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Abstract 

A numerical model based on the dual reciprocity boundary element method (DRBEM) is extended to study 

the generalized magneto-thermo-viscoelastic transient response of rotating thick strip of functionally graded 

material (FGM) in the context of the Green and Naghdi theory of type III. The material properties of the strip 

have a gradient in the thickness direction and are anisotropic in the plane of the strip. An implicit-implicit 

staggered strategy was developed and implemented for use with the DRBEM to obtain the solution for the 

displacement and temperature fields. The accuracy of the proposed method was examined and confirmed by 

comparing to the obtained results with those known before. In the case of plane deformation, a numerical scheme 

for the implementation of the method is presented and the numerical computations are presented graphically to 

show the effect of the rotation on the temperature and displacement components. 

 

Keywords: generalized magneto-thermo-viscoelasticity, rotation, anisotropic, functionally graded material, dual 

reciprocity boundary element method 

1. Introduction 

Biot [1] introduced the classical coupled thermo-elasticitytheory (CCTE) to overcome the paradox inherent in the 

classical uncoupled theory that elastic changes have no effect on temperature. The heat equations for both theories are 

diffusion type predicting infinite speeds of propagation for heat waves contrary to physical observations. Most of the 

approaches that came out to overcome the unacceptable prediction of the classical theory are based on the general notion of 

relaxing the heat flux in the classical Fourier heat conduction equation, thereby introducing a non-Fourier effect. A flux rate 

term into Fourier law of heat conduction is incorporated by Lord and Shulman [2], formulated an extended thermo-elasticity 

theory (ETE), which is also known as the theory of generalized thermoelasticity with one relaxation time and the Fourier's 

heat conduction equation is modified. Another thermoelasticity theory that admits the second sound effect is reported by 

Green and Lindsay [3] who developed temperature-rate-dependent thermo-elasticity theory (TRDTE), which is also called as 

the theory of generalized thermoelasticity with two relaxation timesby introducing two relaxation times that relate the stress 

and entropy to the temperature. After that, an alternative approach in the formulation of a theory predicting the finite 

propagation speed of the thermal disturbances is due to Green and Naghdi[4, 5] where they developed three models for 

generalized thermoelasticitywhich are labeled as models I, II and III. 

With the rapid development of polymer science and plastic industry, as well as the wide use of materials under high 

temperature in modern technology and application of biology and geology in engineering, the theoretical study and 

applications in viscoelastic materials has become an important task for solid mechanics. In recent years, the dynamical 

                                                           
* Corresponding author. E-mail address: mafahmy2001@yahoo.com  

Tel.: 00201114873487 



International Journal of Engineering and Technology Innovation, vol. 3, no. 2, 2013, pp. 70-85 

Copyright ©  TAETI 

71 

problem of thermoviscoelasticity for an anisotropic material becomes more important due to its many applications in modern 

aeronautics, astronautics, earthquake engineering, soil dynamics, nuclear reactors and high-energy particle accelerators. It is 

hard to find the analytical solution of a problem in a general case, therefore, an important number of engineering and 

mathematical papers devoted to the numerical solution have studied the overall behavior of such materials (Berezovski and 

Maugin[6], Misra et al. [7], El-Naggar et al. [8, 9], Abd-Alla et al. [10-12], Fahmy [13-17], Fahmy and El-Shahat [18], Yan 

and Liu [19]). 

Functionally graded materials (FGMs) are a type of nonhomogeneous composites usually made from a mixture of 

metals and ceramics. FGMs are now developed for general use as structure components in ultrahigh temperature 

environments and extremely large thermal gradients such as aircraft, space vehicles, automobile industries, nuclear plants 

and other engineering applications. For a functionally graded (FG) thick strip the material properties are generally assumed 

to vary continuously in the thickness direction only. The response of an FG thick strip to mechanical and thermal loads may 

be computed analytically, numerically, or experimentally. We are not aware of experimental results on FG thick strips 

subjected to transient thermal, magnetic and mechanical loads. And it is well known that the thermal stress distributions in a 

transient state can show large values compared with the one in a steady state. Therefore, the transient thermoelastic problems 

for these nonhomogeneous materials become important, and there are several studies concerned with these problems such as 

Shariyat et al. [20], Afsar and Go [21], Zhang and Batra [22], Arani et al. [23], Khosravifard et al. [24], Rangelov et al. [25], 

Zhou et al. [26] and Fahmy [27, 28]. 

One of the most frequently used techniques for converting the domain integral into a boundary one is the so-called 

dual reciprocity boundary element method (DRBEM). This method was initially developed by Nardini and Brebbia [29] in 

the context of two-dimensional (2D) elastodynamics and has been extended to deal with a variety of problems wherein the 

domain integral may account for linear-nonlinear static-dynamic effects. The DRBEM has been highly successful in a very 

wide range of engineering applications, including acoustics, aeroacoustics, aerodynamics, fluid dynamics, fracture analysis, 

geomechanics, elasticity and heat transfer. A more extensive historical review and applications of dual reciprocity boundary 

element method may be found in Brebbia et al. [30], Wrobel and Brebbia [31], Partridge et al. [32],Partridge and Wrobel 

[33]and Fahmy [34-39] who studied DRBEM problems considering viscoelastic solid of Kelvin-Voigt type. 

The present work deals with a two dimensional generalized magneto-thermo-viscoelastic problem for a rotating 

functionally graded anisotropic thick strip. The problem has been solved using generalized thermoelasticity theory proposed 

by Green and Naghdi [4]. A predictor-corrector implicit-implicit staggered algorithm was developed and implemented for 

using with the DRBEM to obtain the solution for the displacement and temperature fields. The transient temperature,and 

displacement components have been computed numerically and illustrated graphically in the context of the Green and 

Naghdi theory of type III. It can also be seen from these figures that the effect of rotation is very pronounced. Numerical 

results that demonstrate the validity of the proposed method are also presented graphically. 

2. Formulation of the Problem 

Consider a Cartesian coordinates system      as shown in Fig. 1. We shall consider a functionally graded anisotropic 

viscoelastic thick strip of a finite thickness   placed in a primary magnetic field    acting in the direction of the  -axis and 

rotating about it with a constant angular velocity in the presence of spatially varying heat source. The strip occupies the 

region   {(     )                  } with varying material properties in the thickness direction. Here we 

address the generalized two-dimensional deformation problem in   -plane only; therefore, all the variables are constant 

along the  -axis. 
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Fig. 1 The coordinate system of the strip 

The generalized magneto-thermo-visco-elastic governing differential equations in the context of the Green and Naghdi 

theory of type III for a Kelvin-Voigt type can be written as 
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The initial and boundary conditions for the current problem are assumed to be written as 
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A superposed dot denotes differentiation with respect to the time and a comma followed by a subscript denotes partial 

differentiation with respect to the corresponding coordinates. 

For functionally graded materials, the parameters      
 ,    

 ,   ,    and    
  are space dependent. In this paper, we 

have focused our attention on studying the effect of inhomogeneity along the    direction. Thus, we replace these quantities 

by       ( ),     ( ),   ( ),   ( ) and     ( ) where      ,    ,  ,   and     are assumed to be constants and ( ) is 

a given nondimensional function of space variable  . We take  ( )  (   ) , where   is a dimensionless constant. Then 

the equations (1)-(4) become 
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3. Numerical Implementation 

Making use of Eqs. (12) and (13), we can write (11) as follows 

        ̈  (         )      (15) 

where the inertia term   ̈ , the temperature gradient     and rotation term       are treated as the body forces. The field 

equations can now be written in operator form as follows 
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where the operators    ,    ,     and     are defined as follows: 
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Using the weighted residual method (WRM), the differential equation (16) is transformed into an integral equation 

∫(         )   
 

 

     
(20) 

Now, we choose the fundamental solution    
  defined by 

      
       (   ) (21) 

as weighting function 
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The corresponding traction field can be written as 

   
             

    (22) 

The thermoelastic traction vector can be written as follows 

   
  ̅

(   ) 
 (              (     ̇))   (23) 

Applying integration by parts to (20) using the sifting property of the Dirac distribution, with (22) and (23), we can write the 

following elastic integral representation formula 
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(24) 

The fundamental solution   of the thermal operator     is described mathematically by the Dirac distribution  (   ) as 

follows 

    
    (   ) (25) 

where   is the field point and   is the load point; By implementing the WRM and integration by parts, the differential 

equation (17) is transformed into the thermal reciprocity equation 

∫(           
  )   ∫(       )  

  

 
(26) 

where the heat fluxes are independent of the elastic field and can be expressed as follows: 

            (27) 

          
    (28) 

By the use of sifting property, we obtain from (26) the thermal integral representation formula 
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The integral representation formulae of elastic and thermal fields (24) and (29) can be combined to form a single equation as 

follows 
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It is convenient to use the contracted notation to introduce generalized thermoelastic vectors and tensors, which 

contain corresponding elastic and thermal variables as follows: 
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Using the contracted notation, the thermoelastic representation formula (30) can be written as: 
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The vector    can be written in the split form as follows 
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The thermoelastic representation formula (30) can also be written in matrix form as follows: 
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Our task now is to implement the DRBEM. To transform the domain integral in (36) to the boundary, we approximate 

the source vector   in the domain as usual by a series of given tensor functions    
 

and unknown coefficients  
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 (44) 

Thus, the thermoelastic representation formula (36) can be written in the following form 
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By applying the WRM to the following inhomogeneous elastic and thermal equations: 
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where the weighting functions are chosen to be the elastic and thermal fundamental solutions    
  and   . Then the elastic 

and thermal representation formulae are similar to those of Fahmy [40] within the context of the uncoupled theory and are 

given as follows 
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The dual representation formulae of elastic and thermal fields can be combined to form a single equation as follows 
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with the substitution of (50) into (45), the dual reciprocity representation formula of coupled thermoelasticity can be 

expressed as follows 
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To calculate interior stresses, (54) is differentiated with respect to   as follows 
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According to the steps described in Fahmy [41], the dual reciprocity boundary integral equation (51) can be written in 

the following system of equations 

  ̌     (  ̌    ̌)  (53) 

Where   contains the fundamental solution   
  and  ̌ contains the modified fundamental tensor  ̌ 

  with the coupling term. 

The technique which was proposed by Partridge et al. [32] can be extended to treat the convective terms, then the 

generalized displacements    are approximated by a series of tensor functions    
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The gradients of the generalized displacement can be approximated with the derivatives of tensor functions as follows 
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These approximations are substituted into Eq. (39) to approximate the corresponding source terms as follows 
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The same point collocation procedure described in Gaul et al. [42] can be applied to (44) and (54). This leads to the 

following system of equations  

 ̌           (58) 

Similarly, the application of the point collocation procedure to the source terms equations (57), (40), (41) and (42) 

leads to the following system of equations 
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Where  ̅  ,   ̅  and  ̅ are assembled by using the submatrices[   ], [   ] and [ ] respectively. 
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Solving the system (58) for and yields 

      ̌         (63) 

Now, the coefficients   can be expressed in terms of nodal values of the unknown displacements  ̌, velocities  ̌̇ and 

accelerations  ̌̈ as follows: 

     ( ̌           ̅   ̇  ( ̅    ̅ ) ̈) (64) 

An implicit-implicit staggered algorithm of Farhat et al. [43] was developed and implemented for use with the 

DRBEM for solving the governing equations which may now be written in a more convenient form after substitution of Eq. 

(64) into Eq. (53) as follows: 
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where ,  ⏞   ⏞  and  ⏞ represent the volume, mass, damping and stiffness matrices, respectively,  ̈  ̇     and  ⏞  

represent the acceleration, velocity, displacement, temperature and external force vectors, respectively,  ⏞  and  ⏞  are 

respectively the capacity and conductivity matrices,  ⏞ is a vector of new material constants proposed by Green and Lindsay 

[3],  ⏞ ,  ⏞ and  ⏞ are coupling matrices. Hence, the governing equations lead to the following coupled system of differential-

algebraic equations (DAEs) as in Farhat et al. [43]: 
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 is the predicted temperature. Integrating Eq. (65) with the use of trapezoidal rule 
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From Eq. (69) we have 

   ̇     ̅  [ ̇  
  

 
[ ̈   ⏞

  
( ⏞   

 
  ⏞     )]]   ̅  (  

  

 
 ⏞

  
 ⏞) (71) 

Substituting from Eq. (71) into Eq. (70), we derive 
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Substituting  ̇   
  from Eq. (71) into Eq. (67) we obtain 
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Integrating the heat equation (66) using the trapezoidal rule, and Eq. (68) we get 
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From Eq. (74) we get 
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Substituting  ̇   
  from Eq. (76) into Eq. (68) we obtain 
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Now, a displacement predicted staggered procedure for the solution of (72) and (77) is: 

(1) Predict the displacement field:     
 

    

(2) Substituting for  ̇    and  ̈    from equations (69) and (67) respectively in Eq. (77) and solve the resulted equation for 

the temperature field 

(3) Correct the displacement  field using the computed temperature field for the Eq. (72) 

(4) Compute  ̇   ,  ̈   ,  ̇    and  ̈    from Eqs. (71), (73), (74) and (78) respectively 

4. Numerical Results and Discussion 

Following Fahmy [40] monoclinic graphite-epoxy material is chosen for the purpose of numerical calculations, the 

physical data for which is given as follows: 

Elasticity tensor 
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Mechanical temperature coefficient 

                    
  

 [
         

         

      

]      N/K   

 

Tensor of thermal conductivity is 

    [
     
     
      

]      

Mass density        kg/   and heat capacity       J/(kgK),            Oersted,       Gauss/Oersted, 

   ,              ,     . The numerical values of the temperature and displacement are obtained by discretizing 

the boundary into 120 elements (      ) and choosing 60 well spaced out collocation points (     ) in the interior of 

the solution domain, refer to the recent work of Fahmy [41]. 

The initial and boundary conditions considered in the calculations are 

                  ̇   ̇   ̈   ̈         (79) 
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The present work should be applicable to any generalized magneto-thermoelastic deformation problem. The 

application is for the purpose of illustration; we don't intend to validate the results in a quantitative way because we have no 

experimental data at hand; this may be justified because our objective is to introduce a viable numerical technique for 

studying a model rather than to study any physical behaviors of it. Such a technique was discussed by Fahmy [41] who 

solved the special case from this study in the context of the uncoupled problem. To achieve better efficiency than the 

technique described in Fahmy [41], we use the implicit algebraic augmentation (IAA) procedure proposed by Farhat et al. 

[43] into a DRBEM code, which is proposed in the current study. In order to evaluate the influence of the rotation on the 

temperature and displacements in an anisotropic magneto-thermoviscoelastic thick strip, the uniform angular velocity values 

are taken to be         and    . 

Fig. 2 is plotted to show the variation of the temperature T along the thickness of the thick strip. It is noticed that the 

temperature increases with the increase of   in the absence (Ω    ) and presence (Ω             ) of rotation. Also, the 

temperature decreases with increasing angular velocity. 

    
Fig. 2 Variation of the temperature T along the strip thickness 

Fig. 3 and Fig. 4 show the influence of the rotation on the displacements    and    along the strip thickness. It is clear 

from these figures that the displacement    increases until it reaches its maximum value then it decreases slowly along the 

thickness of the thick strip for all values of the uniform angular velocity Ω, and it decreases with increasing the uniform 

angular velocity Ω. It can also been seen from the figures that the displacement    increases with increasing   through the 

thickness of the thick strip and it decreases with the increase of the uniform angular velocity Ω. 
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Fig. 3 Variation of the displacement u1 along the strip thickness 

 

Fig. 4 Variation of the displacement u2 along the strip thickness 

The present work should be applicable to any magneto-thermo-visco-elastic problem in a rotating functionally graded 

anisotropic thick strip. The example considered by Sladek et al. [44] may be considered as a special case of the current 

general problem. 

In the special case under consideration, the results are plotted in Figs. 5-7 to show the validity of the DRBEM. These 

results obtained with the DRBEM have been compared graphically with those obtained by using the Meshless Local Petrov-

Galerkin (MLPG) method of Sladek et al. [44] and also the results obtained by using the Finite Difference Method (FDM) of 

Fahmy [45] are shown graphically in the same figures to confirm the validity of the proposed method. It can be seen from 

these figures that the DRBEM results are in excellent agreement with the results obtained by MLPG and FDM, thus 

confirming the accuracy of the DRBEM. 

    

Fig. 5 Variation of the temperate T with time  for three methods DRBEM, FDM and MLPG 
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Fig. 6 Variation of the displacement u1 with time  for three methods DRBEM, FDM and MLPG 

      

Fig. 7 Variation of the displacement u2 with time  for three methods DRBEM, FDM and MLPG 

From this knowledge of the variation of magneto-thermoviscoelastic displacements in a rotating functionally graded 

anisotropic strip along its thickness, we can design various magneto-visco-elastic FG strips under thermal load to meet 

specific engineering requirements and utilize it in measurement techniques of magneto-thermoviscoelasticity. 

Nomenclature 

 
   components of displacement   time 

  temperature  ̃ perturbed magnetic field 

   specific heat capacity   magnetic intensity vector 

   magnetic permeability    density 

  heat source        constant elastic moduli 

  viscoelastic material constant      stress-temperature coefficients 

    mechanical stress tensor    retardation time for Kelvin-Voigt model 

    Maxwell's electromagnetic stress tensor   uniform angular velocity 

    heat conductivity coefficients   ,     ̅, 

 ̅ 

suitably prescribed functions 

  ̅       , tractions     
  additional material constant for GN theories 

   relaxation time    reference number 
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