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Abstract 

This study aims to identify the outer race bearing needed to protect an induction motor from severe damage. 

Faults are diagnosed using a non-invasive technique through the sound signal from an induction motor. The 

diagnosis aims to assess the damage to the bearings on the fan or main shaft. Moreover, this study discusses the type 

of damage, loading variations, and the diagnostic accuracy with the damage to the outer race bearing placed on the 

fan or main shaft rotor. The disturbance detection approach is used to analyze the sound spectrum to identify the 

harmonic components near the disturbance frequency. The damage frequency characteristics are also calculated to 

determine the sound spectrum peak value. The results show that the detection is slightly affected by the damage 

severity and the incorrect placement of the bearings on the rotor shaft. The lowest detection accuracy in testing the 

outer race bearing damage on the fan shaft is 91.66%. However, the accuracy percentage is 100% with the outer race 

bearing damage on the main shaft. 
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1. Introduction  

The electric machine widely used in industries is the induction motor, a vital driving tool whose reliability should be 

maintained for efficient operations [1]. Induction motors have high efficiency, simple construction, low price, and easy 

maintenance [2]. However, the motors do not operate normally continuously because they have an aging period due to 

long-term use [3]. Bearings and eccentricity may suffer mechanical damage and the stator and rotor may sufferer electrical 

damage [4]. The Electric Power Research Institute (EPRI) and the Institute of Electrical and Electronics Engineers Industry 

Applications Society (IEEE-IAS) found that motor bearings suffered the biggest damage [5]. Bearings limit the relative motion 

of two or more machine components by being moved in the desired direction [6]. Damage to bearings causes vibration, 

overheating, and noise [7], while abnormal use of an induction motor results in financial losses, damages to other motor parts, 

or workplace accidents. These adverse effects are overcome by monitoring the bearing condition as periodic maintenance 

information using diagnosis by invasive and non-invasive techniques [8].  

Motor current signature analysis (MCSA) is an invasive technique that requires expensive equipment and data collection 

through direct contact with motor parts [9]. However, MCSA applies to all motors, including pumps operated on wet media 

[10]. The technique is also recommended because the detection results are more accurate, though the signal processing is 
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conducted by acquisition, de-noising, pre-fault component cancellation, and feature extraction [11]. In contrast, non-invasive 

techniques include the diagnosis of thermal, vibration, and sound damage. Thermal data diagnosis requires the expensive fiber 

Bragg grating (FBG) sensor, and it is further developed by processing the data through images, which requires several 

complicated stages. The image obtained from the camera capture is processed to diagnose motor conditions [12]. Diagnosis 

through vibration is applied only by using a piezoelectric accelerometer. However, the results are susceptible to the engine 

body friction with the pedestal and different engine casing problems [13].  

Data obtained invasively or non-invasively are processed using certain algorithms recommended for fault diagnosis. 

These algorithms include wavelet transform, fast Fourier transform (FFT), Hilbert transform, park vector analysis, and 

machine learning [14]. The wavelet transform is a signal processing algorithm that determines the motor condition. However, 

it cannot identify the faulty part, damage to the bearings, rotor, stator, or eccentricity because the Wavelet algorithm undergoes 

decomposition in its analysis [15]. Park vector analysis compares the vector’s shape and thickness, where round and elliptical 

patterns indicate a healthy and damaged motor, respectively [16]. The widely used signal processing algorithm is FFT because 

of its high success rate [17]. The FFT signal determines the condition of the engine parts by comparing the damage frequency 

amplitude. Therefore, studies on motor condition monitoring recommended diagnostic techniques through FFT sound signals 

and processing [2]. 

The recommended non-invasive technique is damage diagnosis through sound because it is easy, inexpensive, and 

applicable to all motor parts [18]. Although the technique monitors the engine’s condition using sound signals, it performs 

poorly because the engine sound signal easily overlaps with others. Occasionally, the sound signal does not change with the 

engine process. Digital signal processing applications for machine monitoring require input signals and certain methods. The 

data from the sensor is processed through a signal with FFT and filtered to obtain the correct engine condition diagnosis [19]. 

Comparing the sound signal processing with the Hilbert–Huang and the FFT algorithms show that the FFT algorithm is more 

effective for bearing damage detection [20]. Damage detection using sound signal data with a band-pass filter contributes to the 

detection results’ accuracy [21]. This means fault detection through sound signal is recommended for detecting machine parts 

with higher accuracy 

The purpose of this study is developing analytical methodologies for detecting damage to induction motors operating at 

various loads and the degree of damage to outer race bearings on the main and fan shaft rotors. Despite the high accuracy, some 

studies showed that it is not specific to check whether the diagnosed bearing is located on the main or fan shaft. This is because 

damaged bearing conditions with different locations on the shaft affect the motor’s sound characteristics. Therefore, this study 

applied a non-invasive diagnostic technique by detecting damage to the bearing’s outer race. An induction motor sound 

analysis was conducted by considering the damaged bearing’s location on the shaft. Bearings in induction motors are located 

on the main and fan shafts. Damage to the fan shaft bearings is rougher or harder than the main shaft. Furthermore, the bearing 

damage alters the motor’s sound characteristics.  

Previous studies conducted tests by providing a hole defect in the bearing [1, 5, 7-8]. The results show that the damage 

detection system could identify the bearing conditions, however, the research did not test the minor damage. This study tested 

the outer race-bearing cracks and minor damage that cause other defects. To observe the occurring harmonics, it used the FFT 

algorithm to calculate the outer-race breakdown frequency. The bearing was declared faulty using eight harmonic components 

when the sound harmonic component exceeded that of a healthy motor and vice versa. This conclusion is a reference for 

detecting damage to the outer race bearing useful information on maintenance actions before serious damage occurs. 

Section 2 of this study describes the configuration of the damage detection system used, while Section 3 reviews the 

object of diagnosis, signal processing, and filtering to determine the frequency of fault locations. Additionally, Section 4 

discusses the experiment results, while Section 5 presents conclusions. 
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2. System Configuration 

This study applied damage detection to a three-phase motor with a squirrel cage rotor type of 1.5 kW. The damage 

detection system through sound signals requires supporting equipment, including a 3-phase power supply, mechanical braking, 

sound sensors, and signal processing MATLAB software. The sound sensor uses a microphone placed 10 cm from the motor 

body. The distance should be considered to obtain data not influenced by the motor fan sound and non-machine noise. 

Therefore, the sound data was processed with the FFT algorithm to obtain a sound spectrum graph showing the harmonics of 

the outer race bearing damage frequency. Fig. 1 shows a detection system that identifies the condition of the outer race bearing 

through a sound signal. This study tested the placement of damaged outer race bearings on different shafts, the level of damage, 

and loading variations. The motor under load conditions was tested by providing mechanical loading with the main shaft rotor 

connected to the clutch and lever to provide a braking effect. The test showed that adding a load on the detection system 

changes the sound spectrum characteristics. The load variations included Loads 1, 2, 3, and 4 as 0, 30, 40, and 50 Newtons, 

respectively. 

 
Fig. 1 Damage detection system configuration 

3. Bearing and Frequency of Damage 

Bearings comprise the inner race, ball, cage, and outer race bearings, all of which function as components helping the 

motor move freely. Table 1 shows the specifications of the bearings used as test specimens, while Fig. 2 shows the bearing 

position on the rotor shaft and the induction motor construction. Bearing damage starts minor before progressing severe and 

results from incorrect installation, lack of lubricant, overload, and brinelling. 

  
(a) Induction motor construction (b) Bearing construction 

Fig. 2 Induction motor and bearing construction 

This study performed tests by reconstructing the outer race bearing, as shown in Fig. 3. The three cases of damage to the 

outer race bearing were Fault#1 (cracked), Fault#2 (1 mm diameter hole), and Fault#3 (2 mm diameter hole). Damage may 

occur to bearings on the fan or main shaft. When both shaft parts are damaged, an imbalance in the rotor’s rotation will occur. 

Variations in motor loading, faulty bearing locations on the rotor shaft, and damage levels change the motor’s speed, sound, and 

sound signal spectrum characteristics. Therefore, it is necessary to calculate the damage frequency characteristics for diagnosis. 
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Fig. 3 Outer race bearing damage 

Changes in the rotor’s rotational speed affect the damage frequency characteristics used to identify the condition of each 

bearing element. Eqs. (1)-(4) predict the damage frequency based on the diagnosis location of the bearing section [8]. �� is the 

number of ball bearings, �� is the rotational speed, ��  is the diameter of the ball, � is the pitch diameter, and � is the ball’s 

contact angle 
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Harmonic component's damage frequency predictions were repeated with an increasing constant value, as shown in Eq. 

(5), 	
 is the predicted fault frequency, 	� is the fault characteristic frequency obtained from Eqs. (1)-(4), and � is a constant 

�  1, 2, 3, ⋯. 

.p vf k f=  (5) 

Calculating the damage characteristic frequency before a diagnosis facilitates observation. Table 1 shows the bearing 

specifications used in this study.  

Table 1 Bearing specification 

Brand CSC 

Type 6205 2R 

Inside diameter (Inner) 25 mm 

Number of balls 9 pieces 

Ball bearing diameter 7.25 mm 

Outside diameter (Outer) 52 mm 

The following is an example calculation of the frequency of damage to outer race bearing Fault#2, with load 1 using Eq. 

(1), with parameters ��  9 , ��  7.25 �� , contact angle �  0  so cos �  1 , and a speed of 1495.7 (tachometer 

measurement): ��  ����. 
!"  24.92 $%&/(%), �  �*+*�

*  38.5, and 	"  �
* 24.92 -1 .  .*�

/0.� cos 0°2  91.05 Hz 

Table 2 shows the calculation results on the damage frequency characteristics with several load and damage level 

variations. The damage characteristic frequency was used to determine the damage frequency’s harmonic component. Eight 

harmonic components were observed, meaning the selected constant � is up to �  8. Detailed and valid detection results are 

obtained by observing more harmonic components 

Fault#3 Fault#2 

Healthy 

Fault#1 
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Table 2 Outer race bearing damage frequency 

Load 
Condition bearing 

Fault#1 (Hz) Fault#2 (Hz) Fault#3 (Hz) 

0 Newton (load1) 94.99 91.05 91.35 

30 Newton (load2) 93.97 91.51 90.99 

40 Newton (load3) 94.05 91.56 91.56 

50 Newton (load4) 94.67 91.64 91.56 

4. Results and Discussion 

The damage frequency calculation was used to diagnose damage to the outer race bearing. This study discussed the 

characteristics of the sound signal from damaged bearing conditions with different locations, loading variations, and damage 

levels. Outer race bearing damage was tested on the fan and main shaft rotor. The motor’s condition was identified based on the 

signal from two outer race-bearing conditions. This implies the sound signal of a healthy motor condition is a reference and a 

test signal. Furthermore, motor sound diagnostic data were collected by observing the effect of ambient noise in the room. 

Noise from other than motors greatly affects the analysis results. Therefore, to obtain valid data, preprocessing which involves 

studying the ambient sound and its effect on the detection results is necessary. Tests were conducted in quiet, standard, and 

crowded conditions to determine the effect of noise on the damage detection results. The quiet and standard room conditions 

from the reprocessing stage allow sound recording as the main data to detect outer-race conditions. 

4.1.   Sound signal time-domain analysis 

 
Fig. 4 Motor sound signal in healthy condition 

 

 
Fig. 5 The sound signal of the motor in the outer race bearing is damaged and placed on the fan shaft 

 

 
Fig. 6 The sound signal of the motor is that the outer race bearing is damaged and placed on the main shaft 

Figs. 4-6 present the time-domain sound signals for healthy motors and faulty outer race bearings. The sound signal was 

obtained from the microphone at 44.1KHz, an average recording of 30 seconds, and placed 10 cm from the motor body. Fig. 4 

is a sound signal for a healthy outer race bearing, where the average amplitude is around 0.18, while Figs. 5-6 show the increase 

in mean amplitude. An increase in the motor sound signal amplitudes indicates an abnormality in the motor part (Fault#2). In 

Fig. 5, the sound signal from the damaged outer race bearing on the fan shaft has greater amplitude, with an average of 0.6. 
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When the outer race bearing is damaged, it is placed on the main shaft with an average of 0.3 and makes a louder sound when 

placed on the fan shaft. The differences in sound characteristics should be discussed to assess their effect on damage detection. 

Therefore, this study conducted further sound signal processing to determine whether the sound characteristics had a validity 

effect on damage detection. Analyzing sound characteristics in the time domain cannot determine the location of the damaged 

motor part. This necessitates FFT to transform the sound signal from the time to the frequency domain. 

4.2.   Sound signal frequency domain analysis 

The motor parts’ condition is determined by observing the frequency amplitude when the damage occurs. The calculation 

results in Table 2 imply the necessity to observe the amplitude of each harmonic at the damage frequency. Fig. 7 shows the 

resulting FFT transformation spectrum for a healthy motor. The eight harmonic components were displayed at the fault 

location frequency. Furthermore, the healthy motor condition’s amplitude helps determine the motor’s condition. Some 

reference frequency points include 91.05 Hz, 182.1 Hz, 273.2 Hz, 364.2 Hz, 455.3 Hz, 546.3 Hz, 637.4 Hz, and 728.4 Hz. Fig. 

7 shows several dominant frequencies, including 100Hz, 300Hz, and 650Hz. However, they are not used for fault diagnosis 

because they are not harmonic components of the outer - race bearing fault frequency. The outer race bearing was tested in a 

damaged condition after obtaining the amplitude of the harmonic components in a healthy outer race. The damage to the motor 

parts started with minor damage, and it could lead to severe damage. 

 

Fig. 7 The sound spectrum of a healthy motor used as a reference 

The results appropriate to the damage were obtained by conducting detection tests on the outer race bearing when cracked 

(Fault#1) and under other severe damage (Fault#2 and Fault#3). The test involved alternating the damaged bearing on the fan 

or main shaft. Damaged bearings are not placed on both shaft parts because they will result in motor eccentricity, causing a 

separate frequency outside the bearing damage frequency. Fig. 8 shows the sound spectrum on a faulty bearing test on a fan 

shaft with load 1, where (a) is Fault#1, (b) Fault#2, and (c) Fault#3. The amplitude of each harmonic component in the 

breakdown frequency was observed. A test amplitude exceeding the healthy value means the outer race is damaged and the 

actual condition could be detected. In contrast, a test amplitude not exceeding the healthy values indicates that the outer race is 

healthy, and the table is gray. This means the system does not recognize the outer race bearing’s actual condition, implying 

false detection. 

 
(a) Sound spectrum on Fault#1 load1 test 

Fig. 8 The sound spectrum of the damaged outer race bearing is located on the fan shaft rotor with the load1 case 
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(b) Sound spectrum on Fault#2 load1 test 

   

(c) Sound spectrum on Fault#3 load1 test 

Fig. 8 The sound spectrum of the damaged outer race bearing is located on the fan shaft rotor with the load1 case (continued) 

The amplitude for each outer race bearing frequency harmonics from Fig. 8 are shown in Table 3. These values facilitate 

comparing the test amplitude with the reference amplitude. The left column in Table 3 shows that the test on the outer 

race-bearing crack (Fault#1) has two undetectable frequency points of harmonic damage. The 	5 and 	56/ harmonics have a 

smaller amplitude than the reference amplitude, greatly affecting the detection accuracy by 75%. The rough sound character 

caused by minor damage on the outer race bearing on the fan shaft also affects the detection accuracy. However, the amplitude 

exceeds the healthy value in tests with damage levels of Fault#2 and Fault#3, when the calculated detection accuracy 

percentage would be 100%. These results show that the detection system developed has recognized the outer-race bearing 

condition with high accuracy in testing the holes in the fan shaft rotor. 

Table 3 Fault#1, Fault#2, and Fault#3 outer race bearing damage detection analysis when  

placed on the fan or main shaft 

Frequency 
Healthy 

condition 

Amplitude test outer race bearing 

damaged condition in the fan shaft rotor 

Amplitude test outer race bearing 

damaged condition in the main rotor 

Fault#1 Fault#2 Fault#3 Fault#1 Fault#2 Fault#3 

	5 0.00046 0.00025 0.00115 0.00333 0.00080 0.00118 0.00106 

	56* 0.00010 0.00012 0.00707 0.00131 0.00120 0.00042 0.00108 

	56/ 0.00018 0.00009 0.04130 0.00423 0.00035 0.00054 0.00404 

	56� 0.00008 0.00013 0.01999 0.00237 0.00007 0.00012 0.00087 

	56� 0.00011 0.00022 0.01184 0.00257 0.00030 0.00024 0.00014 

	56! 0.00001 0.00041 0.03326 0.00191 0.00065 0.00394 0.00396 

	56  0.00005 0.00013 0.03291 0.00117 0.00016 0.00062 0.00299 

	560 0.00011 0.00020 0.02147 0.00077 0.00017 0.00100 0.01426 

Broken detected 6 8 8 8 8 8 

% detection accuracy 75% 100% 100% 100% 100% 100% 

The detection results were confirmed by testing the damaged outer race bearing on the main shaft rotor. Fig. 9 presents the 

sound spectrum on the test of a faulty outer race bearing on the main shaft with variations of Fault#1, Fault#2, and Fault#3. The 

test amplitudes for damaged outer race bearings on the main shaft are presented in the right column of Table 3. All harmonic 

frequencies detect the actual condition of the outer race bearing. Placing the outer race bearing, broken conditions, cracks, and 

other damage to the main shaft did not affect the accuracy of the detection results, meaning the percentage of detection 

accuracy is 100%. 
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(a) Sound spectrum on Fault#1 load1 test 

 

(b) Sound spectrum on Fault#2 load1 test 

 

(c) Sound spectrum on Fault#3 load1 test 

Fig. 9 The sound spectrum of the damaged outer race bearing is located on the main shaft rotor with a load1 case 

The analysis was conducted under different load conditions because the induction motor operates with load variations. 

The outer race bearing was placed on the fan shaft rotor in a damaged condition, and the decrease in detection accuracy was 

considered for further testing. The sound spectrum and analysis in the load 2 case are shown in Fig. 10 and Table 4 in the left 

column. In Fig. 10, the spectrum graph shows several dominant frequencies, including 50 Hz, 100 Hz, and 150 Hz. The three 

dominant frequencies were not observed for damage analysis because they do not show the outer race-bearing damage 

frequency. Furthermore, the graph of the test spectrum for loads with Fault#2 case shows that all harmonic frequencies detect 

outer race bearing damage. The highest dominant damage frequency of 0.02908 was obtained at the 6th harmonic. Other 

harmonic frequencies are not lower than the reference amplitude, implying 100% detection accuracy. Moreover, testing case 

load#3 and load#2 shows that the harmonic frequency of damage 	5 is healthy. This means the detection system does not 

recognize damage to the outer race bearing, implying a damage detection accuracy of 87.5%, while other frequencies indicate 

damage. 

 

(a) Sound spectrum Fault#2 case 

Fig. 10 Sound spectrum load2 variation testing 
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(b) Sound spectrum Fault#3 case 

Fig. 10 Sound spectrum load2 variation testing (continued) 

Loads 3 and 4 tests involved observing the amplitude in each damage harmonic spectrum, and the results are presented in 

the middle and right columns of Table 4. The shading sign means the damage harmonic frequency point indicates a healthy 

outer race condition, implying an incorrect test because the race being tested is damaged. Additionally, the results on the 

variation of load3 show that Fault#2 at 	56/  and Fault#3 at 	5 do not detect damage. The percentage of accuracy obtained is 

87.5% because one frequency point does not detect damage. Tests on variations in load 4 show that all damage frequencies 

detect damage, indicating 100% detection accuracy. 

Table 4 Damage detection results for all load variations 

Frequency 
Load2 testing amplitude Load3 testing amplitude Load4 testing amplitude 

Healthy Fault#2 Fault#3 Healthy Fault#2 Fault#3 Healthy Fault#2 Fault#3 

	5 0.00035 0.00091 0.00021 0.00032 0.00312 0.00020 0.00002 0.00053 0.00030 

	56* 0.00020 0.00368 0.00024 0.00017 0.00296 0.00022 0.00002 0.00283 0.00029 

	56/ 0.00474 0.00401 0.00501 0.00207 0.00131 0.00327 0.000002 0.00451 0.00517 

	56� 0.00036 0.00177 0.00115 0.00008 0.00151 0.00197 0.00005 0.00150 0.00163 

	56� 0.00046 0.01966 0.00271 0.00007 0.01234 0.00017 0.00002 0.01719 0.00392 

	56! 0.00019 0.02908 0.01275 0.00044 0.01304 0.00113 0.00003 0.02171 0.00765 

	56  0.00014 0.00856 0.00016 0.00004 0.00589 0.00025 0.00001 0.00614 0.00029 

	560 0.000008 0.00491 0.00039 0.00011 0.00500 0.00067 0.00015 0.00313 0.00487 

Damage detected 8 7 - 7 7 - 8 8 

% detection accuracy 100% 87.5% - 87.5% 87.5% - 100% 100% 

 

 

Fig. 11 Summarizes the percentage accuracy of damage detection 

Fig. 11 summarizes the percentage accuracy of damage detection in all tests. The effect of damaged outer race bearings on 

the fan and main shafts is 91.66% and 100%, respectively. The average of testing on loading variations is 93.75%, meaning 

that the detection using sound has high accuracy. Preprocessing was needed to obtain sound data free from non-machine noise, 

which strongly influences damage detection. Additionally, damage detection through sound is the recommended technique 

supported by the advantages of non-invasive methods. Table 5 shows previous studies on bearing damage detection using 

Detection accuracy 
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sound signals. It shows the use of multiple sensors, testing with load variations, testing the damage to bearings on different 

rotor shafts, and presenting accurate results. Furthermore, the proposed method gets good accuracy. [21] did not include the 

accuracy obtained but tested all bearing and other motor parts, which could be an input for testing in further studies. Moreover, 

the proposed method provides an accuracy that should be considered because the test provides variations in loading, damage 

levels, and damaged bearing conditions in different locations. Determining the diagnosis frequency appropriate with the 

damage location could help the diagnosis observation with a 93.75% accuracy. 

Table 5 Comparison of the accuracy of similar studies 

Study 
Using more 

than one sensor 

Load variation 

test 

Testing of variations in the 

damage to the outer race 

Testing for variations in 

the location of damaged 

bearings on the shaft 

Accuracy 

percentage 

Hecke et al., 2015 [21] No No No No - 

Junior et al., 2020 [22] No No Yes No 100% 

Lu et al., 2019 [23] Yes No No No 87% 

Proposed method No Yes Yes Yes 93.75% 

5. Conclusions 

This study discussed damage analysis using sound signals with processing algorithms using FFT. The amplitude ratio to 

the damage frequency determines the outer race-bearing condition. Moreover, the damage location, level, and load variation 

significantly affect the motor condition diagnosis. The frequency should be calculated under different test conditions, as the 

finding showed a decrease in accuracy when the damaged bearing is placed on the fan shaft rotor. This is because the test was 

performed on cracked bearings, reducing the effect of the sound spectrum amplitude. Sound data retrieval is strongly 

influenced by a fan motor and non-engine noise, causing diagnosis errors. This is avoided by preprocessing data retrieval by 

determining the right distance. Furthermore, a minimum distance of 10 cm is taken because the fan noise on the shaft affects 

the diagnosis when the microphone is closer.  

(1) The detection system is 91.66% and 100% accurate when testing the damaged bearing on the fan and main shaft rotors, 

respectively. Similarly, the time-domain sound analysis shows a smoother sound than bearing damage on the fan shaft 

rotor. This reveals that the damage level and the bearing's damage location on the shaft slightly affect the accuracy of 

bearing condition detection.  

(2) Load variation changes the motor’s sound, with a high percentage of 93.75% for the proposed detection accuracy test. 

Damage detection through sound using FFT is recommended to identify the induction motor’s condition, though the data 

is affected by the non-engine and fan noise on the rotor shaft. 

(3) The motor’s sound has a wide frequency range, but the damage location frequency should be calculated based on the 

location observed. This filtering step or band-pass determines the location of the amplitude observations as a diagnosis of 

the outer-race bearing condition.  

Moreover, the filter results’ prediction frequency promises are more accurate by observing the amplitude at the fault 

location in the harmonic components. The proposed method could diagnose the condition of other motor parts, including 

bearing parts, rotor bars, stators, and eccentricity. However, the speed changes affect the damage frequency location 

determination, requiring accuracy and necessitating observing the rotation value at each diagnosis. 

Acknowledgments 

The authors thank the Electrical Machinery Laboratory of Hang Tuah University for the insights and expertise in 

conducting this study. They also thank the study team of the Energy Conversion Laboratory, Hang Tuah University, for their 

comments and suggestions for manuscript improvement. 



 International Journal of Engineering and Technology Innovation, vol. 13, no. 1, 2023, pp. 28-39 38 

Conflicts of Interest 

The authors declare there is no conflict of interest. 

References 

[1] I. D. PK, B. Y. Dewantara, and W. M. Utomo, “Healthy Monitoring and Fault Detection Outer Race Bearing in Induction 

Motor Using Stator Current,” International Journal of Integrated Engineering, vol. 11, no. 3, pp. 181-193, September 2019. 

[2] A. Abdo, J. Siam, A. Abdou, R. Mustafa, and H. Shehadeh, “Electrical Fault Detection in Three-Phase Induction Motor 

Based on Acoustics,” IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and 

Commercial Power Systems Europe, pp. 1-5, June 2020. 

[3] A. Daraz, S. Alabied, A. Smith, F. Gu, and A. D. Ball, “Detection and Diagnosis of Centrifugal Pump Bearing Faults 

Based on the Envelope Analysis of Airborne Sound Signals,” International Conference on Automation and Computing, pp. 

1-6, September 2018. 

[4] M. Irfan, N. Saad, R. Ibrahim, V. S. Asirvadam, A. S. Alwadie, and M. A. Sheikh, 

https://www.intechopen.com/chapters/54865, May 31, 2017.  

[5] D. P. Iradiratu, B. Y. Dewantara, D. Rahmatullah, I. Winarno, and C. Hidayanto, “Decomposition Wavelet Transform as 

Identification of Outer Race Bearing Damage through Stator Flow Analysis in Induction Motor,” International Conference 

on Information and Communications Technology, pp. 733-737, July 2019. 

[6] A. Choudhary, T. Mian, and S. Fatima, “Convolutional Neural Network Based Bearing Fault Diagnosis of Rotating 

Machine Using Thermal Images,” Measurement, vol. 176, Article no. 109196, May 2021. 

[7] X. Song, Z. Wang, and J. Hu, “Detection of Bearing Outer Race Fault in Induction Motors Using Motor Current Signature 

Analysis,” 22nd Internation Conference on Electrical Machines and Systems, pp.1-5, August 2019. 

[8] M. R. Barusu and M. Deivasigamani, “Non-Invasive Vibration Measurement for Diagnosis of Bearing Faults in 3-Phase 

Squirrel Cage Induction Motor Using Microwave Sensor,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1026-1039, January 

2021. 

[9] M. Zuhaib, F. A. Shaikh, U. A. Shaikh, and A. Soomro, “An Approach on MCSA-Based Fault Detection Using Discrete 

Wavelet Transform and Fault Classification Based on Deep Neural Networks,” International Journal of Advanced Trends 

in Computer Science and Engineering, vol. 10, no. 3, pp. 2256-2259, June 2021. 

[10] V. Becker, T. Schwamm, S. Urschel, and J. Antonino-Daviu, “Fault Detection of Circulation Pumps on the Basis of Motor 

Current Evaluation,” IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 4617-4624, June 2021. 

[11] K. D. Kompella, N. S. Rongala, S. R. Rayapudi, and V. G. R. Mannam, “Robustification of Fault Detection Algorithm in a 

Three-Phase Induction Motor Using MCSA for Various Single and Multiple Faults,” IET Electric Power Applications, vol. 

15, no. 5, pp. 593-615, November 2021. 

[12] A. Mohammed and S. Djurović, “Electric Machine Bearing Health Monitoring and Ball Fault Detection by Simultaneous 

Thermo Mechanical Fibre Optic Sensing,” IEEE Transactions on Energy Conversion, vol. 36, no. 1, pp. 71-80, June 2020. 

[13] T. Amanuel, A. Ghirmay, H. Ghebremeskel, R. Ghebrehiwet, and W. Bahlibi, “Design of Vibration Frequency Method 

with Fine-Tuned Factor for Fault Detection of Three Phase Induction Motor,” Journal of Innovative Image Processing, vol. 

3, no. 1, pp. 52-65, April 2021. 

[14] P. Kumar and A. S. Hati, “Review on Machine Learning Algorithm Based Fault Detection in Induction Motors,” Archives 

of Computational Methods in Engineering, vol. 28, no. 3, pp. 1929-1940, June 2021. 

[15] M. A. Hmida and A. Braham, “Fault Detection of VFD-Fed Induction Motor under Transient Conditions Using Harmonic 

Wavelet Transform,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 8207-8215, May 2020. 

[16] F. Husari and J. Seshadrinath, “Inter-Turn Fault Diagnosis of Induction Motor Fed by PCC-VSI Using Park Vector 

Approach,” IEEE International Conference on Power Electronics, Drives, and Energy Systems, pp. 1-6, December 2020. 

[17] M. Jalayer, C. Orsenigo, and C. Vercellis, “Fault Detection and Diagnosis for Rotating Machinery: A Model Based on 

Convolutional LSTM, Fast Fourier and Continuous Wavelet Transforms,” Computers in Industry, vol. 125, article no. 

103378, December 2021. 

[18] O. AlShorman, F. Alkahatni, M. Masadeh, M. Irfan, A. Glowacz, F. Althobiani, et al., “Sounds and Acoustic 

Emission-Based Early Fault Diagnosis of Induction Motor: A Review Study,” Advances in Mechanical Engineering, vol. 

13, no. 2, pp. 1-19, February 2021. 

[19] D. Goyal, C. Mongia, and S. Sehgal, “Applications of Digital Signal Processing in Monitoring Machining Processes and 

Rotary Components: A Review,” IEEE Sensors Journal, vol. 21, no. 7, pp. 8780-8804, April 2021. 



International Journal of Engineering and Technology Innovation, vol. 13, no. 1, 2023, pp. 28-39 39

[20] V. K. Rai and A. R. Mohanty, “Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert-Huang 

Transform,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2607-2615, August 2007. 

[21] B. Van Hecke, Y. Qu, and D. He, “Bearing Fault Diagnosis Based on a New Acoustic Emission Sensor Technique,” 

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 229, no. 2, pp. 

105-118, November 2015. 

[22] J. A. Lucena-Junior, T. L. de Vasconcelos Lima, G. P. Bruno, A. V. Brito, J. G. G. de Souza Ramos, F. A. Belo, et al., 

“Chaos Theory Using Density of Maxima Applied to the Diagnosis of Three Phase Induction Motor Bearings Failure by 

Sound Analysis,” Computers in Industry, vol. 123, article no. 103304, December 2020. 

[23] S. Lu, P. Zheng, Y. Liu, Z. Cao, H. Yang, and Q. Wang, “Sound-Aided Vibration Weak Signal Enhancement for Bearing 

Fault Detection by Using Adaptive Stochastic Resonance,” Journal of Sound and Vibration, vol. 449, pp. 18-29, June 

2019. 

 

Copyright© by the authors. Licensee TAETI, Taiwan. This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license 

(https://creativecommons.org/licenses/by-nc/4.0/). 


