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Abstract 

Grid operation and inspection a key links to ensure the safe operation of the power system, which requires 

efficient task allocation and resource scheduling. To address this problem, this paper proposes a resource scheduling 

model for grid operation and inspection based on bi-level programming. Firstly, the O&I process is analyzed and 

defined as a combined optimization problem of the multiple traveling salesman problem (MTSP) and the job-shop 

scheduling problem (JSP). Secondly, a bi-level programming model of MTSP and JSP is established according to 

the characteristics of the problem. Finally, an adaptive genetic algorithm is used to solve the problem. The feasibility 

of the model and the advancement of the algorithm are verified through the simulation of real scenarios and a large 

number of tests, which provide strong support for the sustainable development of the power system. 
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1. Introduction 

As one of the indispensable infrastructures of modern society, the reliability and economy of the power system are crucial 

for social and economic development. As the core link of power system management, grid operation, and inspection play a 

crucial role in ensuring the reliable operation and economy of the power system. With the continuous expansion of the scale 

of the power system and the rapid development of intelligent technology, grid operation, and inspection are facing more 

complex challenges. In response to these challenges, scholars have proposed to combine three-dimensional virtual scenarios 

with digital grids [1], thus enhancing the training of operation and inspection (O&I) employees.  

In addition, due to the expansion of the grid scale, it is difficult to meet the demand for efficient operation and maintenance 

of the grid by relying entirely on human inspection methods, and scholars have proposed to introduce drones and other 

machines and equipment for grid inspection, and have conducted extensive research on their safety management systems [2] 

as well as inspection programs [3]. However, in some specific aspects of grid O&I, it is difficult for robots to effectively 

replace manual work due to restricted operating space, insufficient safety distance, and other problems, and manual inspection 

still occupies an important position. In recent years, scholars have researched the key issues of task allocation and resource 

scheduling involving machines, equipment, and personnel in grid O&I through various methods and techniques. 

Task allocation aims to rationally assign different tasks to the right person or department to ensure that the tasks can move 

forward in an orderly manner. It has been widely studied in several specialized fields. In the field of machine planning, the 

problem of imbalance between multiple drones [4] and tasks, the linear task allocation problem of distributed multiple robots 
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[5], and the clustered collaborative task allocation of underwater robots [6] have all been effectively solved. In the field of 

personnel management, the allocation method between staff and tasks is also a hot research topic, and some scholars have 

conducted task allocation based on employees’ preference awareness [7]. In addition, two-stage task allocation due to task 

failure has also been adequately considered [8]. Resource scheduling, on the other hand, is an effective guarantee to ensure 

that these tasks can be carried out according to the established plan [9-11], In the context of Industry 4.0, there are higher 

requirements for resource scheduling. 

Nonetheless, the traditional grid O&I methods mainly focus on the optimization of the system as a whole, ignoring the 

units that work together with it. Analyzing the grid O&I resource scheduling problem, it can be learned that the goal of task 

allocation is to find the best combination of units to be inspected and inspection units, while the goal of resource scheduling is 

to find the optimal allocation of O&I tasks and resources, to achieve the optimal objective value. Both combinations involve 

discrete variables, therefore, the optimal scheduling of grid O&I resources is essentially a combinatorial optimization problem. 

Borrowing from classical combinatorial optimization problems, task allocation can be defined as a multiple traveling salesman 

problem (MTSP) [12-13], while resource scheduling can be defined as a job-shop scheduling problem (JSP) [14-15].  

The MTSP is an extension of the traveling salesman problem (TSP), which is designed to solve the problem in which 

multiple travelers work together to complete a set of cities. In MTSP, multiple travelers are required to work together to 

complete the task, with each traveler being responsible for visiting a portion of the cities. The core of the problem lies in 

determining the path of each traveler to minimize the overall traveling cost. MTSP has a wide range of application scenarios, 

including logistics and distribution, inspection tasks, power grid O&I, etc. JSP is a classical problem considered in job shop 

environments, aiming to optimize the scheduling order of tasks in a set of job shops with limited resources. In summary, a 

two-layer planning model [16] is introduced to coordinate the task allocation and resource scheduling efforts for global 

optimization of the grid O&I system. 

More and more scholars have found that meta-heuristic algorithms, due to their simplicity, efficiency, and wide 

applicability, show significant advantages in solving combinatorial optimization problems such as the MTSP [17-18] and the 

JSP [19-20], which provide the feasibility and effectiveness of the efficient solution of such complex problems. In terms of 

algorithm design, scholars have proposed hybrid meta-heuristic algorithms combining techniques such as the dragonfly 

algorithm (DA), firefly algorithm (FA), and genetic algorithm (GA) [21-22]. Compared with the traditional meta-heuristic 

algorithms, the hybrid meta-heuristic algorithms have strong adaptive and global search ability and can find more appropriate 

solutions in the search space of complex problems. However, there are fewer meta-heuristic algorithms for the two-layer 

planning problem, and research on scheduling resources for grid O&I is even scarcer. 

To address these problems, this paper constructs a grid O&I resource scheduling optimization model combining MTSP 

and JSP with the shortest total O&I time to optimize the overall efficiency of grid O&I. In addition, an algorithm design based 

on an adaptive genetic algorithm (AGA) is proposed to solve the problem. The feasibility of the model and the advancement 

of the algorithm are verified by simulating the real environment and comparing the existing algorithms. 

2. System Modeling 

Grid operation and maintenance play a crucial role in maintaining the safe operation of the power system, directly 

impacting the reliability of the energy supply and the stability of the electrical power system. In the process of grid operation 

and maintenance, effective task allocation and resource scheduling ensure the availability of grid equipment, prompt resolution 

of faults, and continuous power supply to the electrical system. The grid operation and maintenance problem typically involve 

multi-level decision-making, with task allocation and resource scheduling being two core levels. 
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2.1.   Model framework 

To enhance the efficiency of grid operation and maintenance and optimize resource utilization, this paper establishes a 

dual-layer planning-based optimization model for grid operation and maintenance resource scheduling. The goal is to achieve 

coordinated optimization of task allocation and resource scheduling. 

The model framework is illustrated in Fig. 1. In this model, the task allocation layer focuses on finding matches between 

different units to be inspected and inspection units, thereby achieving the optimal allocation of units to be inspected. The 

problem at this level can be understood as a MTSP, where each inspection unit represents a traveling salesman.  

Simultaneously, the resource scheduling layer concentrates on how to optimally schedule resources to execute grid 

operation and maintenance tasks given a task allocation scheme. Resource scheduling involves achieving the optimal match 

of multiple tasks and various resources in different “units to be inspected - inspection unit” combinations. At this level, the 

solutions of multiple JSP models form a set of solutions for MTSP. By iteratively optimizing task allocation and resource 

scheduling, the model ultimately achieves efficient execution of grid operation and maintenance tasks, optimal resource 

allocation, and cost reduction, and ensures the reliability and continuous power supply of the electrical system. 

 

Fig. 1 Model framework diagram 

2.2.   Model assumptions 

(1) All units awaiting inspection are of the same type, meaning the workflow for the operational inspection unit within them 

is identical. 

(2) A singular unit awaiting inspection can only be assigned to a specific operational inspection unit. 

(3) When the operational inspection unit undertakes tasks, they are carried out sequentially, one after another, and 

simultaneous execution is not permissible. 

(4) The unit to be inspected is accessed only once. 

2.3.   Description of symbol 

Before delving into the extensive research program, it is critical to understand the key terms and symbols used in this 

study. The inspection process is closely related to numerous interrelated components and therefore requires clear definitions. 

This paper describes the key symbols in Table 1, setting the stage for an informed scientific dialog. 
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Table 1 Description of symbol 

Sign Symbol description 

� Total duration of inspection 

� Number of inspection units 

� Number of units to be inspected 

���  The distance from unit i to j to be inspected 

�� Transport inspection unit transfer speed 

	
 Number of working steps 

��
  The fifth step of the unit i to be inspected takes time 

�� The completion time of the �th unit to be inspected on the th resource 

��� The execution time of the �th task on the th resource 

2.4.   Upper task allocation model 

In the assignment of power grid inspection tasks, the units awaiting inspection correspond to cities, and the operational 

inspection units correspond to travel agents. The model is established on a directed graph, where V is the set of n units awaiting 

inspection, and A is the set of arcs. Distinguishing itself from traditional MTSP models that do not account for the traveling 

agents’ dwell time within cities, this paper proposes an MTSP that considers the dwell time in cities. In the context of actual 

power grid inspection work, which involves prolonged stays, the dwell time represents the duration of the operational 

inspection units working within the unit’s awaiting inspection. The improved MTSP task assignment model is defined as 

follows: 
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where, Eq. (1) represents the total time, including transfer time and working time; Eq. (2) is a 0-1 variable indicating whether 

the path A(�, �) is selected; Eq. (3) calculates the transfer time; Eq. (4) calculates the working time; Eqs. (5)-(6) ensure that 

exactly m operational inspection units depart from unit 1 awaiting inspection and return to unit 1; Eqs. (7)-(8) ensure that each 
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unit awaiting inspection is visited only once (except for unit 1); Eq. (9) prevents the formation of operational routes that do 

not include unit 1 awaiting inspection, where represents the number of nodes passed by the operational unit from departure to 

unit i awaiting inspection. Eqs. (10)-(11) specify the range of values for each index variable. 

2.5.   Upper task allocation model 

In the scheduling of operational inspection resources, operational inspection resources correspond to machines, 

operational steps correspond to processes, and operational inspection tasks correspond to workpieces. The model is established 

based on these correspondences. Distinguishing itself from traditional JSP models where tasks require specific resources, this 

paper adopts a perspective of ensuring resources meet tasks and conducts pre-scheduling of operational inspection resources. 

The improved JSP resource scheduling model is defined as follows:  
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where Eq. (12) represents minimizing the maximum completion time; Eq. (13) ensures that the completion time of the current 

step is greater than the difference between the completion time of the previous step and the processing time. Here, � is a non-

negative slack variable introduced to ensure the satisfaction of the constraint. ��� represents the priority of resource  to fulfill 

the demand of task �; Eq. (14) represents the non-blocking relationship between steps, which indicates that task � prioritizes 

the use of resource ; Eqs. (15)-(17) specify the range of values for the relevant variables. 

3. Algorithm Description 

In the current academic context, the two-layer planning problem faces problems such as difficulty in solving and local 

optimization. Therefore, the proposal of a population intelligent optimization algorithm is of great academic importance. The 

technical details of the AGA algorithm are described in the following section. 

3.1.   Standard genetic algorithm (SGA) 

The GA is a heuristic algorithm proposed by J. Holland in 1975, inspired by the simulation of biological evolution 

processes. The execution process of the algorithm includes encoding, decoding, selection, crossover, mutation, and 

recombination. GA is characterized by its simplicity, strong parallel search capability, and minimal requirements for 

optimization problems. It is widely applied in engineering and scientific fields to address optimization problems. 

3.1.1.   Data encoding and decoding 

 

Fig. 2 MTSP layer genetic algorithm coding 
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In MTSP, assuming there are 10 units awaiting inspection, numbered 0-9, and there are 3 operational inspection units. 

Initially, all three operational inspection units start from unit 0 awaiting inspection. The encoding of the MTSP layer is 

illustrated in Fig.2. The number to the left of the black vertical line indicates the PIU number assigned to the O&I unit, while 

the number to the right indicates the number of PIUs to which the O&I unit is assigned. 

Chromosome individuals are divided into two parts by vertical lines. The left side represents the number of units awaiting 

inspection (excluding unit 0), and the right side represents the number of units awaiting inspection passed by each operational 

inspection unit. Following a decimal encoding, no decoding is required. 

In JSP, assuming there are 2 units awaiting inspection, each with 2 steps for maintenance, and there are 4 resources 

available for selection. Each step requires one or more of these resources. The encoding of the JSP layer, using a double-layer 

structure, is illustrated in Fig. 3. 

 

Fig. 3 JSP layer genetic algorithm coding 

Layer 1 encodes task step sequences, and Layer 2 encodes resource types. The decoding format for this dual-layer 

structure is as follows: If a chromosome with 10112 genes is formed, it signifies that the first step of task 1 is executed using 

resources 1 and 2.  

3.1.2.   Fitness function 

To ensure the continuous evolution of the population towards superior individuals, it is crucial to establish an evaluation 

function that aligns with the model. The objective of the dual-layer scheduling system is to minimize the overall time without 

violating work rules. Hence, this criterion can be used to assess the quality of individuals. Based on this principle, the fitness 

function (Y) is formulated to have a mapping relationship with the objective function, as shown in the following equation.  
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3.1.3.   Population initialization 

During the population initialization stage, a set number of individuals are randomly generated, and their feasibility is 

examined. If the task allocation and resource scheduling scheme represented by an individual violates constraints, a repair 

process is conducted to ensure compliance with the specified constraints. 

3.1.4.   Select individual operation 

During the selection stage, the algorithm employs a roulette wheel approach to choose individuals within the population. 

In other words, the probability of selection for each individual is determined based on its fitness function value. The higher 

the fitness of an individual, the greater the probability it will be retained. However, individuals with lower fitness also have a 

certain probability of being retained. The formula for calculating the selection probability is given by, 

1=

=



i
i N

i
i

fitness
select

fitness

 
(19) 



158 International Journal of Engineering and Technology Innovation, vol. 14, no. 2, 2024, pp. 152-164 

3.1.5.   Crossover operation 

During the crossover stage, individuals exchange parts of their genes from the parental chromosomes to achieve genetic 

recombination. This process generates two new individuals, each containing genes from both parents. The algorithm employs 

a partially matched crossover method with a certain probability for the crossover operation. The crossover points and the 

number of crossovers are randomly selected using a random function. Subsequently, the genes of the parents are crossed to 

produce two new offspring individuals. 

3.1.6.   Mutation operation 

In the mutation stage, a key process takes place. Here, two mutation positions labeled A and B, are pinpointed on the 

individual using a random function, diversifying the gene pool. The genes positioned between A and B then undergo a reversal. 

This strategic switch in their order results in the creation of a mutated individual, introducing variability and fueling the 

potential for evolutionary developments. 

The initiation of GAs is contingent upon the creation of an initial population, achieved by the random generation of a 

specific set of chromosomes. The subsequent phase encompasses the evaluation of each chromosome by leveraging a fitness 

function, thereby determining its subsequent precedence during the selection phase.  

Thereafter, a selection phase engages, where, prompted by their respective fitness evaluations, the superior chromosomes 

undergo a crossover to engender the next generation. This inexorably incites the mutation phase, instigating random alterations 

within the chromosomes, and consequently promoting genetic diversity within the population. The process then reverts to a 

fresh cycle of evaluation, selection, crossover, and mutation, persisting in this trajectory until it satisfies preset termination 

criteria, such as the attainment of a specified number of iterations or an optimal solution deemed satisfactory is unearthed. The 

flowchart for the SGA is illustrated in Fig. 4. 

 

Fig. 4 Standard genetic algorithm flow chart 

3.2.   Adaptive genetic algorithm (AGA) 

While the SGA demonstrates good convergence speed and optimization capabilities, it still has shortcomings such as 

unstable optimization performance and relatively weak global optimization ability. To address these issues, this paper 

introduces adaptive and selective strategies to optimize the algorithm.  
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3.2.1.   Adaptive strategy 

In the crossover and mutation stages of the SGA, the fixed values of crossover probability �� and mutation probability 

�� often lead to significant uncertainty in the algorithm’s convergence speed and search range. Adaptive strategies allow the 

crossover and mutation probabilities to change with the fitness of individuals, providing better global search capabilities 

compared to fixed values. 

The update of the adaptive strategy relies on individual performance. When the fitness of individuals in a generation 

surpasses the average level, it indicates better performance, prompting a reduction in crossover and mutation probabilities. 

Conversely, if the fitness is below average, an increase in crossover and mutation probabilities is warranted. The update of 

crossover probability and mutation probability can be expressed as shown in:  
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where �� ���, �� � !, �� ���, and �� � ! are the minimum crossover probability, maximum crossover probability, minimum 

mutation probability, and maximum mutation probability for the GA. "� ! and "#$%&  represent the maximum and average 

fitness values, while "# and "' indicate the current individual’s fitness. 

3.2.2.   Preference strategy 

To enhance the global convergence speed of the algorithm, this paper employs a selective operation favoring dominant 

individuals. Specifically, the top N individuals in terms of fitness within the population are retained, while the bottom N 

individuals are replaced. This accelerates the selection process within the population, improving the algorithm’s global 

effectiveness and convergence speed. 

 

Fig. 5 Flow chart of adaptive genetic algorithm 
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Based on the aforementioned improvements, Fig. 5 describes an improved GA flowchart incorporating adaptive and 

selection strategies. This improved model further optimizes the traditional GA and achieves an enhancement of the GA 

operation mechanism by flexibly adjusting the input parameters and prioritizing the use of dominant chromosomes in the 

selection phase. 

4. Case Simulation 

To measure the efficiency and efficacy of the models and algorithms presented in this study, a case simulation approach 

has been adopted. These simulations have been specifically designed and adapted to be practical platforms for testing, 

validating, and empirically measuring their performance. 

4.1.   Case background 

Relying on the actual grid O&I scenario, a two-dimensional simulation case is abstracted. Twenty units to be inspected 

are randomly generated as shown in Fig. 6, and the detailed coordinates are shown in Table 2. They will be assigned to three 

O&I units. 

 

Fig. 6 Schematic diagram of the distribution of inspection points 

Table 2 X and Y coordinates of 20 points 

Point X Y Point X Y 

1 82 96 11 15 17 

2 91 66 12 98 71 

3 12 3 13 96 3 

4 92 85 14 49 27 

5 63 94 15 80 4 

6 9 68 16 14 9 

7 28 76 17 42 83 

8 55 75 18 92 70 

9 96 39 19 80 32 

10 97 66 20 50 50 

Each unit to be inspected has the same four inspection steps, and each inspection unit is equipped with operational tools 

specialized for each step, as well as general-purpose operational tools, sequentially numbered from 1 to 8, which contain 

specialized exoskeleton equipment as shown in Fig. 7. In addition, the resources and time spent for the different O&M steps 

are shown in Table 3. 
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Fig. 7 Physical illustration of the auxiliary task exoskeleton equipment 

Table 3 Corresponding resources and time required for each inspection step 

Workpiece Operation Machines Processing time(s) 

1 1 1, 2, 3, 4, 5, 7, 8 5, 3, 5, 3, 3, 10, 9 

1 2 1, 3, 4, 5, 6, 7, 8 10, 5, 8, 3, 9, 9, 6 

1 3 2, 4, 5, 6, 7, 8 10, 5, 6, 2, 4, 5 

1 4 / / 

2 1 1, 2, 3, 4, 5, 7 5, 7, 3, 9, 8, 9 

2 2 2, 3, 4, 5, 6, 7, 8 8, 5, 2, 6, 7, 10, 9 

⋮ ⋮ ⋮ ⋮ 

8 3 1, 2, 4, 5, 6, 7, 8 9, 9, 8, 5, 6, 7, 1 

8 4 1, 3, 4, 5, 6, 7 9, 3, 7, 1, 5, 8 

4.2.   Simulation results 

This article uses MATLAB R2023a as the simulation programming tool, operating on Windows 11, with 16 GB of 

memory, and a 13th Gen Intel(R) Core (TM) i9-13900HX processor. The GA has a population size of 50 and a maximum 

iteration of 200. Through simulation, the iterative process of the objective function and task assignment plan is shown in Fig. 

8, and the resource scheduling plan is illustrated in Fig. 9. The specific results are detailed in Table 4. 

Fig. 8 Results of the MTSP 
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Fig. 9 Results of the JSP 

Table 4 Task assignment plan 

Operational inspection unit serial number Collection of units to be inspected 

1 20→2→18→10→12→4→1→5→17→8→20 

2 20→19→9→13→15→14→20 

3 20→3→16→11→6→7→20 

Objective function value (s) 56.427 

After an in-depth analysis of the above simulation results, it is concluded that both layers of the problem of the two-layer 

planning model are solved better. The final objective function values of the AGA and original GA are 74.427 and 81.786 

respectively, in comparison, the time of AGA is shortened by 9.89%, which is better in solving the problem. Optimization of 

task allocation: the simulation results show that the optimized task allocation scheme using a GA significantly improves the 

efficiency of the O&I unit.  

In particular, in the MTSP results presented in Fig. 8, the path optimization of the O&I units reduces the ineffective round-

trip time and ensures the shortest path to cover all the units to be inspected; improvement of resource utilization: the task 

allocation scheme in Table 3 demonstrates the efficient utilization of the resources of the units to be inspected and the O&I 

tools. By reasonably allocating the workload to each O&I unit, a balanced use of resources is achieved, which reduces resource 

idleness; minimization of job time: in the JSP simulation results, the overall job completion time is significantly reduced by 

optimizing the machining time and machine allocation of each workpiece on different processes. This time optimization is 

essential to improve the overall efficiency of the job shop. 

4.3.   Sensitivity analysis 

Table 5 Task assignment plan for two inspection units 

Operational inspection unit 

serial number 
Collection of units to be inspected 

1 
1→11→32→27→48→6→14→25→24→43→23

→7→26→8→31→28→22→1 

2 
1→3→36→35→20→29→21→34→30→39→33

→45→15→10→49→9→50→16->2→1 

3 
1→38→5→37→17→44→42→19→40→41→13

→18→4→47→12→51→46→1 

Objective function value (s) 166.068 

In the sensitivity analysis section, this paper significantly extends the size of the simulation model from the initial 20 

points to 50 points, while fixing the transportation and inspection units to 3. The results are shown in Fig. 10 and Table 5, 

which show that the objective function value is increased by 294% with a 250% increase in the number of inspection points, 
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which is within a reasonable range. The purpose of this change was to evaluate the sensitivity of the model to an increase in 

the number of pending inspection points and how this change affects the performance of the solution to the MTSP and the GA. 

A more comprehensive assessment of the effectiveness and robustness of the algorithm in dealing with more complex problems 

can be made. 

 

Fig. 10 Task assignment plan for 50 inspection points 

5. Conclusions 

Traditional MTSP and JSP have been widely studied, but less research has been done on combining the two as a two-tier 

planning problem. In addition, existing optimization methods often do not take both into account at the same time. Therefore, 

this study proposes a two-layer planning model in a grid O&I scenario to achieve global optimization while effectively 

improving the efficiency of O&I. The main contributions of the study are as follows: 

(1) In this paper, a bi-level planning model specialized for complex grid O&I scenarios has been successfully designed and 

validated. The model consists of MTSP and JSP and is simulated in a MATLAB environment, which proves its feasibility 

and practicability in theoretical and practical applications, especially in improving the overall efficiency of O&I. 

(2) AGAs are adjusted according to model requirements to improve their convergence and performance. 

(3) This study compares the performance of different algorithms. The results show that the AGA reduces the overall O&I time 

by 9.89% compared to the traditional GA. In terms of sensitivity analysis, when the units to be inspected are increased 

from 20 to 50, the growth of the objective function value is controlled at 294%, which satisfies the actual situation. 

In the future, the two-layer planning model for grid O&I will be further researched and applied to provide effective 

solutions for complex scheduling problems such as grid O&I and open up new research directions for optimization problems 

in similar fields. In addition, the methodology proposed in this study will have a wide range of application potential in scenarios 

with limited resources and stringent requirements for operational efficiency. In summary, this study demonstrates the 

possibility of realizing efficient task allocation and resource scheduling in complex grid O&I scenarios but also provides 

valuable experience and insights for future research in similar fields. 
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