual original and processed signal data points indexed with i, and F ̅and G̅ are the corresponding 

signal mean values. 
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The percentage root mean square difference (PRD) can distort the measurement between the reconstructed and original 

VAG signals. As a percentage for evaluating the distortion measurement performance (lower is better), PRD is defined as 

follows [26]: 

( )

( )

2

1

2

1

100%

N

i i

i

N

i

i

e g

PRD

e

=

=

−
= ×
∑

∑
 (14) 

where I� and g� are the ith samples of the original and processed VAG signals, respectively. 

3. Results and Discussion 

The VAG signal waveforms after denoising using the standard and proposed methods are shown in Fig. 5. In Fig. 5, the 

waveform obtained using the standard method (Fig. 5(d)) is smoother than that obtained using the proposed method (Fig. 5(c)). 

However, the SNR of the waveform obtained using the proposed method is greater than that obtained using the standard 

method. This is because the waveform obtained using the standard method loses more details in the denoising process than the 

waveform obtained using the proposed method. As shown by the close-up (Fig. 5(e)), the waveform obtained using the 

proposed method has far more mini peaks than the waveform obtained using the standard method. 

The results indicate that, for the denoising process, the proposed method retains more details (mini peaks) because the 

ACO algorithm does an excellent job of differentiating the real signal and the noise, unlike the standard method without any 

calculation or optimization. 

In fact, adding white noise to only one type of amplitude is insufficient. It is also necessary to verify if the proposed 

method is capable of rejecting noise of various strengths. By adding white noise of various strengths, noisy VAG signals are 

obtained from 0 to 25 dB. The signals are processed using the proposed method and the standard method, and the results of the 

mean value and standard deviation are shown in Fig. 6. 

  
(a) Original signals (b) Noisy signals 

  
(c) Proposed method (d) Standard method 

 
(e) Comparison between (c) and (d) after zooming 

Fig. 5 Waveforms of the proposed method and the standard method  
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Fig. 6 SNR improvement of the proposed method and standard method 

The proposed method is superior to the standard method in terms of SNR, as shown in Fig. 6. However, as the input 

signals’ SNR increases, the improvement decreases significantly, either using the proposed or standard methods (for all 

P-values less than 0.01 and a maximum P-value of 0.0057, by Student’s t-test). When the SNR of the noisy input signals 

exceed 20 dB, the improvement in the proposed method is almost negligible. However, the improvement in the standard 

method is negligible when the SNR of the noisy input signals exceed 15 dB. Furthermore, the mean value of the improvement 

in the standard method is negative when the SNR of the noisy input signals is 25 dB. 

The main reason for the behavior of SNR is that the standard method is not capable of distinguishing between white noise 

and mini peaks. Conversely, in the proposed method, even though the mini-peaks and the white noise amplitude are very 

similar in the noisy VAG signals, the ZCR combined with EEMD can enhance the difference between mini-peaks and white 

noise by choosing the sub-signals. Moreover, the ACO algorithm optimizes the intensity of the denoising filter for each 

sub-signal based on the spectral flatness. Overall, the risk of the negative SNR improvement is effectively controlled using the 

proposed method. This advantage is also observed in PSNR, as shown in Fig. 7. 

In general, a higher PSNR indicates that the signal reconstruction is of higher quality after denoising. Eq. (11) shows that 

PSNR is determined by the peak value and MSE as the information quality. The PSNR improvement can also be defined as a 

correction of information quality. As shown in Fig. 7, the PSNR improvement follows the same trend as the SNR improvement. 

The performance of the proposed method is always better than that of the standard method, and the performance improves as 

the white noise amplitude increases (for all P-values less than 0.01 and a maximum P-value of 0.0079, by Student’s t-test). 

If VAG signals are intended for the clinical diagnosis of knee joints, the signal structure should not be changed 

significantly by signal processing [27]. Although the proposed method performs well in terms of noise reduction, its signal 

structure stability must be verified using PCC. As shown in Fig. 8, PCC is calculated between the original VAG signals and the 

clean signals obtained by the proposed method, between the original VAG signals and the clean signals obtained by the 

standard method, and between the original and noisy VAG signals. 

  
Fig. 7 PSNR improvement of the proposed method and 

standard method  
Fig. 8 Structural similarity between signals 
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When low-intensity white noise is added, no significant increase in PCC is observed before or after the denoising process 

for either the proposed method or the standard method (for all P-values less than 0.05 and a maximum P-value of 0.044, by 

Student’s t-test). This is because the addition of white noise does not sufficiently affect the original signal structure. Following 

an increase in the white noise intensity, PPC increases after the denoising process, but does not overtake the target line. The 

signals before and after the denoising process, for which the waveforms are not the same, must have the same characteristics. 

Therefore, the structural similarity expectation (target line) is set to 90%. 

The VAG signal decomposition and signal reconstruction are suspected to affect the structural stability of VAG signals. 

Because VAG signals have several mini-peaks, the reconstructed mini-peaks can easily shift in the time domain. Therefore, 

this study uses various reference methods to verify this hypothesis. 

An one-dimensional nonlocal means (NLM) filter and a discrete WT (DWT) filter are often applied to the denoising 

process of time-series biological signals, and can be quickly performed using MATLAB Toolbox [28-29]. NLM is a direct 

denoising process (path (a) in Fig. 2), and DWT is a denoising process after decomposition (path (b) in Fig. 2). Therefore, the 

filters with thresholds above are used for the contrast. 

The noisy signals are mixed with 0, 10, and 20 dB white noise as the input signals for each denoising process. The present 

study uses four indicators to compare the improvement in the denoising process: SNR, PSNR, PCC, and PRD. The results of 

the four methods are presented in Fig. 9. 

Overall, the results indicate that the proposed method and DWT denoising filter are the best performers among the four 

methods. Although the results for the proposed method are slightly worse than those for the DWT denoising filter for an SNR of 

20 dB and a PCC of 0 dB, the results for the proposed method are better than those for the other methods. This also indicates that 

the proposed method has room for improvement, especially with respect to the choice of filters with dynamic parameters. Since 

the denoising ability of the SG filter is improved by the hybrid technology, the proposed hypothesis is successfully verified. This 

conclusion has been reached because even if a signal with very high quality is input, the improvement can still be visible. 

  
(a) SNR improvement of four methods (b) PSNR improvement of four methods 

  
(c) PCC of four methods (d) PRD of four methods 

Fig. 9 Denoising effects by the four methods examined in the present study  
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In addition, the proposed method is different from the DWT method, which decomposes VAG signals using a high-pass 

filter and a low-pass filter [30]. The proposed method decomposes the signals using EEMD, which involves only amplitude 

components without frequency components. Because the ultimate goal of the present study is to apply VAG signals to the 

clinical diagnosis of knee disorders, the proposed method can guarantee the VAG signal quality while being beneficial for 

frequency-domain feature extraction in the next stage. Thus, the VAG signals of abnormal knees are collected, and the 

practicality of the proposed method is verified. 

These VAG signals from abnormal knees are also converted into input signals by adding white noise, as mentioned 

previously. The VAG signals are subsequently processed for the denoising process using the standard and proposed methods. 

The SNR improvement is shown in Fig. 10(a).  

In the present study, it is observed that the SNR improvement of the proposed method is more significant than those of the 

standard method for all SNR input signals of abnormal knees (for all P-values less than 0.05 and a maximum P-value of 0.027, 

by Friedman test). Fig. 10(b) also indicates that the VAG signals of abnormal knees can more easily obtain an SNR 

improvement than the VAG signals of normal knees for both the proposed method and the standard method. The reason is that 

the signals have steeper slopes, and sharper peaks are more easily denoised. In addition, this study also compares the difference 

in SNR improvement between the VAG signals from abnormal and normal knees using the proposed method and the standard 

method. The performance of the proposed method is worse than that of the standard method only when the SNR of the input 

signals is 0 dB. When the SNR of the input signals is 5, 10, 15, 20, and 25 dB, the performance of the proposed method is better 

than or equal to that of the standard method. The analysis results are found to be significant at 5 dB, 15 dB, and 25 dB of input 

signals after Friedman’s test, and not significant at the rest. Fig. 11 shows a comparison of the VAG signals of abnormal knees 

before and after denoising. 

 
(a) SNR improvement of the VAG signals from abnormal knees  

by the proposed method and standard method 
 

 
(b) Comparison between the SNR improvement of abnormal and normal knees  

by the proposed method and standard method 
 

Fig. 10 SNR improvement of the VAG signals in abnormal and normal knees  
by the proposed method and standard method  
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Fig. 11 VAG signals of abnormal knees before and after denoising  

 

 
Fig. 12 Denoising effects by different parameter values of ACO  

As can be seen in Fig. 11, the VAG signals of abnormal knees exhibits more aggressive denoising outcome than that of 

normal knees when the default ACO makes the filter optimization. Therefore, the parameters of ACO need to be adjusted to 

make it less reserved when processing the VAG signals of normal knees. Finally, a simple comparison for the noise reduction 

effects of different parameter values is made. The noisy VAG signals with a length of 5000 and an SNR of 5 dB are used as the 

input. The denoised results are presented in Fig. 12. 

In the present study, it is observed that increasing each generation takes more time than increasing the number of 

generations in the proposed method, and too many ants or generations will not bring better effects. Conversely, the parameter 

that most affects the SNR improvement is ?, which is of increased relevance to individuals or a uniform distribution. For VAG 

signals, the increased relevance to the uniform distribution can further improve the signal quality. It is expected that this 

recommended parameter value can be helpful when using the proposed method to process similar signals. 

4. Conclusions  

Noise interference in biomedical signals has become an obstacle to the advancement of medical diagnosis. Although some 

noise can be traceable, the source of most noise is uncertain. These uncertain noises may originate from environmental 

interference, non-target biological signals, or electronic components. To solve the noise problem, this study proposes an ACO 

denoising method. The conclusions of this study can be summarized as follows. 

(1)  In the present study, based on the hybrid technology of EEMD and the SG filter, a combined ACO algorithm denoising 

method is proposed, and the SNR improvement of VAG signals is verified. The results show that the proposed method can 

reject noise while ensuring that the real signals are retained. Overall, the denoising performance of the proposed method is 
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better than that of the reference methods in terms of the VAG signals of either normal or abnormal knees. Furthermore, the 

proposed method significantly improves the stability of the VAG signal quality, and lays a foundation for the feature 

extraction and classification models. 

(2)  The hybrid technique proposed in this study has not been isolated but has grown with the advancement of computer 

technology in recent years. The outstanding performance of the proposed method relies on the ACO algorithm and 

powerful calculations for support. As computer technology continues to advance, the process of this hybrid filtering 

method will become more efficient. This will ensure that the denoising ability will become a key part to the advancement 

of biological signal processing technology. 

(3)  The proposed hybrid technology shows many benefits in this study, but there are still some limitations. Although EEMD 

solves the mode-mixing problem of EMD, there is room for improvement in the decomposition phase. Future studies 

should investigate how the decomposition and reorganization of signals can affect the changes in signal structure. The 

dynamic parameters of the SG filter can reduce any lost amplitude to make the denoised signals closer to the real signals. 

Therefore, additional research is needed to improve and enhance noise reduction algorithms in the future. 
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