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Abstract  

Deep learning (DL) approaches have received extensive attention in plant growth monitoring due to their 

ground-breaking performance in image classification; however, the approaches have yet to be fully explored. This 

review article, therefore, aims to provide a comprehensive overview of the work and the DL developments 

accomplished over the years. This work includes a brief introduction on plant growth monitoring and the 

image-based techniques used for phenotyping. The bottleneck in image analysis is discussed and the need of DL 

methods in plant growth monitoring is highlighted. A number of research works focused on DL based plant growth 

monitoring-related applications published since 2017 have been identified and included in this work for review. The 

results show that the advancement in DL approaches has driven plant growth monitoring towards more complicated 

schemes, from simple growth stages identification towards temporal growth information extraction. The challenges, 

such as resource-demanding data annotation, data-hungriness for training, and extraction of both spatial and 

temporal features simultaneously for accurate plant growth prediction, however, remain unsolved. 
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1. Introduction 

Climate change has resulted in a decline in the number of pollinators and water levels. This has presented new challenges 

for crop growers in producing enough crops to feed the world population, which has been projected to reach 8.6 billion by 2030 

[1-4]. Moving toward food security and sustainability, there is a pressing need for growers to optimally utilize resources to 

maximize the yield and quality of crops produced, thus making plant growth monitoring a cornerstone in modern precision 

farming. The development of a plant is the ultimate result of the complex interaction between its genotypes and the 

environment. Therefore, a deep understanding of a particular plant is necessary to assist in plantation management, particularly 

in making decisions related to fertilization, harvesting, and early pest and disease prevention plans [5-9]. Information collected 

from growth monitoring can be used to reveal the relationship between a plant’s genes and its traits, and hence serves as a 

reference or indicator in plant breeding programs [10-12].  

Traditional machine learning (ML) methods such as decision trees, naïve Bayes algorithm, fuzzy logic, support vector 

machine, and gradient boosting algorithm usually require human involvement in feature extraction and preprocessing steps 

prior to model use [13-15]. Manual hand-crafted feature extraction and non-standardized preprocessing steps not only limit the 

model scalability but also renders the analytics work time-consuming and challenging. Experts with adequate knowledge are 

always necessary and deemed critical [16]. In the field of plant phenotyping, minute variations between plants of different 

species and cultivars are always expected. One would normally require long hours of study before fully grasping the key 

knowledge to plants of interest for recognition and classification.  
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In addition, a number of features such as color, texture, and shapes identified and extracted under a specific circumstance 

for a particular ML method are always application-specific [17-21]. A similar set of features extracted under different 

circumstances might not be applicable and has no guarantee to the performance of the same ML method. In contrast, deep 

learning (DL) methods that are based on multi-layer neural networks generally offer superior adaptability [22-24]. In DL 

methods, feature extraction or knowledge representation can be achieved automatically during the model training. Human 

intervention is not a must in this process. The extracted features by the model could be further generalized to similar domains 

and applications using a transfer learning approach. As a result, automatic feature extraction has become a great advantage of 

DL methods over traditional ML methods. Furthermore, the automatic feature extraction-enabled DL models offer an 

end-to-end solution to generalize a direct mapping from input images to the expected outputs [25-26]. 

To date, there is yet to be a review focusing on plant growth monitoring as a computer vision task despite the imminent 

need for faster and more robust analysis. This article therefore aims to address the gap of knowledge on DL approaches, models, 

and techniques that have been successfully developed and deployed for plant growth monitoring. To provide a clear picture of 

the advancement and challenges in plant growth monitoring programs, this review discusses the approaches that have been 

used to formulate monitoring tasks, as well as the DL models and techniques used to process various plant data from available 

resources. This review aims to uncover the latest state of DL development in the related fields, to identify the challenges as 

well as the need and direction of future research for plant growth monitoring, which will eventually benefit the prospective 

researchers in the fields. 

A four-step process, as outlined in Snyder’s work [27], was employed to produce this review. The process starts with the 

design phase, wherein research questions, search strategy, and selection criteria were defined. The search for related work from 

various sources was then carried out. The selected work was analyzed and reviewed to produce useful findings. Finally, the 

findings were structured and summarized. In the early design phase, the following research questions were formulated, as follows. 

(1)  What are the state-of-the-art DL approaches that have been reported for plant growth monitoring? 

(2)  What is the performance of these DL models? 

(3)  What are the challenges posed in relation to the application of DL in plant growth monitoring? 

In the search for related works, several keywords and combinations of “deep learning”, “CNN”, “plant growth 

monitoring”, “plant development”, and “plant phenotyping” were used. The studies collected in this review were sourced from 

several prominent online platforms: Elsevier ScienceDirect, SpringerLink, and Google Scholar. In addition, the search was 

also carried out on websites of renowned plant-related journals such as Plant Physiology, Plants, Plant Methods, and Nature 

Methods. Only articles that are related to the use of DL network for quantification of plant growth, monitoring of plant growth, 

or harvestability events such as emergence and flowering (i.e., as observed in 2-D images), were selected for this review. The 

early parts of this review focus on the definition of plant growth, the overview of image-based phenotyping, the challenges in 

traditional image processing, and a brief introduction to DL. The remainder of this review is organized into three sections. It 

begins with a presentation of a list of growth monitoring-related publications and a summary of the studies conducted. The 

subsequent sections discuss the findings that include the generic DL frameworks and models used for plant growth monitoring. 

The final section provides an overview of the challenges and future prospects for image-based plant growth monitoring. 

2. Growth Definition and Phenotyping 

A plant undergoes a series of events in its lifetime. The dynamic development of a plant, or its “growth stage”, serves as 

key information for critical decision-making related to breed selection and other day-to-day farming activities, such as 

fertilization and harvesting. The term “growth” has been used to describe a broad range of plant features, including the increase 
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in plant or organ size, cell architecture, and structural biomass [28]. While there is currently no universal definition for plant 

growth, the description of growth for various plant species is an interesting subject to be studied, particularly in areas related to 

plant phenotyping. Conventionally, the growth of a plant is characterized by literal descriptions or growth scales such as 

Biologische Bundesanstalt, Bundessortenamt and Chemical industry (BBCH) scale [29], based on visual observations. The 

introduction of uniform coding for each growth stage that provides ordinal measures of plant growth has enabled exchanges in 

work related to phenology among the scientific community, which include those for agricultural purposes and even extend to 

climate change studies [30-31]. 

Besides, researchers have attempted to represent the plant development stage via quantitative approaches using plant 

parts and organs such as leaves [32], stems [33], flowers [34], and fruits [35]. Changes in these phenotypes over a period of 

time were taken as the features reflecting plant development. In fact, a wide range of spatial and temporal scales have been 

used by researchers to represent the dynamic growth process. For example, in USA National Phenology Network 

(USA-NPN) data collection protocols, the observable growth stage of a plant (phenophase) was recorded alongside its 

frequency at a particular time point (i.e., the proportion of bloom on a plant), while the collective growth of a plant of similar 

species is expressed in terms of the magnitude observed across specified a time interval (i.e., the proportion of individual 

plant flowering in a month) [36]. 

Das Choudhury [37] presented a taxonomy to divide plant phenotypes into three primary types, namely structural, 

physiological, and temporal properties. The authors further categorized the plant structural and physiological phenotypes: (1) 

holistic, which describes the properties derived from whole-plant geometrics; and (2) component, which describes the 

properties derived from the measurement of individual parts and organs to address the spatial scale in phenotypes. For 

time-related phenotypes, trajectory-based measures that reflect the quantifiable changes over time were used in techniques to 

address the temporal properties in plant growth alongside the event-based phenotypes that indicate the distinct salient stages in 

a plant’s life cycle [37]. 

2.1.   Image-based phenotyping 

A successful growth monitoring program implementation for agricultural activities requires more than a mere 

understanding and quantification of plant growth. An appropriate automated pipeline is vital. For centuries, plant growth 

characterization or phenotyping has heavily relied on manual inspection by experienced experts. The tedious and 

expertise-demanding process might thus inevitably involve subjective judgment. In addition, phenotyping accuracy is also 

constrained by human visual and cognitive limitations in detecting minute changes in plants. Nowadays, as a replacement for 

manual observation processes, plant growth measurements and status are extracted automatically from images of the plant, 

which are captured by cameras and light sensors. With the growing availability of inexpensive optical sensors such as digital 

RGB cameras, image-based techniques have become a popular subject in current plant phenotyping studies [38]. Sensing 

techniques used to collect pixelated representations from visible light, infrared, fluorescence response, and temperature have 

been applied in plant phenotyping. A comprehensive review of imaging techniques was presented in the work of Li et al. [39]. 

Apart from the common RGB cameras, multi-spectral or hyperspectral imaging systems that utilize spectrometers have 

been designed to capture plant images at wavelengths ranging from visible light (400 nm to 700 nm) to short-wave infrared 

(1000 nm to 2000 nm) [40-41]. These systems enable the phenotyping of traits that are not visible to humans, expanding the 

knowledge boundaries beyond the understanding gained from human visual perception. Various morphological and structural 

features such as leaf area, plant height, and stem width can be directly measured from 2-D digital images, while a number of 

derived measures such as color indices and normalized difference vegetation index (NDVI) have been applied in quantifying 

plant growth [42-44]. In addition to the image content, the metadata of an optical image such as its F-stop and exposure time 

were also reported to provide meaningful information in estimating a plant’s physical properties [45]. 
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Another type of phenotyping technique is the fluorescence imaging system. When fluorophores in a plant are brought to a 

brief excitation by exposure to a lamp or laser beam, light is emitted at a characteristic wavelength. This technique is 

commonly used to monitor chlorophyll content, plant photosynthesis activity, and other metabolites, whereby changes reflect 

the biotic and abiotic stresses in the plant [46]. However, fluorescence imaging systems have limited applications in the field of 

plant phenotyping, primarily due to its requirements for a dark-adapted reference, as well as for sufficient closeness to a plant 

canopy [47]. Besides, the use of thermal imaging that operates in infrared wavelengths for the study of the surface temperature 

of plants opens up a window to its applications for monitoring changes in plant transpiration and photosynthesis based on plant 

temperature, which are the two features related to stomatal conductance [48-50]. 

Similar to other applications, the difficulty in image segmentation due to the effect of surrounding temperature and 

changing weather presents a challenge in the implementation of outdoor monitoring systems [39]. In recent years, the ability to 

overcome cloud cover has rendered more advanced techniques such as synthetic aperture radar (SAR), which are particularly 

favorable for remote sensing under all weather conditions. Most importantly, an SAR radar demonstrates good potential in the 

ability to penetrate through plant canopy and ground, enabling the phenotyping of underground crops [51-52].  

In phenotyping studies, particularly for plantations, the ambiguity between organ expansion and movement are often 

presented in 2-D images, especially when the plant images are captured under different lighting or at different sun azimuth 

angle. Thus, there is a need for better sampling to the third dimension (3-D) for better quantification of growth [28]. Among the 

3-D imaging techniques, light detection and ranging (LiDAR), which involves laser beam steering for measurement reading, 

has been used to form cloud points that correspond to a plant’s geometrics, allowing for accurate representation in 3-D space. 

Besides, researchers have proposed and successfully implemented cost-effective geometric-based approaches using 3-D 

reconstruction by one or more optical cameras. These reconstruction techniques include depth of focus (DoF), time of flight 

(ToF), and structured light [53]. 

In general, imaging techniques in plant phenotyping differ from each other not only in sensing principles, but also in terms 

of the spatial scale and the corresponding image acquisition platform used. Fig. 1 illustrates a collection of imaging techniques 

and scales in plant phenotyping. Generally, the aforementioned imaging techniques can also fall into organ-level [54], 

canopy-level [55], and remote sensing categories [56]. 

In remote sensing phenotyping, plants in open fields are captured with terrestrial satellite instruments [57] and unmanned 

aerial vehicles (UAVs) [58]. Generally, the latter has the advantage of providing higher spatial resolution images at a lower 

cost. Small-sized UAVs can also be employed for active farming operations such as dispensing pesticides and fertilizers in 

addition to remote monitoring use [59]. In contrast, the imaging at the canopy-level or organ-level such as plant leaves and 

roots is more prevalent in laboratories and greenhouses where phenotyping samples are provided in individual pots or trays. 

Despite the superior spatial resolution, canopy-level imaging methods appear to have limited commercial applicability 

that demands image acquisition in a large quantity and fine temporal resolution for prompt informed crop management 

decisions. However, high-throughput phenotyping can be achieved at the canopy-level imaging when coupled with automatic 

or mobilized acquisition platforms. For instance, Tisné et al. [60] implemented a sequential movement and rotation table to 

enable high-throughput phenotyping of 735 Arabidopsis thaliana in pots. The authors also highlighted the resultant high spatial 

homogeneity of the plants, which is an important feature for its potential application. 

Nonetheless, the canopy-level image acquisition carried out in plantation fields is not limited to the use of stationary 

platforms [61], but is also commonly supported by ground-based vehicles mounted with various sensors [62-63]. While there 

is an inevitable trade-off between spatial and temporal resolution among the platforms at different scales, the information 

obtained from images captured using canopy-level sensing technologies was reported to link well with observations acquired 

by airborne or satellite remote sensing sensors [64]. 
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Fig. 1 Scale, automation, and techniques used in plant phenotyping imaging 

2.2.   The bottleneck in image analysis 

In the wake of the Internet of Things (IoT) and Big Data, plant phenotyping work may now be facilitated by the possible 

access to a huge amount of multimodal and complex data. Sensing technologies have been developed to deliver data at multiple 

dimensions and scales. Despite the advances in imaging that open up opportunities for the study of more complex phenotypes, 

limitations in image analysis were identified as a bottleneck in plant phenotyping [65]. Even four years later, the need for an 

accurate image analysis technique in plant phenotyping studies to cater to the blooming data and information persists [66]. 

Traditional image analysis usually involves heavy reliance on human experience to design the preprocessing operations 

and feature extraction steps to derive useful traits from images. Adjustment of the image intensity and segmentation of the 

plant of interest from the background are among the early preprocessing steps that are commonly applied in image analysis. In 

common rule-based algorithms that lack the learning ability to adapt to potential variations, it is an enormous challenge to 

increase the flexibility of the heavily hand-engineered algorithms to cater to the many variations that may be encountered 

during plant deployment. 

For instance, the inconsistent illumination due to uncontrollable weather at plantation fields brings about a major 

challenge in plant phenotyping image analysis. The presence of shadows or insufficient exposure in an image may hinder 

successful segmentation. Besides, challenges in segmentation may also come from cluttered backgrounds, where the 

overlapping parts between plants make the analysis unfeasible at the individual plant level. Even in the absence of other plants, 

self-occlusion that occurs when a plant develops past its early seedling stage also presents obstacles in the image segmentation 

of distinct plant parts [37]. Additionally, plant movement due to the wind, which consequently results in random shifts in 

images, is also an inevitable challenge for close-up field images. 

Moreover, changes in the scale of the object due to variation in size and position of plants often cause difficulty in image 

analysis. For instance, the direction of the leave expansion may be different from one plant to another. Also, the growth of 

different parts of a plant may not be uniform at different stages [37], while plants of similar species may appear differently due 

to different growing environments [47]. Thus, apart from hand-crafted solutions, there is a need to stretch the realms of image 

analysis to include more flexible alternatives such as DL algorithms. 

3. Deep Learning Applications in Plant Growth Monitoring 

DL is essentially a subset of ML that consists of multi-layer artificial neural networks (ANNs) [67]. They are data-driven 

models whereby their outcomes and parameters are determined by the examples used in the model training process. The 

representation of data can be learned in several ways. The learning approaches include (1) supervised learning, where ground 

truth is used as a reference, and (2) unsupervised learning which focuses on discovering data patterns among samples. The 
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combination of both approaches (i.e., semi-supervised learning) offers a middle ground between the advantages and pitfalls of 

each learning. Another type of learning is reinforcement learning, which utilizes trial-and-error techniques that are structured 

by a reward and penalty mechanism. 

Although changes in biological matter are generally influenced by genetic compositions and physiological factors, it is 

difficult to generalize such influences on plant growth. Due to this reason, modeling plant growth using conventional ML 

models such as support vector machines (SVMs), k-nearest neighbors (k-NNs), and decision tree becomes challenging. In fact, 

better performance of DL models has been reported in comparison to that of conventional ML models, particularly within the 

scope of image-based plant phenotyping studies [68-69]. 

Since the successful demonstration of “deeper” convolutional neural layers in the ImageNet large scale visual recognition 

challenge (ILSVRC) in 2012 [70], which displayed a ground-breaking performance in image classification, DL has gained the 

attention of researchers from various disciplines of computer vision, as well as in plant phenotyping studies. Over the years, 

variants of DL have evolved and extended to models that target complex computer vision tasks such as classification, 

regression, object detection, object semantic and instance segmentation, etc. [71]. Among the DL networks, the convolutional 

neural network (CNN), a subclass that utilizes shared weights in convolutional kernels, has been found to be more effective at 

encoding the hierarchical pattern primarily in image-based and video-based data, than the fully-connected multilayer 

perceptron. In the agriculture field, CNN has also been explored for image analysis for different applications such as disease 

detection, land cover classification, fruit counting, and weed recognition [72]. 

To date, there are a total of 23 studies which are relevant to DL applications for plant growth monitoring. These studies were 

published between the years 2017 and 2021, with the majority of them being published in 2020, as summarized in Fig. 2. This 

finding indicates that the exploration of DL for plant growth monitoring applications is a relatively new and emerging field. 

 

Fig. 2 Year of publication of plant growth monitoring-related studies 

3.1.   Generic deep learning framework for plant growth monitoring 

In general, the DL networks that have been explored for plant growth monitoring applications can be divided into two 

groups: the pure CNN network and the hybrid CNN-LSTM network, as illustrated in Fig. 3. One important determinant in 

selecting between the two is the form of the input data. In the pure CNN network group, the input data is commonly in the form 

of grayscale images or color 2-D images, providing only the spatial information. On the other hand, the hybrid CNN-LSTM 

network group takes a series of images across a period of time, which provides both the spatial and temporal information. 

For an image captured at any time point, pure CNNs may be used for a range of tasks in the plant monitoring process. 

With properly scaled imaging scope and preprocessing techniques, image patches covering plant organs or whole plants can be 

assigned to class labels related to maturity or growth stages using classification models. On the other hand, meaningful 

measures such as plant dimensions and NDVI can be directly extracted from the images via a regression approach. In cases of 

large-scale images, localization of an individual plant or its organ in an image may be carried out using two methods: by the 

combination of a sliding window mechanism and a classifier, or directly by object detection or instance segmentation CNNs. 
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Fig. 3 Illustration of a workflow using DL framework for morphological plant growth monitoring 

In addition, the hybrid of CNNs and recurrent neural networks (RNNs) such as long short-term memory (LSTM) may be 

used, considering the availability of time-series images that are taken within specific time frames. By incorporating sequential 

elements in addition to spatial information, monitoring using the CNN-LSTM hybrid architecture may be a good option to 

better utilize additional information. The output of the CNN feature extraction layer of plant images at each time frame is fed 

into the LSTM model for the classification of the output within a particular time frame, making time-series classification 

attainable. In comparison to the pure CNN network formulated for different functions, the use of the hybrid network for plant 

growth monitoring is relatively new [73]. However, the incorporation of temporal elements into spatial-based CNNs has been 

identified as one of the promising directions for future work related to plant growth monitoring studies, highlighting the 

potentially broad application of hybrid networks [74-75]. 

Next, the later part of the plant monitoring framework consists of the post-processing process. Based on pre-defined 

assumptions, the output of the DL network will be translated into phenotypes for monitoring purposes. For example, with the 

object detection output, the count of the flowers in a plant can be obtained and later used to characterize cotton flowering 

patterns [76]. In fact, depending on the post-processing method, the phenotypes used as the final output in monitoring systems 

using DL can be quantitative or qualitative, or a combination of both. For instance, the qualitative phenotype at a particular 

growth stage that is directly obtained from the classification output may be further processed into a quantitative phenotype that 

measures the collective growth stage of multiple plants, such as the count of a growth stage present. 

From the reviewed accounts, plants and their corresponding growth stages can be categorized into four groups. The first is the 

seedling during vegetative growth (e.g., Arabidopsis [75], red clover, Alfalfa [73], white cabbage [77], lettuce [78-80], etc.), which 

represents the majority. The second group comprises crops in the reproductive phase (e.g., paddy [81-82], cotton [76], etc.), fruits at 

the harvest stage (e.g., date [83], blueberry [84], tomato [85], apple [86], etc.), and seed germination (e.g., maize, rye, pearl millet 

[74], etc.). The works related to the classification are summarized in Table 1, which also provides an overview of the plant growth 

monitoring approaches reported in the reviewed studies. Information such as plants under study, growth tasks, and corresponding 

phenotypes are presented to provide an overview of the studies conducted. Besides, in the implementation of the data-driven DL 

models, data preparation is an important preliminary step that directly affects model performance and applicability. Thus, details 

including the imaging system, data labeling, and preprocessing in the studies are also outlined in Table 1. 

Details regarding the DL approach used to carry out the growth task in each study are listed in Table 2. Specifically, the 

optimal DL architecture in each study has been highlighted with the corresponding quantitative measures of model 

performance. Besides, additional details such as training settings and post-processing steps are also included to reflect the 

training process and strategies used to adapt the model output for different growth tasks. 
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Table 1 Overview of previous studies and data preparation 

No. Year Plant 
Growth 

category 
Growth-related phenotype Growth-related task Imaging Data Labelling Preprocessing 

1 

[87] 
2017 Pineapple  

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(fruit maturity) 

Classification of pineapples 

based on maturity level 
˙ RGB images (side views of pineapples) 

˙ Train: 243 images 

˙ Validation: 27 images 

˙ 3 classes (unripe, partially ripe, and 

fully ripe) 

˙ Background and crown removal 

˙ Resizing to 200 × 200 px 

2 

[88] 
2018 Weed (18 species) 

Vegetative 

growth 

Event-based qualitative 

phenotype (growth stages) 

Classify weeds into 9 classes 

based on leaf counts 

˙ RGB images (from cell phones, consumer 

cameras, and industrial cameras) 

˙ 9649 images collected (18 weed 

species/family from 3 growing seasons) 

˙ Train: 11907 images 

˙ Validation: 2516 images 

˙ 9 classes (1, 2, 3, 4, 5, 6, 7, 8, and >8 

leaves) 

˙ Data augmentation (horizontal 

flip, rotation, zoom, width shift, 

and Gaussian smoothing filters) 

3 

[83] 
2019 Date  

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(fruit maturity) 

Classification of date fruits 

based on maturity stages and 

defect detection 

˙ RGB images (top views with simple 

backgrounds) 

˙ 1357 images augmented to 37050 

images 

˙ Train: 30688 images 

˙ Validation: 6368 images 

˙ Test: 199 images 

˙ 4 classes (Khalal, Rutab, Tamar, 

and defect) 

˙ Refer to Codex standard for dates 

(CXS 143-1985) 

˙ 37056 augmented images 

˙ Data augmentation (rotation, 

height shift, width shift, zoom, 

horizontal-flip, and shear 

intensity) 

4 

[73] 
2020 

Red clover and 

Alfalfa  

Vegetative 

growth  

(seedling) 

Event-based qualitative 

phenotype (growth stages) 

Monitoring of seedling 

emergence timing 

˙ RGB time-lapse images (top views) at 3280 

× 2464 px 

˙ 42000 image sequences from 200 plants 

˙ Clover set for training and validation 

˙ Alfalfa set for testing 

˙ 4 classes (growth events) 

˙ Some annotations by experts 

˙ Registration and cropping to 89 

× 89 px 

˙ Raw/HSV green channel 

(backgrounds removed) 

5 

[89] 
2020 Gynura bicolor DC  

Vegetative 

growth  

to harvest 

phase 

Event-based qualitative 

phenotype (growth stages) 

Classification of growth 

based on period/stages for 

harvesting (targeting the 2nd 

class for harvesting) 

˙ RGB images (top views with simple 

backgrounds, e.g., black cloth) 

˙ Two-scale inputs (intact leaves and 

interpolation for leaf patches) from 764 

leaves 

˙ 3 classes (early, middle, and late)  

˙ Performed with help from the 

experts 

˙ Data augmentation (mirror 

rotation, image sharpening, and 

color jittering) 

˙ Resizing to 224 × 244 px 

6 

[90] 
2020 Wheat and barley 

Vegetative 

growth 

Qualitative phenotype  

(growth stages) 

Classification of crops based 

on growth stages 

˙ RGB images (top views and 45° views) 

˙ Manual imaging at a constant 2 m height 

˙ 138,000 images extracted from the 

videos taken in 7 fields 

˙ 12 classes (wheat) 

˙ 11 classes (barley) 

˙ Labelling by experts according to 

Zadoks scale 

˙ Resizing to 256 × 256 px  

7 

[77] 
2021 White cabbage  

Vegetative 

growth  

(seedling) 

Qualitative phenotype 

(survival) 

Prediction of seedling 

survival  

˙ Grayscale images (top views of multiple 

plants in a tray) at 1280 × 1024 px 

˙ 13200 seedlings 

˙ Train: 7920 images 

˙ Validation: 2640 images 

˙ Test: 2640 images 

˙ Day 4 to 7 data (visible above soil & no 

overlapping) 

˙ 2 classes (successful / not) 

˙ 6 classes on day 14, of which class 5 

and 6 are regarded as successful 

growth according to the experts 

˙ Cropping to 64 - 75 px and 

resizing to 64 × 64 px 

˙ Normalization to [-0.5, 0.5] 

˙ Data augmentation (90° rotation, 

horizontal, vertical flip, and 

affine transformations) 

8 

[80] 
2019 Lettuce 

Vegetative 

growth 

Trajectory quantitative 

phenotype (3-D size and 

fresh weight) 

Monitoring of the growth 

rate of lettuce 

˙ Time-lapse RGB images at 3280 × 2464 px 

˙ Stations in greenhouses  

˙ Acquisition every half an hour from 6 am to 

6 pm, daily 

˙ 1218 images from 5 lettuces 

˙ Train: 850 images 

˙ Test: 200 images 

˙ Set for monitoring: 168 images 

˙ Manual area label ˙ Resizing to 800 × 600 px 

9 

[91] 
2020 

Little gem romaine 

lettuce 

Vegetative 

growth 

Trajectory quantitative 

phenotype (3-D size and 

fresh weight) 

Monitoring of the growth 

rate (crop size) based on 

captured images and 

estimation of fresh weight 

based on crop size 

˙ Time-lapse RGB images (top and side 

views) at 1920 × 1080 px 

˙ Each image contains 3 plants  

˙ Acquisition every 30 min from 6 am to 6 pm  

˙ 1350 images (obtained from imaging 

technique and Google search engine) 

˙ 2 classes (background/leafy) 

˙ Manual measurements (width, 

depth, height, and weight) as ground 

truth 

- 

10 

[84] 
2020 Blueberry  

Harvest 

phase  

(fruit) 

Quantitative phenotype  

(counts, maturity, and 

compactness) 

Characterization of 

yield-related traits based on 

grape phenology for 

harvesting strategy  

(compactness, maturity, and 

counts) 

˙ RGB images (complex backgrounds in the 

field, simple backgrounds in the field, and 

laboratory backgrounds) at 4896 × 2760 px 

˙ Multi-view of grape clusters 

˙ Train: 524 images 

˙ Validation: 145 images 

˙ Test: 55 images 

˙ 2 classes (maturity) 

˙ Hue value for maturity annotation 

˙ Data augmentation (horizontal 

rotation of 50% and vertical 

rotation at 90°, 180°, and 270°) 

˙ Multiplication with a random 

value between 0.5 and 1.5 

˙ Blurring with a Gaussian kernel 

with a sigma of 5.0 

˙ Resizing to 1024 × 1024 px 

11 

[85] 
2020 Tomato  

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(growth stages) 

Detection of tomato fruit 

ripeness 

˙ RGB and depth images (multi-height views) 

at 720 × 1280 px 

˙ 123 images of 1612 fruits 

˙ 2:1 train-test split  

˙ 2 classes (ripeness) 

˙ Manual labelling based on detection 

of ripeness by empirical 

chromaticity values (red channel > 

1.4 green channel) 

- 

12 

[86] 
2019 Apple  

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(growth stages) 

Detection of apple at 

different growth stages 

˙ RGB images (multi-views) 

˙ Complex scene (orchard) at 3000 × 3000 px 
˙ 480 images 

˙ 3 classes (young, expanding, and 

ripe) 

˙ Data augmentation from 480 to 

4800 images  

˙ Resizing to 512 × 512 px 

13 

[76] 
2020 Cotton  

Reproductive 

phase  

(flower) 

Trajectory quantitative 

phenotype (flower counts) 

Characterization based on 

flowering patterns for 

genotype classification 

˙ RGB images (multi-views and complex 

backgrounds in a single plant field) 

˙ Ground vehicle (average of 2-3 days of 

scanning interval) 

˙ 8666 images (475 used for training 

object detection network) from 23 

genotypes of 116 plants in the field 

˙ 3 classes (target plant, emerging 

bloom, and non-bloom) 

˙ 5 classes (target plant, emerging 

bloom, region with specular 

reflectance, opened boll, and others) 

- 
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Table 1 Overview of previous studies and data preparation (continued) 

No. Year Plant 
Growth 

category 
Growth-related phenotype Growth-related task Imaging Data Labelling Preprocessing 

14 

[74] 
2020 

˙ Maize (Zea mays)  

˙ Rye (Secale 

cereale)  

˙ Pearl millet 

(Pennisetum 

glaucum) 

Germination 

phase  

(seed) 

Event-based qualitative 

phenotype (germination) 

and derived quantitative 

phenotype (germination 

index) 

Germination detection of 

different crops to assess the 

quality of seeds 

˙ RGB time-lapse images (top views) 

˙ Seeds in petri dishes (multiple dish images)  

˙ Simple background images (black cloth) 

˙ Acquisition within 30 min of timeframe 

˙ 23797 images from 2449 seeds 

˙ Petri dish-based stratification 

(randomly split to train, validate, and 

test at 8-1-1 ratio based on each petri 

dish to avoid overlapping) 

˙ Bounding box labeling of each seed 

into 2 classes (germinating and not 

germinating) 

˙ Cropping to 624 × 624 px for 

each petri dish 

15 

[92] 
2020 Tomato 

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(growth stages) 

Detection and classification 

of tomatoes into different 

maturity grades 

˙ RGB images 

˙ Different lighting conditions by capturing 

images at 9 am, 12 pm, and 5 pm 

˙ 680 × 480 px, 96 dpi, 24-bit JPEG images  

˙ Train: 231 images (1193 fruits and 421 

flowers) 

˙ Validation: 46 images 

˙ 3 classes of object (leaf, flower, and 

fruit) 

˙ 3 classes of maturity (green, turning, 

and red) based on RGB and HSV 

values 

- 

16 

[93] 
2020 

Mango  

(Mangifera indica) 

Reproductive 

phase 

Trajectory quantitative 

phenotype (panicle 

counts) 

Classification of flowering 

stages and identification of 

flowering events 

˙ RGB images (dual views) 

˙ Acquisition by agricultural vehicles 

˙ Orchard A (994 trees; 1988 images per 

week at 2464 × 2048 px) 

˙ Orchard B (24 trees; 6000 × 4000 px) 

˙ 2 cultivars in orchards 

˙ Train: 3178 panicles (54 images) 

˙ Validation: 635 panicles (6 images) 

˙ Test: 2853 panicles (48 images from 

Orchard B) 

˙ 3 classes (panicle stages) 

˙ Two types of bounding boxes: 

upright and rotated 

˙ Random rotation at 40° 

17 

[94] 
2021 Coconut 

Harvest 

phase  

(fruit) 

Qualitative phenotype  

(fruit maturity) 

Classification of coconuts 

based on different maturity 

stages 

˙ RGB images (multiple views) with complex 

backgrounds 

˙ 2000 images captured in the field and 

retrieved via Google Images 
˙ 2 classes (tender and mature) 

˙ 20000 augmented images 

˙ Data augmentation (horizontal 

flip, image rotation by 90°, and 

color transformation) 

˙ Rescaling of image length to 516 

px while maintaining the aspect 

ratio  

18 

[78] 
2019 Lettuce 

Vegetative 

growth 

Qualitative phenotype  

(emergence of lettuce and 

classes) 

Monitoring of lettuce growth 

(detection and classification 

of lettuce into different 

sizes) 

˙ NDVI top-view images from aerial imaging 

using sensors from very light aircraft 

(VLA), with GSD = 3 cm 

˙ Images of 100,000 lettuce heads for 

training (50% lettuce and 50% others) 

˙ Images of 60 patches (11330 × 6600 px) 

in a 7-hectare field consisting of ~ 

million lettuces (each patch >300 and 

<1000 lettuce heads)  

˙ 20 × 20 px bounding boxes to 

enclose each lettuce head  

˙ Contrast limited adaptive 

histogram equalization 

(CLAHE) for normalized NDVI 

images 

˙ Cropping to 250 × 250 px for 

local analysis 

19 

[81] 
2019 Paddy rice 

Reproductive 

phase 

Event-based quantitative 

phenotype (heading date at 

50% flowering panicle 

counts) 

Heading date estimation by 

characterizing flowering 

patterns based on flowering 

panicle region counts 

˙ RGB images acquired from the field at 

ground level (5184 × 3456 px) 

˙ Acquisition within 5-min time frame 

between 8 am and 4 pm 

˙ 6000 images (equal number of positives 

and negatives)  

˙ 2 classes (flowering region and 

non-flowering region) 
˙ Resizing to 224 × 224 px 

20 

[75] 
2017 

˙ Arabidopsis 

thaliana rosette   

˙ Nicotiana 

tabacum rosette 

Vegetative 

growth  

(seedling) 

Quantitative phenotype  

(leaf counts and age) 

Estimation of rosette 

phenomics (leaf counts and 

age measured in hours after 

germination) and mutant 

classification 

˙ RGB images (top views with pot 

backgrounds) 

˙ 2 species and mutant 

˙ IPPN dataset 

˙ Age refers to the time after 

germination 

˙ 5 classes of Arabidopsis mutants 

- 

21 

[42] 
2018 Wheat 

Vegetative 

growth 

Quantitative phenotype 

(NDVI) 

Estimation of vegetative 

index from images and 

prediction of vegetative 

index at unseen growth 

stages 

˙ Aerial multispectral imaging 
˙ Train: 8064 images 

˙ Test: 4023 images 

˙ Labelling of NDVI based on 

calculated values from the NIR and 

red image 

- 

22 

[79] 
2020 Lettuce 

Vegetative 

growth  

(seedling) 

Qualitative phenotype  

(leaf fresh weight, leaf dry 

weight, and leaf area) 

Estimation of growth-related 

traits 

˙ RGB and depth images (top views), i.e., 

1920 × 1080 px (RGB) and 512 × 424 px 

(depth) by Kinects. 

˙ Daily image acquisition 

˙ 3 cultivars in greenhouse based on 286 

RGB and depth images 

˙ Train-test split of 8(20% val): 2  

˙ 3 traits (leaf fresh weight, leaf dry 

weight, and leaf area) based on 

on-field measurements  

˙ 5954 augmented images 

˙ Data augmentation (rotation at 

90°, 180°, and 270°; vertical and 

horizontal flipping; brightness 

adjustment) 

˙ Resizing to 128 × 128 × 3 px 

23 

[82] 
2020 Rice 

Vegetative 

growth 

Quantitative phenotype  

(leaf area index) 

Estimation of leaf area index 

based on captured images 

˙ RGB images at 5472 × 3648 px 

˙ Image acquisition by UAV 
˙ 4 varieties in paddy fields 

˙ Ground measurement by automatic 

area meter, i.e., divided into 60 × 60 

cm area 

˙ 9 types of color indices extracted 

from multispectral data 

˙ Cropping to 100 × 100 px 
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Table 2 DL approaches in previous studies and the model performance  
No. Year DL network function Selected DL architecture Reason Training setting Hardware Performance Comparative measures Post-processing procedures 

1 

[87] 
2017 Classification 

Custom LeNet-like  

(2 conv + 1 FC) 
- 

˙ Adadelta back-propagation algorithm 

˙ Learning rate = 1.0 

˙ Trained for 100 epochs 

˙ Early-stopping 

- 
˙ Classification accuracy = 92.6% 

˙ Average precision  = 94% 
- - 

2 
[88] 

2018 Classification 
ImageNet-pretrained 

Inception-v3 

˙ Good performance, ease 
of implementation, and 

relatively low 

computational cost 

˙ Adam optimizer 

˙ Mini-batch size = 32 

˙ Dropout = 0.4 

˙ Model is trained 20 times 

- 

˙ Average classification accuracy 

= 70% 

˙ Average bias of predictions = 

0.07 leaves 

˙ Absolute average bias of 
predictions = 0.51 leaves 

- 
˙ Outputs from 20 models are combined for 

prediction 

3 
[83] 

2019 Classification 
ImageNet-pretrained 
modified VGG-16 

- 

˙ Transfer learning, fine-tuning at stages with 

decreasing frozen layers in blocks 

˙ RMSProp optimizer 

˙ Mini-batch size = 32 

˙ Dropout = 0.5 

- 
˙ Average accuracy = 96.98%. 

˙ Average AUC = 98.19% 
- - 

4 

[73] 
2020 Classification CNN-LSTM - - - ˙ Average F1 score = 88.5% 

˙ Multiclass CNN (chosen from VGG-16, 

ResNet50, and DenseNet121), 2-class 

CNN, and ConvLSTM 

˙ Smoothing of filter (median of classes by 
majority voting) at 4 time frames (1 hour) 

5 

[89] 
2020 Classification 

G-net and L-net similar 6 

layers deep fusion network 
+ 2 FC layers + output 

custom GL-CNN (fusion 

CNN based on global and 
local multi-features) 

- 

˙ Stochastic gradient descent optimizer 

˙ Batch size = 20 

˙ Initial learning rate = 0.005 (decreased by 
1/5 every 20 epochs) momentum = 0.9 

˙ Dropout = 0.5 

˙ Training epoch = 100 

˙ Intel Xeon® 

2.20 GHz, 32 
RAM, two 

GTX1080Ti 

˙ Accuracy = 95.63% 

˙ F1 score = 95.25% 

˙ AlexNet, VGG-16, GoogleNet, ResNet50, 
DenseNet, and early and late fusion 

- 

6 
[90] 

2020 Classification 
ImageNet-pretrained 

VGG-19 
- - - 

˙ 99.7%-100% classification 
accuracy for both crops in both 

views 

˙ Custom 5-layer CNN and SVM with 

conventional feature extraction 
- 

7 

[77] 
2021 Classification Pretrained AlexNet ˙ Limited data 

˙ Stochastic gradient descent optimizer 

˙ Training epoch = 500 

˙ Batch size = 128 

˙ Learning rate = 1e-4 

˙ Weight decay = 1e-5 

˙ Nvidia 
GTX1080 

˙ Testing accuracy = 94% 

˙ Testing AUC = 95% 

˙ Linear regression, Multi-layered 

perceptron (MLP), DenseNet, ResNet, and 
VGG-16 

˙ All CNNs outperformed logistic regression 

(LR) and MLP 

- 

8 

[80] 
2019 Instance segmentation 

COCO-pretrained mask 

R-CNN 
- 

˙ Initial learning rate = 0.0001 (decay by 

factor of 10 at 12000 and 16000 iterations) 

˙ 8 images for each GPU in each epoch 

˙ Two GTX 1080 
Ti GPU 

Leaf area estimation: 

˙ Mean accuracy = 97.63% 

˙ Maximum error = 0.25 cm
2
 

- 
˙ Determination of growth rates based on the 

leaf area  

9 

[91] 
2020 Instance segmentation Mask R-CNN - - - 

Instance segmentation: 

˙ Training loss = 0.21; validation 
loss = 0.31 

 

Predictions: 

˙ Error within 30mm (18.7%) for 
length and width 

˙ Error < 0.5 g for fresh weight 

- 

˙ Determination of side view area, height, 

width, centroid side, top view area, centroid 

top and depth extracted from the masks, and 
bonding boxes using image moments and 

Green’s theorem 

˙ Growth rates calculated using variations in 
area of each plant and linear regression based 

on fresh weight 

10 

[84] 
2020 Instance segmentation 

COCO-pretrained mask 
R-CNN (ResNet101 + 

FPN) 
˙ Superior performance 

˙ Iterative annotation strategy plus manual 

correction 

˙ Learning rate = 0.001 

˙ Momentum = 0.9 

˙ Transfer learning (MSCOCO pre-trained 

weights) 

˙ Nvidia Tesla 
V100 

Instance segmentation: 

˙ At 0.5 IoU 
 

Validation:  

˙ mAP = 78.3% 

˙ mask mIoU = 90.6% 
 

Testing:  

˙ mAP = 71.6% 

˙ mask mIoU = 90.4% 
 

Linear regression for traits: 

˙ R2
 = 0.886 

˙ RMSE = 1.484 

- 
˙ Extract count, maturity ratio determination 

(percent of mature/total), and compactness by 
segments 

11 

[85] 
2020 Instance segmentation 

ImageNet pretrained mask 

R-CNN with ResNeXt101 
- 

˙ Stochastic gradient descent optimizer 

˙ L2 regularization 

˙ Weight decay = 0.01 

˙ Batch size = 1 

˙ No. of Iteration = 200,000 

- 

At 0.5 IoU: 

˙ Average precision = 92.5% 

˙ Average recall = 90.5% 

˙ Average F1 score = 91.5% 

˙ Large improvement as compared to the 
hand-crafted algorithm 

˙ Surpasses the performance reported in 

previous studies 

˙ Compares feature extractors (ResNet50 

and ResNet101) 

˙ Compares post-processing (yes/no) 

˙ Discard fruit from background in the 

segmentation output by empirical threshold 

using depth image 

12 

[86] 
2019 Object detection YOLOv3 with DenseNet - 

˙ Batch size = 8 

˙ Momentum = 0.9 

˙ Initial learning rate = 0.001 

˙ Decay = 0.0005 

˙ Training steps = 70000 

- 

˙ Average F1 score = 81.7%  

˙ Average IoU = 89.6% 

˙ Average detection time = 0.304 s 
per frame 

˙ YOLO-v2, YOLO-v3, and FasterR-CNN 

with VGG-16 
- 
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Table 2 DL approaches in previous studies and the model performance (continued) 
No. Year DL network function Selected DL architecture Reason Training setting Hardware Performance Comparative measures Post-processing procedures 

13 
[76] 

2020 Object detection 

COCO-pretrained faster 

R-CNN with 
Inception-ResNet v2 as the 

feature extractor 

- 
˙ Use 5-class labelling strategy 

˙ Classification confidence score = 0.7 for 

bloom counting 

- 

Object detection: 

˙ Overall mAP = 86% 
 

Regression analysis as compared to 

manual counting: 

˙ R2
 = 0.88 

˙ RMSE = 0.80 

- 
˙ Plant-based counting 

˙ Take maximum count for each plant from 4 

images 

14 
[74] 

2020 Object detection 

Faster R-CNN with 

pretrained 

Inception-ResNet v2 

˙ Real-time detection is not 

required 

˙ Higher accuracy than 

YOLO and SSD 

˙ Transfer learning 

˙ Hyperparameter search by internal random 
search 

˙ 28 Intel CPU 

cores, 768 GB, 

four RTX 
2080Ti 

˙ Testing mAP of 97.9%, 94.2%, 
and 94.3% for ZM, SC, and PG, 

respectively 

˙ Compares different feature extractors 

(ResNet50, ResNet101, and Inceptionv2) 

˙ Compare results of germination count vs 

manual 

- 

15 

[92] 
2020 Object detection 

SSD with Pascal 

VOC-pretrained VGG-16 
- 

˙ Transfer learning and fine-tuning with 

replaced output  
- 

˙ Overall detection accuracy of 
100% (flower) and 95.99% 

(fruit) 

˙ R-CNN 
˙ The results from fruit detection are used for 

maturity grading by SVM, kNN, and ANN 

16 

[93] 
2020 Object detection 

R
2
CNN-Upright (the 

highest F1-score); 

MangoYOLO-Upright 

(the highest mAP) 

- 

R
2
CNN-Upright: 

˙ Train to 146k iterations 
 

MangoYOLO-Upright: 

˙ Train to 77.5k iterations 

˙ Batch size = 32 

˙ Intel Xeon Gold 

1626 CPU, 
Tesla P100 

GPU 

R
2
CNN-Upright:  

˙ mAP = 70.9% 

˙ F1-score = 82.0% 
 

MangoYOLO-Upright: 

˙ mAP = 72.2% 

˙ F1-score = 76.5% 

˙ R2
CNN-Rotated, MangoYOLO-Rotated, 

and YOLOv3-Rotated 
˙ The peak of the flowering is identified based 

on the weekly panicle counts 

17 
[94] 

2021 Object detection 
Faster R-CNN with 

ResNet-50 
- - 

˙ i7-CPU@ 4.5 
GHz, 4 GB 

GPU NVIDIA 

GeForce GTX 
1650 + Google 

Colab with 

Tesla K80 GPU 

˙ mAP = 89.4% at 0.5 IoU 

˙ Detection speed = 3.124 s/image 

˙ Faster R-CNN with ResNet 101, ResNet 

152, Inception V2, Inception ResNet V2, 
and NASNet 

˙ SSD, YOLO V3, and R-FCN 

- 

18 

[78] 
2019 

Object detection 

(CNN + sliding window);  

Clustering  
(size categorization) 

20 × 20 px sliding window 

CNN (4 conv + 1 FC) 

˙ Small dataset size & 
target only binary 

classification 

˙ Smaller NN; less training 
time; faster execution for 

promptly use 

˙ Early-stopping - ˙ Classification accuracy > 98% - 
˙ Non-maximum suppression due to sliding 

window 

19 
[81] 

2019 

Object detection  

(CNN classifier + sliding 

window) 

Sliding window ImageNet 
pretrained ResNet50 

- 

˙ Transfer learning 

˙ Stochastic gradient descent optimizer 

˙ Learning rate = 0.001 

˙ Momentum = 0.9 

˙ Trained on one cultivar 

˙ Tested on other five cultivars for 
generalization 

- 

Detection: 

˙ 70%-80% F1-score for different 
cultivars 

 

Heading date estimation: 

˙ MAE < 1 day 

˙ Scale-invariant feature transform (SIFT) + 

SVM 

˙ The results from object detection are used for 

counting 

˙ Take 50% flowering count date as a heading 

date 

20 
[75] 

2017 Regression 
Custom multi-layer CNN  

(3 conv + 1FC) 
- - - 

Age regression:  

˙ Mean MAE = 20.8 h 

˙ Standard deviation MAE = 14.4 h 

- - 

21 

[42] 
2018 Regression Modified AlexNet 

˙ Suitable for content and 

resolution of input images 

˙ Stochastic gradient descent optimizer 

˙ Mini-batch size = 72 

˙ Base learning rate = 0.01 (with decay 

function) 

˙ Momentum = 0.9 

˙ Weight decay = 0.0005 

˙ Xeon 128 GB 
RAM, GTX 

TITAN X 

Correlation between the aerial and 

ground measurement: 

˙ R2
 = 0.99 

˙ RMSE = 0.019 

- - 

22 

[79] 
2020 Regression 

Custom multi-layer CNN  
(5 conv + 1 FC + 3 

outputs) 

- 

˙ Stochastic gradient descent optimizer 

˙ Dropout = 0.5 

˙ Learning rate = 0.001 (dropped by factor of 
0.1 every 20 epochs) 

˙ Mini-batch size = 128 

˙ Training epoch = 300 

˙ Intel i7 CPU 3.2 
GHz, 8 GB 

RAM, 

GTX1060 

˙ R2
 > 0.89 

˙ NRMSE ≤ 27.6 % 

˙ SVM, random forest (RF), and linear 
regression from the hand-extracted features 

- 

23 

[82] 
2020 Regression Modified ResNeXt - 

˙ Adam Optimizer 

˙ No. of epoch = 100 

˙ Batch size = 16 

˙ Weight decay = 0 

- 
˙ R2

 = 0.963 

˙ RMSE= 0.334 

˙ Plant canopy analyzer, color indices in 
regression models, and ML algorithms 

(ANN, partial least squares regression 

(PLSR), RF, and support vector regression 
(SVR)) 

- 
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Despite the different plants and monitoring tasks discussed in the reviewed studies, all of them shared similarities of DL 

applications in their experimental protocols. In general, the DL approaches employed in the reviewed studies can be divided 

into three categories, namely classification approach, instance segmentation or object detection approach, and regression. 

Notably, the regression approach was used in all studies that involved the determination of vegetative growth and leaf-based 

phenotypes. 

3.1.1.   Plant growth classification 

In the plant growth classification, the chronological development of plants over time is categorized into multiple stages, 

which make up a set of class labels. In general, the ground truth references used in the classification are usually based on 

qualitative definitions formulated by field experts. This is despite some studies relating class definitions to image color features 

such as hue and chromaticity values [87, 92]. A classification-based DL model is used to predict the class label for the 

representation of the entire input image. By examining the DL model predictions at a particular time point within a specific 

time frame, the temporal growth characteristics of a plant such as growth rate can be monitored. 

From 30688 constant background training images, Nasiri et al. [83] achieved an overall classification accuracy of 96.98% 

to simultaneously distinguish healthy dates from defects, and categorize them into three maturity levels using a modified 

VGG16 architecture. Notably, the authors employed gradient-weighted class activation mapping (Grad-CAM) to visualize and 

justify the classification results. Using leaf images from different scales (whole leaf and patches), Hao et al. [89] investigated 

classification based on three stages of growth for harvesting using a fusion strategy. The concatenation of global-scaled and 

local-scaled features prior to the fully-connected layers demonstrated the advantage over fusion at earlier or later layers, with a 

95.63% classification accuracy recorded during testing. 

In a large-scale experiment carried out by Bauer et al. [78], a CNN classifier was trained to classify iceberg lettuce into 

three head sizes from airborne normalized NDVI images. A shallow network of five hidden layers was employed for binary 

classification based on the presence of the lettuce head, with an accuracy of over 98%, which was followed by classification 

based on the size, depending on the results obtained from k-Means clustering. To detect seedling emergence timing, Samiei et 

al. [73] used a combination of CNN and LSTM architecture to classify the three sequential development stages of red clover 

seedlings from time-lapse images. The proposed CNN-LSTM model outperformed other architectures, namely, multi-class, 

2-class, and convolutional LSTM (ConvLSTM) models, attaining an average of 91% accuracy. The model retained a high 

performance with a 90% accuracy when tested on alfalfa seedling images, demonstrating the ability of the model to generalize 

across different plant species. Besides, in an experiment by Perugachi-Diaz et al. [77], AlexNet [70] was employed to predict 

the survival of white cabbage seedlings based on grayscale images. The model performed well with an impressive overall 

classification accuracy of 94%, which was supported by the output from manual inspection carried out by field experts. 

3.1.2.   Instance segmentation and object detection for growth stage identification 

Apart from classification, DL architectures were designed for more advanced instance segmentation and object detection 

tasks which provide not only object class information, but also its location in images. These architectures have also been 

implemented in growth monitoring. In these approaches, the DL model is trained to localize all possible objects that are present in 

an input image and assign a class label to each of the identified objects. The position of objects in the image is represented in two 

ways: by bounding boxes or groups of pixels. Depending on the context used in the image and annotation, these approaches 

enable plant growth monitoring with more information than the simple distinct growth stages that are obtained from the pure 

image classification approach. Using the object location or region, more complex growth traits can be derived for growth 

monitoring. For instance, growth monitoring by object counting (e.g., number of fruits, leaves, etc.) and object morphological 

analysis (e.g., determining area, convex hull, etc.) can be carried out based on the detection or segmentation results. 
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In a study [76] to characterize cotton flowering patterns, the COCO-pretrained Faster R-CNN developed for bloom 

counting scored an 86% mean average precision (mAP). The authors reported a 3% increase in the average precision of 

emerging bloom detection, with an increased number of classes used to differentiate between other non-blooming objects. The 

plant-based counting strategy employed based on the results from object detection achieved an R
2
 = 0.88 at RMSE 0.8 when 

examined against manual counting ground truth data. A large improvement was observed in the average differences as 

compared to manual ground truth when the finer temporal resolution was allowed. 

Desai et al. [81] performed object detection using a combination of sliding window and a CNN (pretrained ResNet50) to 

detect flowering regions in time-series images. The detection achieved an average F1 score of 77%, which was later used to 

characterize the flowering pattern in paddy to estimate the rice heading date. Considering the heading date as the day when 

50% panicle exsertion was observed, an average error of less than 1 day was reported for the resultant heading date estimation. 

In another study by Ni et al. [84], a Mask R-CNN was employed to detect and segment individual fruit from images of 

blueberry clusters. A mAP of 78.3% and 71.6% was attained for validation and testing, respectively. The inconsistency in 

maturity annotation due to differences in illumination was addressed by using a hue value of the fruit in the image as the 

quantitative reference to determine its maturity level. The authors also employed a semi-automatic strategy in data annotation, 

whereby models trained on a relatively small amount of manually labeled data were used to generate annotation for a larger 

amount of other unseen data. Albeit the requirement for manual correction, this strategy was proven to save time. Besides, a 

comparison with the classical color and geometry-based computer vision algorithms revealed the superior performance of 

Mask R-CNN in catering to the variability in the dataset, as reported by Afonso et al. [85]. 

3.1.3.   Regression for plant growth analysis 

In contrast to the classification approach, growth monitoring using the regression approach involves the use of a set of 

growth measurements, such as plant height and number of leaves as references. These references may be extracted from input 

images using an image processing pipeline, or obtained from external non-imaging sources such as a separate handheld device. 

DL networks are employed to carry out the regression of these quantitative phenotypes directly from the images. 

In a study by Ubbens and Stavness [75], plant phenomics were extracted for several purposes that include leaf counting, 

mutant classification, and age regression. The work was carried out separately using multiple CNN architectures for similar 

data. The CNN was used to directly estimate the plant age, which is an important growth indicator measured as the hour after 

germination. As a result, the authors reported an absolute difference of 20.8 hours with a standard deviation of 14.4 hours in the 

data labeled with the age range between 392 hours and 620 hours. By taking ground-based NDVI measurement as ground truth, 

Khan et al. [42] also demonstrated the successful estimation (MSE of 0.019) of NDVI from aerial RGB images using a 

modified version of AlexNet. 

In an investigation by Zhang et al. [79], a custom CNN was used to carry out regression of growth-related traits such as 

leaf fresh weight (LFW), leaf dry weight (LDW), and leaf area (LA) with actual measurements as ground truth to monitor 

lettuce growth. The prediction of each trait was linked separately to each hidden unit at the last fully-connected layer to enable 

separate predictions. Collectively, the trained models showed good agreement with a reference marking R
2
 value of more than 

0.89 and a normalized root mean square error of less than 27%. 

3.1.4.   Performance evaluation 

Notably, all the approaches reviewed in the previous sections are of the supervised learning type. In classification, confusion 

matrix metrics such as accuracy, precision, recall, and F1 score that examine the correctness of every prediction made by a model 

are commonly used to reflect model performance. Besides, the performance for object detection and instance segmentation 
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network can be more accurately represented by average precision (AP) and intersection over union (IoU) [95]. In contrast, 

correlation and distance measures such as root mean square error (RMSE) and mean absolute error (MAE) that represent the 

proximity in value relative to a reference are calculated to characterize the performance in the regression approach. 

In addition to being a determinant in the algorithms for many applications, a supervised DL network is essentially a tool for 

non-linear mappings between a set of inputs and outputs [96]. The outputs of the DL network are usually further processed to adapt 

for a particular application. To better reflect the actual performance in the growth monitoring task, overall evaluation other than 

those that have been addressed by DL networks is also sought. This may be done via a direct comparison of the final output with the 

manually obtained output. For example, the germination indices obtained from the object detection task in the work of Genze et al. 

[74] were used for cross-checking with manual measurements besides the performance in germination detection. As another 

example, the estimated heading date output from a model was compared against the heading date determined via observation [81]. 

Despite the expensive cost, these justifications are required to ensure the applicability of the selected DL network. 

On the other hand, there is a lack of information regarding model inference time despite its vitality to facilitate prompt farming 

decisions. However, this may not be of imminent concern considering the relatively long data collection and processing time in the 

plant domain industry. The transition from one growth stage to another may occur gradually in plants, especially for perennial 

plants which can span over few years. Nonetheless, object detection in plant monitoring may be carried out within seconds as 

reported by Tian et al. [86] (0.304 s/frame using YOLOv3 on 512 × 512 px input images) and Parvathi et al. [94] (3.142 s/image 

using Faster R-CNN on images with 516 px length). Note that the speed performances from different studies may not be directly 

comparable due to variations in factors such as input image resolution [97], preprocessing methods [98], and hardware used. 

In fact, the advancement of DL networks and their increasing availability as research tools can be inferred by examining the 

date of publication of the work reviewed. All three reviewed papers which dated before 2019 demonstrated the application of 

classification and regression approaches. Since 2019, a noticeable shift in DL network functions for plant monitoring has been 

observed—from simple image classification and regression approaches, toward more complicated object detection or 

segmentation computer vision tasks. Two studies involving object detection using a sliding window have been published in 2019, 

while the majority of the studies conducted in the following year employed more sophisticated networks such as region-based 

convolutional neural networks (R-CNNs) and you only look once (YOLO) for the same task. Besides, the transition may also be 

attributed to the rapid development of energy-efficient hardware architectures in processing units, computing memory, and data 

compression techniques in recent years [99]. Coupled with the availability of optimized DL architectures, hardware advancement 

brings about few obstacles for researchers to explore more complex DL solutions in their work.  

3.2.   The hybrid CNN-LSTM for plant growth monitoring 

In image-based plant growth monitoring that constitutes mainly the decision-making based on information obtained from 

images, CNNs with the convolutional layers have been commonly used in DL architecture applications to generate meaningful 

spatial representation over multidimensional data. However, considering that the plant growth can also be viewed as a series of 

events unfolded over time in a plant life cycle, spatial information should not be the sole consideration in the monitoring 

process. Specifically, a hybrid DL architecture that consists of CNN and LSTM brings about the possibility of better 

deciphering the spatial-temporal nature of the plants. 

Since 2012, CNN architectures for image classification and regression have rapidly evolved over the short course of 5 

years [100]. Early CNN architectures such as AlexNet [70], ZFNet [101], and VGG [102] share the common generic CNN 

structure that involves feeding a fixed size input into the stacks of convolutional layers that are end-to-end connected, prior to 

further being input into the fully-connected layers and the final output layer. The plain convolutional layers in the generic 

structure have later been extended to variants with modularized convolutional layers (InceptionNet [103]) and variants with 
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skip connections in between them (ResNet [104] and DenseNet [105]). In 2015, advances against the vanishing or exploding 

gradient problem [106] in CNNs has reached a milestone when the ResNet variant with parameters up to 152-layer deep was 

proven applicable. 

LSTM [107] is another type of RNN that can retain long-term dependencies. It is commonly employed in supervised 

sequence learning, where at least one of the inputs or target outputs is presented in the sequential or time-related form. Since its 

introduction in 1997, LSTM has been applied in weather forecasting [108], speech recognition [109], and language modeling 

[110]. However, designed to only process 1-D data, conventional LSTM offers limited solutions to problems with data in high 

dimensionality. Particularly in image analysis with 2-D spatial data, the application of LSTM would require an intermediate 

apparatus to bridge the gap within data representations. In this case, CNNs which function as feature extractors, are deemed fit 

for the task. 

In CNN-LSTM architecture, the input is fed to a series of CNN layers which are followed by LSTM layers before the 

generation of the output. The combination of feature extraction by CNN with LSTM enables sequence learning using 

higher-order data. By using the hybrid architecture, the temporal component in time-series data can be exploited, which 

translates into a sequence instead of another spatial dimension to be fed into 2-D CNN. CNN-LSTM reportedly displayed 

superior performance in time-series prediction in various fields as compared to the conventional LSTM or pure CNN models 

[111-113]. Besides, the hybrid architecture has also been employed in applications including video activity recognition, image 

captioning, and video description [114]. 

Interestingly, the reviewed studies on plant growth monitoring using a pure classification or regression approach share the 

tendency to employ CNN with simpler architectures. Except for [73], the majority of these studies, which date from 2017 or 

later, have chosen AlexNet and VGG networks, which are the exemplary representations of the plain generic CNN structure. 

On the other hand, several studies have come up with their customized architectures, which were also developed based on the 

plain generic CNN structure. These findings indicate that the simple architectures may remain competitive as a network of 

choice for straightforward image classification and regression tasks. In addition, this choice has also been attributed to the 

limited data availability [77] and suitability in terms of image resolution and content [42]. 

In the object detection or instance segmentation approach, neural network architectures may be divided according to their 

detection paradigms, namely single-stage or two-stage detection. In general, the former is typically represented by YOLO 

networks [115-118], which has an advantage in terms of detection speed. On the other hand, the latter is represented by R-CNN 

networks [119-121], which achieve relatively high detection accuracy [122]. Among the reviewed studies, R-CNN variants have 

been found dominant in terms of choice of network. This may be due to the nature of growth monitoring which has to cater to the 

gradual manifestation of plant growth that may take several days or even months. Specifically, the authors in [74] selected the 

Faster R-CNN since real-time detection was not required in their study. Also, the Mask R-CNN [123] network, an extension to the 

R-CNN network that was introduced in 2017, has appeared as the go-to for growth monitoring involving instance segmentation.  

4. Challenges and Future Prospects 

Even though DL frameworks have shown great potential in plant growth monitoring, a few challenges remain. These 

come from the data preparation phase, whereby the natural complexities of plants take a toll on the imaging and annotation 

process. Similarly, the post-processing steps that involve the interpretation of DL network output have been found to be largely 

reliant on the preceding plant growth assumptions, indicating an obstacle to automation. 

While limitations in spatial resolution for the detection of small object or discrimination of gradual changes in appearance 

may be resolved with the use of suitable imaging, other challenges such as occlusion in plant organs or between plants are 

particularly critical in detection-based monitoring, as reported in previous studies [78, 84, 86]. In this case, a viable solution is 
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to project information from 2-D images to a higher 3-D point cloud, despite the complications that may follow [124]. 

Non-invasive imaging of underground plants has long been a challenge in phenotyping imaging. The fact that none of the 

reviewed studies have reported underground crops reflects this particular challenge in this area of study. 

In supervised learning-based DL models, knowledge occurs in an iterative training process by tuning the parameters of 

the model. Each example is fed into the DL model as a representation of ground truth. The model is trained to output its current 

predictions, and the deviations from the predefined ground truth are computed using the cost function. Iteratively, the 

parameters in the model are updated to minimize the loss, targeting closer predictions to the annotated ground truth. Thus, it is 

evident that accurate annotation is undeniably crucial in the preliminary step to build a useful DL model. However, data 

annotation in plant monitoring is a resource-demanding task. 

In comparison with the imaging technology which has advanced tremendously since automation, annotating plant growth 

based on images is a laborious process that often demands the assistance of field experts. This process, which is yet to be 

automated, has limited the exploitation of the power of data-driven DL. It would require a large number of examples to 

sufficiently train a DL network for practical use in plant growth monitoring tasks. The more the trainable parameters, the larger 

the dataset required to prevent the model from overfitting. Due to the close visual appearance of crops in between the 

continuous growth transitions, a precise annotation of the different growth stages is a shared challenge in the growth 

monitoring of different crops [73-74, 85, 89]. In some cases, only experts with specific knowledge of the problem domain are 

qualified to carry out the manual annotation. While annotation strategies such as semi-automatic labeling as in [84] may offer 

a potential solution, there is definitely no guarantee that the labels introduced in the annotation system, such as the number of 

classes, will always be optimum for the task [76]. 

Finally, it is evident that the DL has been found to be more commonly used as a feature extraction tool for growth 

monitoring applications at the early stages of growth. Dependent on the task formulation, the results obtained using the DL 

networks are later subjected to hand-crafted processing to form phenotypes that are believed to indicate the dynamic plant 

growth. While the DL enables impressive performance in feature extraction, there is a plain reliance on the manual monitoring 

process. In short, there is a need for proactive research to explore the incorporation of learning algorithms apart from the 

supervised learning in growth monitoring. In addition, another possible future development is to employ ensemble learning. 

Instead of selecting a trained model and relying solely on it, predictions from multiple models can be used for better 

generalization [125]. 

The exploitation of temporal information and the selection of time points may be a vital consideration in realizing 

practical growth monitoring in the future. Since plant growth is a continuous dynamic measure that spans over a plant 

lifetime, it is only intuitive to consider time points apart from the visual changes in growth monitoring. It is undeniable that 

the irreversible plant development has a sequential relationship with the growth stage. In this case, the combination of 

CNN with RNN architecture, such as LSTM that was designed to retain and discard cell states from one time frame to 

another, can potentially be a better choice over the pure CNN architecture, which lacks the temporal information for model 

development. 

In particular, the use of temporal information in the form of time-series images has been highlighted with its advantage 

over the naïve classification approach [73]. Also, a large improvement in average difference when compared to the manual 

ground truth was observed when imaging with the finer temporal resolution was allowed by Jiang et al. [76]. Perugachi-Diaz et 

al. [77] also noticed that the model trained with data from the early growth stage may generalize well when fed with data 

obtained from the later growth stage, but not vice versa, indicating the importance of the time component in growth monitoring. 

In addition, considering the future time points as proactive plant monitoring, forecasting plant growth may be another area 

worth venturing into [126-127].  

240 



International Journal of Engineering and Technology Innovation, vol. 12, no. 3, 2022, pp. 225-246 

 

5. Conclusions  

To the best of authors’ knowledge, this is the first article which provides a comprehensive review of DL approaches for 

image-based plant growth monitoring covering the research background, the efforts, the developments as well as the 

achievements that have been accomplished over the years. Notably, this review has witnessed a paradigm shift in plant 

growth monitoring applications. From traditional image processing to the employment of CNN networks since 2017, 

current applications have arrived at the exploration of hybrid networks that incorporate the temporal information of plant 

growth. At the same time, the plant monitoring frameworks that have been presented in previous research, have also 

progressed from straightforward classification and regression approaches toward more complicated object detection and 

segmentation, since 2019. 

Despite advances in imaging techniques, annotation of plant growth remains a challenging aspect in plant monitoring, 

even with the help of field experts. It is also hard to be overlooked that the utilization of DL models in the past is almost 

exclusively limited to features extraction. Further exploration to benefit the use of DL throughout the monitoring process is 

needed to reduce human intervention. The exploitation of temporal information for plant growth monitoring using DL 

architectures, such as hybrid CNN-LSTM models, is called for further investigations. Lastly, model generalization could be 

another interesting prospect to be explored for future study, for example, a generic model which is capable of assessing growth 

patterns of various plant species and types. 
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