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Abstract 

This research addresses the enhancement of face anti-spoofing (FAS) in facial recognition systems (FRS) 

against sophisticated fraudulent activities. Prior methods primarily focus on extracting facial features like color, 

texture, and dynamic variations, yet these methods struggle to accurately identify common characteristics of forged 

faces, thereby limiting generalization in practical scenarios. This study aims to propose a novel representation 

learning framework incorporating adversarial learning algorithms, to segregate features into liveness-specific and 

domain-specific categories, emphasizing liveness-specific features for FAS advancement. Feature disentanglement 

is central to this approach, enabling the deep learning models to effectively discern separable latent generating factors, 

such as identity, liveness, appearance, and texture. This methodology enhances model interpretability, explainability, 

and generalization. Additionally, Grad-CAM is employed to elucidate the basis for classifications made by the 

architecture, increasing explainability and trustworthiness. Empirical evaluation across panoply available FAS 

datasets confirms the superiority, significantly improving performance and robustness over existing technologies. 
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1. Introduction 

With the development of facial recognition technology, the authentication of user identity using facial features has been 

pervasively applied across multifarious domains such as security, financial transactions, smart home technologies, and medical 

education. Despite the consequent convenience, it is highly susceptible to attacks due to the ease of collecting facial biometrics 

from quotidian conditions. These vulnerabilities include but are not limited to photo attacks [1], video attacks [2], and 3D mask 

attacks [3]. In addition, the photo attack presents cost-effectiveness and intuitive operability; attackers can expose stolen or 

downloaded facial images of the specific person in front of the sensors of the facial recognition system (FRS) or devices, such 

as smartphones and tablets, to successfully commence the attack. 

Apropos such security perils, face anti-spoofing (FAS) in protecting FRS has been validated. As early as 2016, the 

International Organization for Standardization (ISO/IEC) issued the international standard ISO/IEC 30107. As mentioned in 

this standard, the main objective is to define and establish a framework for modeling and detecting spoofing attacks on 

biometric systems, effectively defending against spoofing activities targeting biometric recognition systems. Undeniably, 

every method of biometric authentication is prone to a certain degree of risk, and face spoofing attacks pose significant threats 
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to both personal assets and societal security. FAS, also referred to as liveness detection, is a technique designed to defend FRS 

against manifold attack vectors including photos, videos, and masks. To address the issue of spoofing attacks, researchers, 

under the premise that there exist inherent differences between veracious and fake faces, have proposed anti-spoofing 

methodologies focusing on analyzing texture in color spaces [1, 4], image quality assessment indicators [5], and temporal 

variations [6]. 

Yang et al. [7] propose the use of the convolutional neural network (CNN) for FAS. However, due to a limited amount 

of training data and significant intra-class and inter-class differences in fake facial images, the recognition rate still requires 

further betterment. In Li et al. [8], on the other hand, CNN and facial depth maps captured by Kinect to extract features are 

employed, demonstrating high discriminative power between live human faces and 2D fake facial images. Nevertheless, 

despite the performance improvement facilitated by the introduction of CNN in FAS, FAS is confronted with several 

challenges. Typically, for instance, when directly applying a network model trained on a source domain dataset to test on an 

invisible dataset, domain shift issues may arise. 

The facial feature representation embodies an entity where commonality and uniqueness coexist. Each face possesses 

inherent similarities, yet pronounced distinctions emerge in identity between different visages. Such characteristics impede the 

generalization capabilities of extant FAS methods when confronted with unseen domains. Some researchers propose 

leveraging multiple existing source datasets to train models to derive a domain-invariant feature space. This, in turn, facilitates 

the resultant utilization of the learned generalized feature space to augment the generalization performance of the model during 

testing in unknown domains. 

Domain generalization (DG) aims to enhance the robustness of deep learning models and focus on exploring relationships 

among multiple source domains without direct engagement with target data. The ultimate goal of DG is to foster the 

development of generalization capabilities that apply to domains not encountered during training, as evidenced in studies [9-

11]. Meanwhile, adversarial learning has been implemented to train diverse feature extractors to further learn a universal 

feature space for the liveness feature, as presented in Shao et al. [9] and Chen et al. [12]. However, the challenge arises from 

a myriad of attack types in determining a universally applicable feature space for spoofed face detection through DG. Such a 

hindrance originates from the tendency of the learned representations to assimilate features irrelevant to facial liveness 

detection, incurring potential overfitting on the training dataset. Consequently, this method is often considered less than ideal 

in the context of FAS technology. 

Machine learning represents a data-driven methodology for modeling problems; however, in the pixel space of images, 

all variations are intricately entangled, thereby impacting the output. Although deep learning models excel at interpreting 

statistical patterns between pixel-level data and labels, the performance is rather ineffective in capturing operable causal factors 

or interpretable image representations from data. The objective of feature disentanglement is to transform these entwined data 

variations in the original data space into a well-defined representational space. In this space, variations of different elements 

manifest separability [12-14]. 

In this study, the latent space of facial images is postulated to be decomposable into two subspaces: the liveness space 

and the domain space. The liveness features are associated with liveness-related information, while the domain features are 

indicative of domain-specific information. Given this dichotomy, feature disentanglement techniques are employed to 

effectively separate the liveness features from the domain features. Subsequently, the extracted liveness information is 

harnessed for facial liveness detection, with the overarching goal of establishing a more generalized framework for FAS. 

The composition of the paper is organized as follows. Section 2 introduces background knowledge on DG, feature 

disentanglement, and advanced loss functions. Section 3 is concerned with the system architecture. Subsequent experimental 

results and analysis are presented in Section 4. Finally, Section 5 concludes the paper. 
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2. Related Approaches 

Advancements in FAS necessitate addressing key challenges, such as DG and feature disentanglement, which 

significantly impact the generalization capabilities and interpretability of models. This section explores notable methodologies 

and ensuing contributions to improving FAS effectiveness. 

2.1.   DG for FAS 

Concerning deep learning training, a discrepancy arises between the distributions of training and testing data, with training 

data often sourced from multiple origins, each possessing its distributional shift. Deep learning models inherently tend to 

overfit the training set, and the resultant domain shift can significantly impair the model’s generalization capabilities. DG 

addresses this challenge by enabling deep learning models to explore relationships among multiple source domains without 

exposure to any target data. This approach aims to equip the models with generalizability to unseen domains, thus mitigating 

the impact of distributional discrepancies between training and testing environments. 

Augmenting data diversity via methods such as data augmentation or data generation is instrumental in aiding deep 

learning models to develop more universally applicable representations. Data augmentation strategies often utilize various 

transformations and adversarial techniques to increase the spectrum of data. On the other hand, data generation methods may 

include the generation of supplementary samples using approaches like pairwise linear interpolation. Nevertheless, when 

viewed from the DG perspective in addressing FAS challenges, the aforementioned methodologies do not conform to end-to-

end learning paradigms. Moreover, the heterogeneity in types of attacks and data acquisition methods poses a significant 

challenge in identifying a feature space generalizable across different synthetic facial representations. Consequently, apropos 

FAS, these techniques are frequently regarded as suboptimal solutions. 

2.2.   Feature disentanglement 

Typically, supervised deep learning models adhere to an end-to-end shortcut learning strategy [15], characterized by their 

“black-box” nature, rendering the knowledge representation incomprehensible to humans. These models prioritize enhancing 

prediction accuracy for training samples, enabling the models to autonomously select the most straightforward path for fitting 

the input/output dataset and adjusting parameters accordingly. The goal of feature disentanglement is to guide deep learning 

models to extract separable latent generative factors from real-world data in an anthropocentrically understandable manner. 

These factors include identity, liveness, appearance, texture, etc., thereby establishing a causal model that is not only 

interpretable and supportive of explanations but also transcends mere pattern recognition. This approach assists in uncovering 

the internal generative mechanisms of data, thus emerging as a vital tool for enhancing the generalizability and controllability 

of deep learning models. Representation learning, in this context, involves learning domain-invariant representations or 

disentangling domain-shared and domain-specific features, consequently bolstering the generalization performance. 

2.2.1.   Autoencoder and representation learning 

The autoencoder utilizes a combination of an encoder and a decoder to reconstruct its features [16]. The encoder 

compresses input features from a high-dimensional space into a lower-dimensional latent space, while the decoder is 

responsible for restoring the low-dimensional vector to its original features, as depicted in Fig. 1. The loss function is defined 

as: 

( ){ }2

( ) ( )−= −  MSE x p xL E x Dec Enc x  (1) 

where Enc represents the encoder, and Dec represents the decoder. Autoencoders are commonly employed for learning latent 

representations of data. 
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Fig. 1 Architecture of the autoencoder 

2.2.2.   Generative adversarial network (GAN) 

The GAN is a commonly used deep generative model [17]. Technically, GAN consists of a generator �  and a 

discriminator �. The task of the generator is to transform samples from a prior probability distribution into data points, while 

the discriminator is in charge of distinguishing whether the input is real or generated by the generator. The training process 

involves maximizing the minimum value of a game between these two components, which is referred to as the min-max game, 

and ultimately aims to train a generator that can generate data corresponding to real data. The loss function for GAN is 

expressed as: 

( ) ( ) ( ){ }( ) ( )min max , log ( ) log 1 ( )− −= + −  GdataG D
x p x z p zV D G E D x E D G z  (2) 

where pG(z) = N(0, 1) represents the prior probability distribution, and pdata(x) represents the sampling from the training data. 

When the encoder and discriminator engage in adversarial training, the discriminator can remove undesired properties 

from the representations produced by the encoder. This process leads to the emergence of disentangled representations, whose 

learning seeks to decompose representations to disentangle the latent explanatory factors hidden within observed data. This 

approach is widely useful across multifarious tasks, enhancing both robustness and controllability. 

2.3.   Advanced loss functions 

Facial recognition algorithms utilize CNNs to extract extensive facial feature vectors. The process of facial identification 

entails comparing a facial feature vector with those stored in a database. Regarding accuracy, the algorithm relies on 

consistently capturing similar features of the same person across panoply images while distinguishing features of different 

individuals. However, traditional CNNs, primarily based on multilayer perceptron networks and employing Softmax loss for 

classification, demonstrate excellent performance in general image tasks but may lack the necessary discriminative power for 

tasks with a massive number of label classes. On the other hand, Softmax loss, a combination of the Softmax function and 

Cross-Entropy loss, is favored in image classification for its ease of optimization and rapid convergence. However, since 

Softmax loss does not enforce intra-class compactness and inter-class dispersion, the learned features are separable for closed-

set classification problems, but not sufficiently discriminative for open-set face recognition problems. Moreover, the size of 

the linear transformation matrix W ∈ Rdxn increases linearly with the number of identities n. 

Concerning tasks such as retrieval or verification that rely on setting decision thresholds, recent advancements have led 

to the proposal of more sophisticated loss functions, e.g., large margin cosine loss [18], SphereFace loss [19], and additive 

angular margin (ArcFace) loss [20]. The underlying principle of these enhanced algorithms is to augment inter-class variance 

while minimizing intra-class variance. This approach is achieved by reducing the distances between data points within the 

same category and increasing the margin between different categories. Such a methodology ensures the precise classification 
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of a vast array of distinct categories, thus eliciting the overall effectiveness of the classification process. Concerning the 

decision boundaries problem of a classification case, the decision margin of cosine loss has a nonlinear angular margin in 

angular space. The decision margin of SphereFace loss also changes gradually with the angle, while only ArcFace loss 

possesses a constant linear angular margin throughout the entire range, exhibiting superior geometric characteristics in the 

issue of decision boundaries. 

2.3.1.   Cosine loss 

In Wang et al. [18], L2 normalization is employed on weight vectors to normalize features and reduce radial variations, 

Softmax loss is further modified into Cosine loss. The definition of Cosine loss is presented in the formula below: 
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where N is the number of training samples, xi is the ith feature vector corresponding to the ground-truth class of yi, the Wj is 

the weight vector of the jth class, and θj is the angle between Wj and xi. 

2.3.2.   SphereFace loss 

SphereFace loss, as introduced by Liu et al. [19], redefines the Softmax loss by transitioning from an Euclidean distance 

metric to an angular margin framework. This transformation incorporates an augmented decision margin, which can be denoted 

as “m”, and is further characterized by the constraints ||W|| = 1 and b = 0. The mathematical formulation of SphereFace loss is 

presented in the formula below: 
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Here, ψ(θ,i) is a monotonically decreasing angular function obtained by defining the range of cos (	
�,), where m ≥ 1 is an 

integer controlling the size of the angular margin. 

2.3.3.   ArcFace loss 

In Deng et al. [20], the ArcFace loss is proposed to improve facial recognition performance and stabilize the training 

procedure. This method entails the use of the arc-cosine function to determine the angle between the current feature vector and 

the target class center. An additive angular margin is subsequently added to the target angle. Moreover, the cosine function is 
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utilized to compute the target logit, followed by a rescaling of all logits using a fixed feature norm. The computational steps 

that ensue align with those employed in the traditional Softmax loss framework. The mathematical formulation of ArcFace 

loss is presented in: 
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where N is the number of training samples, xi is the ith feature vector corresponding to the ground-truth class of yi, and m 

represents the angular margin. The loss function aims to maximize the angular margin between the correct class and the other 

classes. 

3. Domain-Generalized FAS System 

This research framework in this study encompasses two key components, viz., feature disentanglement and DG. First, 

during the feature disentanglement phase, representations are separated into two distinct elements: liveness-related features 

and domain-specific features. Second, in the DG phase, the encoder dedicated to liveness is designed to harvest generalized 

liveness features from a diverse range of domains. Fig. 2 illustrates the proposed approach and provides an overview of the 

entire learning process. EL is the liveness encoder, while ED is the domain encoder. On the other hand, CL is the liveness 

classifier, and CD serves as the domain classifier. 

 

Fig. 2 The overall architecture of the proposed framework 

3.1.   Overview 

To proficiently extract a feature space suitable for real-world FAS scenarios, the primary objective is to segregate domain-

specific features, which do not pertain to spoofing, from the liveness features. To accomplish this goal, a proficient framework 

for disentangled representation learning is introduced, specifically tailored for cross-domain FAS, as illustrated in Fig. 2. This 

framework is comprised of two integral components: the feature disentanglement process and the symmetric adversarial 

learning process. 

The input, denoted as x, is fed into both encoders, namely EL and ED, which represent the facial liveness encoder and the 

domain encoder, respectively. Here, i symbolizes the number of the different training domain datasets. CL and CD signify the 

liveness classifier and the domain classifier, respectively. The two feature encoders, EL and ED, are trained to extract distinct 
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liveness features and domain features. The liveness encoder focuses on identifying features that indicate the presence of a live 

subject in an image, commonly referred to as liveness features. On the other hand, the domain encoder is responsible for 

recognizing domain-specific features, which are pertinent to the particular characteristics of the image’s environment or 

context. 

During adversarial training, these two encoders operate in a sort of competitive yet complementary manner. The liveness 

encoder functions to differentiate liveness features from other irrelevant features. Simultaneously, the domain encoder 

distinguishes domain-specific features, averting the interference with the recognition of liveness features. The key goal of this 

training process is to refine both encoders’ ability to accurately and effectively identify their respective feature sets. Over time, 

the development of a more robust and discriminative feature space is facilitated. In this space, liveness features are clearly 

distinguished from domain-specific features, enabling more precise and reliable image analysis, particularly in applications 

like facial recognition or authentication systems. 

3.2.   The loss function for learning generalized facial liveness features 

In defining the loss function for FAS applications, it is crucial to consider the diversity of potential attacks, which can 

vary significantly across different domains. For instance, attacks in Domain A might involve photo-based methods, while 

Domain B could use 3D masks. Relying on traditional Cross-Entropy loss functions in such scenarios would substantially 

hinder the ability to generalize across different domains. Recent studies have highlighted the limitations of conventional 

Softmax loss in fully maximizing discriminative power for classification tasks. As a result, a shift has emerged in research 

efforts towards developing loss functions that focus on maximizing inter-class variance and minimizing intra-class variance, 

aiming to significantly improve performance in FAS systems. 

LLiveness is a measure used to assess whether facial features exhibit characteristics of a live face, as indicated in: 

=Liveness ArcFaceL L  (12) 

LDomain, on the other hand, serves to identify the specific domain to which the facial image xi belongs, as represented in: 
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Here, N denotes the total count of the image data, where xi is expressed as the ith feature vector. On the other hand, di is 

designated as the domain label of xi. 

LDomain is designed to ensure that the domain features encapsulate information from various domains. Regarding effective 

DG, the liveness classifier must be unable to accurately differentiate between these domain features. The error functions for 

LConf,L is elaborately detailed in Eq. (8): 
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where D represents the total number of different domain datasets. 

In line with the principles of adversarial training, the domain classifier must be unable to effectively differentiate liveness 

features. This inability is a strategic aspect of the training, aimed at the betterment of the model apropos overall robustness 

and generalizability. The error functions for LConf,D, which encapsulate this aspect of the learning process of the model, are 

defined as follows below: 
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4. Experimental Results and Discussion 

This section introduces the experimental setup and results of the proposed framework. To enhance explainability, ablation 

studies on different loss functions and the proposed framework are included. Furthermore, explainable visualizations using 

Grad-class activation mapping (CAM) are provided. 

4.1.   Experimental setup 

In this research, the effectiveness of the proposed FAS method was evaluated using four publicly available databases: 

OULU_NPU [21] (referred to as O), CASIA-FASD [22] (C), Idiap Replay-Attack [23] (I), and MSU-MFSD [24] (M). The 

mentioned FAS method employs ArcFace [20] as the loss function. During the experiments, each database was alternately 

designated as the target domain for testing, while the rest served as source domains for training, thereby establishing four 

distinct testing scenarios: O&M&I to C, O&C&I to M, O&C&M to I, and I&C&M to O. These scenarios were characterized 

by considerable variations within and across databases, such as in background settings and resolution. Consistent with the 

methodologies outlined in Shao et al. [9], the area under the curve (AUC) metric was employed to evaluate and compare the 

performance of different methods under the aforementioned conditions. 

4.2.   Experimental results 

To further substantiate the DG capabilities of the approach, Table 1 presents the significant achievements yielded by the 

method in a comparative evaluation with other contemporary FAS methods. These results align with the theoretical 

underpinnings of the model, which prioritizes the effective accentuation of liveness-related facial features through the 

disentanglement of domain-specific features. Simultaneously, this approach facilitates the extraction of more generalized 

active features, thereby contributing to an overall enhancement in performance. 

Table 1 Comparison of different FAS methods for DG performance (AUC, %) 

Method O&M&I to C O&C&I to M O&C&M to I I&C&M to O 

CT [1] 76.89 78.74 62.78 32.71 

LBP-TOP [25] 61.05 70.80 49.54 44.09 

MS-LBP [26] 44.98 78.50 51.64 49.31 

Auxiliary [27] 73.15 85.88 71.69 77.61 

The proposed method 87.63 89.75 85.13 86.15 

Table 2 proffers a comparative analysis of the feature disentanglement method, which utilizes multifarious loss functions. 

The empirical data demonstrate that the proposed method significantly enhances performance by effectively segregating facial 

domain features from liveness features. This improvement is consistent across different loss functions, including ArcFace loss 

and SphereFace loss, with the approach outperforming other existing FAS methods. 

Table 2 Comparison of Different facial loss functions (AUC, %) 

Method O&M&I to C O&C&I to M O&C&M to I I&C&M to O 

Use ArcFace [20] 87.63 89.75 85.13 86.15 

Use SphereFace [19] 92.53 86.72 84.32 83.80 

4.3.   Explainable visualization with Grad-CAM 

Grad-CAM [28], an extension of CAM, is a sophisticated visualization technique that elucidates which segments of a 

deep neural network are most influential in its predictive output. In addition, Grad-CAM facilitates the identification of specific 

image regions, thereby rendering the decision-making process of the neural network more transparent and visually interpretable. 
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Grad-CAM achieves this by generating a coarse localization map using the gradients directed towards any targeted concept 

within the network, thereby accentuating critical areas in the image that are pivotal for concept prediction. As illustrated in 

Fig. 3, Grad-CAM is employed to furnish visual interpretative insights into the methodology employed in this study. 

In contrast to the conventional binary CNN classifier architecture [7], the model predominantly seeks discriminative cues 

within the internal facial regions, minimizing its reliance on domain-specific backgrounds. This approach enhances the 

potential of the model for effective generalization to unfamiliar domains. Moreover, the method exhibits the capability to 

dynamically adapt its focus to different regions within an image in response to manifold types of face spoofing attacks, tailoring 

its response to the specific nature of each attack. The visualization results of applying Grad-CAM to the binary CNN method 

manifest that the regions used to distinguish between real and fake faces are not exclusively concentrated on the facial area but 

are dispersed across parts of the face and the background. Such a discovery is not very reasonable. 

 

Fig. 3 Grad-CAM results on the four examples of the Binary CNN and the proposed method 

5. Conclusion 

This research focuses on leveraging feature disentanglement to augment the generalization capacity of FAS systems. The 

methodology involves decomposing the latent space of facial images into two distinct subspaces: a “liveness” space and a 

“domain” space. The liveness features extracted from the former are utilized for anti-spoofing classification. This strategy 

avails enhanced generalization of the model across a broad spectrum of domains. Empirical evidence, which is gathered from 

testing the proposed framework on four publicly available datasets, manifests superior performance and robust generalization 

capabilities to the unseen domains. The experimental results of the Grad-CAM visualization technique also demonstrate that 

the most influential areas for predictive output of the proposed method mainly focus on the internal facial region rather than 

the background, thereby eliciting a potential for effective generalization to unfamiliar domains. 

Looking ahead, future work could potentially evolve the architecture in this research into a multi-frame FAS framework. 

Such a framework would independently disentangle static liveness information, domain information, and face depth from 

continuous images. By employing 3D-CNN technology, the development of a depth encoder is envisaged, which is designed 

to capture depth variations arising from micro-movements within continuous multi-frame images. This approach promises to 

further enhance the robustness and generalization capability of FAS systems by furnishing a more comprehensive analysis of 

facial dynamics and depth changes. 
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