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Abstract 

Current research in machine learning primarily focuses on raw coffee bean quality, hampered by limited labeled 

datasets for roasted beans. This study proposes a domain adaptation approach to transfer knowledge acquired from 

raw coffee beans to the task of inspecting roasted beans. The method maps the source and target data, originating 

from different distributions, into a shared feature space while minimizing distribution discrepancies with domain 

adversarial training. Experimental results demonstrate that the proposed approach effectively uses annotated raw 

bean datasets to achieve a high-performance quality inspection system tailored specifically to roasted coffee beans. 
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1. Introduction 

After undergoing roasting and grinding, coffee beans can be utilized to craft a beverage through hot water extraction. Not 

only do coffee beverages possess unique flavors, but numerous research studies highlight the benefits of moderate coffee 

consumption, such as heightened alertness, improved athletic performance, and enhanced metabolism. These advantages have 

contributed to the widespread global popularity of coffee [1-2]. 

Coffee beans require immediate entry into the processing pipeline to prevent fermentation and the emergence of 

undesirable aromas. To facilitate the peeling of coffee beans, a common practice involves their initial immersion to separate 

floaters, followed by procedures like sun drying and husking to obtain the inner coffee beans. Despite the various merits 

associated with coffee consumption, the presence of defective beans, if not promptly removed before usage, can negatively 

impact flavor and potentially compromise human health [3]. While the extraction process for green coffee beans includes an 

initial screening for immature beans and floaters, the peeling process itself poses a risk of fermentation or mold development. 

Subsequent post-processing steps, including roasting, may introduce different forms of quality degradation, such as bean 

fragmentation or charring. Consequently, a final selection of various types of defective beans necessitates manual or machine-

based screening. 

Common defects found in coffee beans encompass floaters, black beans, sour beans, insect-damaged beans, fungus-

damaged beans, broken beans, and foreign matter. Traditionally, the manual visual inspection of defective beans in green 

coffee beans involves an initial classification using sieves, followed by experiential judgment to assess the quality of coffee 

beans. This approach is associated with elevated labor costs, time-intensive processes, and potential operational quality 

instability due to factors such as stress and fatigue, rendering it unsuitable for large-scale processing. Additionally, defective 

beans may manifest post-roasting, underscoring the necessity for quality testing of roasted coffee beans. Relying solely on 

manual screening of defective beans in green coffee beans cannot ensure the quality and safety of coffee beverages. 
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The traditional method of manually conducting quality inspections on green coffee beans can no longer meet the demands 

of the vast coffee bean market. Therefore, the industry has begun exploring the use of mechanical equipment for screening. 

While vibrating mechanisms can facilitate bulk processing by sieving beans of different sizes, their capability to screen various 

types of defective beans is rather limited. With advancements in industrial technology driving automation in production and 

quality control, some research institutions have adopted chemical composition analysis to detect varieties or origins [4-5]. 

Simultaneously, electronic sorting machines are used to inspect and classify defective beans. These devices evaluate the quality 

of coffee beans through the spectral response characteristics but face challenges due to the similar spectral response patterns 

among certain defective beans (such as sour beans and immature beans). 

Automated Optical Inspection (AOI) is a technology that utilizes visual sensing devices to capture images of the target 

object’s shape and color features. It then employs traditional computer vision (CV) analysis methods to detect abnormalities 

or defects. AOI possesses characteristics such as speed, accuracy, and repeatability, making it a cost-effective replacement for 

manual labor in long-term and reliable inspection operations. Given the distinct differences in shape and color between 

defective beans, branches, pebbles, and regular green coffee beans, integrating AOI into coffee bean quality inspection, coupled 

with CV and analysis for defect classification, has proven to significantly enhance production efficiency compared to 

traditional methods. The color sorting machine officially applied in the industry’s production lines is an example of an 

automated mechanical sorting machine based on optical imaging. In addition to industrial color sorting machines, there have 

been numerous advanced research papers in academia based on AOI [6-7]. 

Analyzing quality through CV methods demands a profound understanding to construct a classification model. Machine 

learning (ML) provides a data-driven approach empowering researchers to autonomously learn sample classification from 

training data. For example, employing a substantial dataset comprising images of defective and high-quality coffee beans 

enables the development of a classification model for assessing coffee bean quality. This approach mitigates human 

subjectivity, surpasses the limitations of current electronic sorting machines, and yields more precise results. The integration 

of ML in CV technology not only enhances the effectiveness of quality inspection in industries but also addresses challenges 

associated with increasingly complex image quality inspection requirements.  

In the realm of grain quality assessment, numerous research papers showcase the efficacy of ML methods. These studies 

leverage diverse ML algorithms to classify grains based on color and shape features, presenting significant contributions to 

the field [8-10], this underscores ML’s potential and positions it as a valuable asset in the domain of food quality inspection. 

Noteworthy contributions in the realm of coffee bean quality inspection involve the work of Arboleda et al. [11], who extract 

crucial features such as area, perimeter, equivalent diameter, and roundness percentage for coffee bean quality assessment. 

Subsequent classification is achieved using artificial neural networks (ANN) and K-nearest neighbors (KNN) classifiers. 

Over the past decade, with the rapid development of graphics processing units (GPUs), their computational capabilities 

extend beyond traditional matrix operations to encompass a wide range of parallelizable tasks involving multidimensional 

tensors. This has propelled deep learning (DL) to become the most prominent research topic, its application has been widely 

applied in machine vision tasks such as image classification, and object detection. Significantly influenced traditional industry 

technologies. The coffee bean quality detection systems based on DL algorithms are described by Luis et al. [12] and 

Ruttanadech et al. [13]. 

Green coffee beans and roasted coffee beans exhibit significant differences in color, appearance, and aroma. Currently, 

most research on coffee bean quality inspection, realized through CV and ML, primarily focuses on green coffee beans as 

referenced in [14-15]. This presents a significant gap, as roasted beans, due to their varied conditions post-roasting, and finding 

a large labeled dataset for roasted coffee beans is not readily available in online resources, introducing unique challenges not 

addressed by existing methodologies. ML thrives in scenarios with abundant labeled training instances, where training data 

and test data must share the same distribution. 
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However, in many real-world ML applications, collecting a sufficient amount of labeled training data is often time-

consuming, expensive, or even impractical. Additionally, the assumption that the source domain and target domain share the 

same distribution does not always hold in practical applications. Discrepancies in data distribution hinder traditional ML 

algorithms from achieving expected results in similar but new domains, leading to insufficient generalization when the model 

encounters unseen domains. Transfer learning and domain adaptation (DA) [16- 17] are techniques to enhance the performance 

of ML models in cross-domain tasks. When the target domain lacks an abundance of labeled data, considering different but 

relevant labeled datasets as auxiliary data for model pre-training becomes a viable option. Subsequently, adjusting the pre-

trained model and applying it to the target domain overcome the challenges of acquiring labeled data in practical applications. 

In summary, DA techniques aim to learn a model that enables the knowledge acquired from the source domain to 

generalize effectively in the target domain. Introducing DA techniques helps mitigate differences in data distribution between 

the source and target domains, facilitating cross-domain transfer and reuse of domain-invariant knowledge. In this study, a 

DA-based domain-generalization model is introduced for roasted bean quality inspection. This model utilizes a large labeled 

dataset of raw beans to train an auxiliary model. Through adversarial learning, the distribution differences between raw and 

roasted bean features are minimized, achieving the generalization of the raw bean quality detection model to successfully 

handle roasted bean datasets. Thus, the scope of this system extends beyond traditional methods, offering a novel solution to 

a largely unaddressed challenge within the field of coffee bean quality inspection. By incorporating both raw and roasted beans 

into the analysis and utilizing DA techniques to address data scarcity for roasted beans, this study marks a significant 

advancement in the domain, setting a new precedent for future research in agricultural product quality inspection. 

2. Related Approaches 

The method proposed in this paper aims to train a DA-based generalized deep model. Therefore, before elaborating on 

the system architecture, this study briefly introduces the convolutional neural network (CNN) and provides a focused review 

of methods such as adversarial training, deep domain confusion, and domain-adversarial training of neural networks. These 

methodologies contribute significantly to achieving the objective of domain generalization.  

2.1.   Convolutional neural network  

CNN is currently one of the mainstream deep neural networks (DNNs), known for its outstanding feature extraction 

capabilities with local connectivity and parameter sharing. CNN applies convolutional layers to generate feature maps, followed 

by a pooling layer that facilitates the downsampling of input feature maps. As illustrated in Fig. 1, a typical CNN architecture 

involves a forward propagation of input data. At the output stage, the network calculates the error between the expected output 

and the predicted output values. Subsequently, the backpropagation algorithm is employed to update the network’s weights. 

Depending on the type, CNNs have several classic architectures, and a residual neural network (ResNet) is one of them. ResNet 

utilizes identity mapping to increase the network’s depth, addressing the degradation problem in deep networks. 

 
Fig. 1 Typical CNN architecture 
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2.2.   Adversarial training 

Autoencoders utilize a combination of an encoder and a decoder to reconstruct their features. The encoder compresses 

input features from a high-dimensional space to a low-dimensional latent space, while the decoder reconstructs the low-

dimensional vector back to the original features, as shown in Fig. 2. The loss function is defined as: 

( )
2

( )= −loss x Dec Enc x  (1) 

where Enc represents the encoder, and Dec represents the decoder. Autoencoders are commonly used to learn latent 

representations of data. 

 
Fig. 2 Autoencoder architecture 

A generative adversarial network (GAN) [18] is another common type of deep generative model consisting of a generator 

(G) and a discriminator (D). The generator’s task is to transform samples from a prior distribution into data points, while the 

discriminator’s task is to distinguish whether a data point is real or generated by the generator. The training involves a minimax 

game between these two components, with the conclusive aim of training the generator to produce data points that closely 

resemble real data. This adversarial process leads to improvements and enhancements in both the generator and discriminator 

networks. The loss functions of GAN, G, and D are represented as follows: 

( ) ( ){ }~ ~min max ( , ) log ( ) log 1 ( )= + −  GdataG D
x p z pV D G E D x E D G z  (2) 

( ) ( ){ }~ ~max ( ) log ( ) log 1 ( )= + −  GdataD
x p z pV D E D x E D G z  (3) 

( ){ }~min ( ) log 1 ( )= −  GG
z pV G E D G z  (4) 

where z is the noise vector, ����� represents the distribution of real images, and ��  represents the distribution of generated 

images. 

2.3.   Domain adaption 

 
Fig. 3 DA schematic diagram [19] 
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For supervised learning, DNNs with abundant labeled data often achieve superior performance. However, labeling data 

typically requires human involvement and relevant expertise, making the process time-consuming, labor-intensive, and 

expensive. Moreover, such models exhibit weaker adaptability to new environments and tasks. When faced with environments 

different from the training scenarios, new data must be labeled, and the learning model needs to be retrained. DA techniques 

address the scarcity of labeled data and enhance model generalization by leveraging related but different source domains to 

assist learning in the target domain. The DA approach maps source and target domains with different distributions into a 

common feature space, aiming to bring data from the same category as close as possible in this space while separating data 

from different categories, as shown in Fig. 3. In practice, there is often a large labeled source domain dataset, while the target 

domain data may have few or even no labeled instances. 

2.4.  Deep domain confusion  

The network architecture employed by deep domain confusion is illustrated in Fig. 4. The first network takes the labeled 

source dataset as input, while the other network takes the target dataset, which includes a small amount of labeled data or 

unlabeled data. Both CNNs share weight values. The final loss function is a weighted combination of classification loss and 

domain loss. The domain loss utilizes the maximum mean discrepancy (MMD) as a metric method to calculate, aiming to 

obtain domain-invariant features and reduce the distribution gap between the source dataset and the target dataset. 

 
Fig. 4 Deep domain confusion architecture [20] 

2.5.   Domain-adversarial training of neural networks (DANN) 

 
Fig. 5 Domain-adversarial training of neural networks [17] 

For many practical applications, the data distributions of the source domain and target domain differ, and obtaining labeled 

data for the target domain can be challenging or scarce. The fundamental idea of DA is to map both the source and target 

domain data into the same feature space and find a metric criterion in this space to make the feature distributions of the source 
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and target domain data as close as possible. Consequently, a classifier trained based on the features of the source domain data 

can be applied to the target domain data. DANN introduces adversarial learning to DA problems, consisting of three network 

components: feature extractor (Gf), label predictor (Gy), and domain classifier (Gd), as illustrated in Fig. 5. The optimization 

objective for Gd is to minimize the classification errors of the domain classifier, while the optimization objective for Gf is to 

maximize the classification errors of the domain classifier. To simultaneously satisfy these opposing optimization objectives 

during training, DANN utilizes a gradient reversal layer, ensuring that the overall network guarantees the minimization of 

domain confusion loss by the domain classifier and the maximization of domain confusion loss by the feature extractor. 

3. DA-Based Roasted Coffee Bean Quality Detector 

In the realm of coffee quality inspection, it is common to use a large amount of labeled data from green coffee beans for 

training, while roasted coffee beans suffer from an insufficiency of adequately labeled data and efficient classifiers. 

Furthermore, although roasted coffee beans share certain characteristics with green coffee beans, their color and appearance 

differ significantly, preventing the direct application of classifiers trained on green coffee beans to quality inspection in roasted 

coffee beans. Enter DA, a conceptual framework aimed at harmonizing data from both the source and target domains within a 

shared feature space. The key lies in defining a metric criterion within this feature space to align the feature distributions of 

source and target domain data as closely as possible. By achieving this harmonization, a classifier initially trained on source 

domain data becomes versatile enough to extend its application to the classification of target domain data. 

 
Fig. 6 DA system flowchart 

In pursuit of enabling effective quality inspection in roasted coffee beans, the study introduces a pioneering coffee bean 

quality inspection system model based on DA. The holistic architecture comprises pivotal modules, including a feature 

extractor, label predictor, and domain classifier. The feature extractor plays a pivotal role in distilling common features from 

images of both domains. Subsequently, the label predictor adeptly classifies these extracted common features, while the 

domain classifier discerns the origin domain of the extracted features. The ingenious integration of adversarial learning into 

the system’s architecture serves the dual purpose of maximizing label prediction accuracy and minimizing accuracy loss in 

domain classification. 

This strategic amalgamation empowers the system to transcend the traditional boundaries, enabling classifiers initially 

trained on green coffee beans to seamlessly adapt to the nuanced task of quality inspection in roasted coffee beans. The 

conceptual underpinning and operational dynamics of this innovative model are vividly illustrated in Fig. 6. 

3.1.   Feature extractor & label predictor 

The original spatial information in the image contains a large amount of redundant data, which can be transformed into a 

low-dimensional feature vector. The feature extractor composed of a DNN is responsible for transforming the raw input image 

into a lower-dimensional feature representation. These representations capture fundamental patterns and features relevant to 



International Journal of Engineering and Technology Innovation, vol. 14, no. 3, 2024, pp. 321-334 327

the ongoing task, enhancing key characteristics while preserving the accuracy and integrity of the original data description. 

Extracting good representations not only contributes to subsequent learning steps and generalization capabilities but also, in 

some cases, aids in the interpretability of artificial intelligence (AI) models. 

The key role of the feature extractor in Fig. 6 is to make the feature points of the source domain and target domain 

indistinguishable in distribution. The optimization objective of the parameter set ��
∗ of the feature extractor is to minimize the 

total loss function derived from both the weighted L and Ld, as shown below: 

( )* min
θ

θ λ= − ⋅
f

f dL L  (5) 

The label predictor, also known as a task classifier or label classifier, primarily functions to predict the labels or categories 

corresponding to input data. In contrast to traditional supervised learning where labels are only used for training and evaluation, 

in DA training, the label predictor is an integral part of the model architecture. Its predictions are used not only for the main 

task but also in the DA process. The label predictor is typically trained using annotated data from the source domain, and its 

learning process maps the feature representations generated by the feature extractor to the correct class labels [21]. 

In the training process of DA, the label predictor’s training is crucial not only for the main task to be addressed but also 

indirectly contributes to the adversarial training objective. �

∗ represents the optimal parameter set of the label predictor. � 

represents the classification cross-entropy for the source domain in the label predictor. The goal of this optimization process 

is to find the optimal parameter settings for the label predictor, achieving accurate predictions in label prediction. 

* min
θ

θ =
p

p L  (6) 

3.2.   Domain classifier 

The domain classifier is a binary classifier with the primary function of assessing the domain from which the feature 

representation generated by the feature extractor originates [21]. Collaborating with the feature extractor, it aims to minimize 

specific domain confusion loss (Ld). Through adversarial learning between the domain classifier and the feature extractor, 

domain-invariant cross-domain representation learning can be achieved, thereby fulfilling the goal of DA. 

During the training process, the parameter set ��  of the domain classifier gradually adjusts to enhance its ability to 

correctly classify the source domain of the features generated by the feature extractor [21]. Simultaneously, the feature 

extractor is adjusted to ensure the generation of feature representations that are difficult to distinguish between two different 

domains. ��
∗  represents the optimal parameter set of the domain classifier. The optimization goal is to minimize the domain 

confusion loss (Ld) by adjusting the parameter set of the domain classifier, aiming to enhance the domain classifier’s ability to 

correctly identify the domain from which the feature representation generated by the feature extractor originates. 

* min
θ

θ =
d

d dL  (7) 

3.3.  Domain-invariant representation learning 

The representation extracted by the feature extractor is passed to the domain classifier, which then determines whether 

the incoming representation originates from the source domain or the target domain, subsequently computing the loss. The 

training objective of the domain classifier is to classify the incoming representation into the correct domain category, while 

the training objective of the feature extractor is precisely the opposite. It aims to extract features that are sufficient to confuse 

the domain classifier, making it unable to identify from which domain the output representation comes. This creates an 

adversarial relationship, as illustrated in Fig. 7, outlining the distinct objectives of each module. In contrast to the traditional 
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approach seen in GANs, DA problems deviate from the process of generating samples using random noise, as illustrated in 

Fig. 8. Instead, DA directly considers the data within the target domain as the generated samples. This departure signifies a 

shift in the role of the generator, no longer focused on generating samples but now serving as a crucial feature extraction 

component in the adaptation process. 

 
Fig. 7 Leveraging distinct module objectives for domain-invariant representation learning 

 

 
Fig. 8 The process of generating samples by GAN 

4. Experimental Results and Discussion 

This study utilized PyTorch 1.12.0 for the development of DL models. The processor used in the computer is a Core(TM) 

i5-12400F CPU, 16GB DDR4 RAM, and is complemented by an NVIDIA GeForce RTX 3060 graphics card to enhance 

computational capabilities. 

4.1.   Coffee bean dataset 

In the development of the coffee bean quality inspection system, the dataset was meticulously curated to ensure robust 

model training and evaluation. The dataset comprised 4626 green coffee bean images, obtained from coffee-cobra [22], 

designated as the source domain, and 886 roasted coffee bean images, obtained from aistudio-Baidu [23], serving as the target 

domain. Both datasets featured images with a resolution of 400 × 400 pixels. To facilitate a comprehensive evaluation of the 

model’s performance, the initial dataset was divided into distinct subsets for training and testing. The training subset, crucial 

for model learning, constituted approximately 80% of the green coffee bean images and 80% of the roasted coffee bean images. 

The testing subset comprised the remaining 20% of images, enabling an unbiased assessment of the model’s generalization 

capability on unseen data. The division of the dataset was performed to ensure a balanced representation of various bean 

qualities within each subset, thereby mitigating potential biases and facilitating a comprehensive evaluation across different 

stages of model development. The composition of both datasets is visualized in Fig. 9. 
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(a) Good green bean (b) Bad green bean 

  
(c) Good roasted bean (d) Bad roasted bean 

Fig. 9 Partial image in the dataset 

4.2.   Coffee bean quality inspection based on domain adaptation 

This section delves into a comprehensive examination of domain adaptation techniques applied to coffee bean quality 

inspection. The analytical endeavors are bifurcated into two principal subsections. The first assesses the classification accuracy 

of the proposed method across varying values of λ within different domains. The second evaluates the distribution of features 

between the source and target domains to ascertain the effectiveness of the domain adaptation strategy.  

4.2.1.   Analysis of classification accuracy 

Table 1 Efficiency comparison of each level to control the balance of DA and classification 

λ Target data accuracy Source data accuracy 

0.0 65.16% 98.52% 
0.1 73.33% 97.52% 
0.2 80.60% 96.45% 
0.3 77.74% 95.25% 
0.4 73.55% 94.54% 
0.5 83.15% 93.23% 
0.6 79.45% 93.60% 
0.7 85.16% 94.55% 
0.8 92.24% 98.96% 

In this endeavor, a coffee bean quality inspection system was developed utilizing EfficientNetV2-S [24], and the λ value 

in Eq. (5) was fine-tuned to dynamically adjust the balance between L and Ld, facilitating adversarial learning between the 

domain classifier and feature extractor. Without accounting for domain confusion loss (λ = 0), the system exhibited a 98.52% 

true positive rate for raw beans after training on the labeled raw bean dataset. However, when encountering a domain shift 

with roasted beans, the accuracy decreased to 65.16%. Incrementally adjusting the λ value, indicating an increased focus on 

Ld, led to improvements in the system’s accuracy for target domain data. Notably, with λ set to 0.8, the system achieved a 

98.96% true positive rate for raw beans, and the correct classification rate for roasted beans improved from 65.16% to 92.24%, 

as meticulously detailed in Table 1. 

In line with the experiments outlined in Table 1, the evaluation was extended to various deep-learning models as backbone 

networks for the coffee bean quality detector. Among these, EfficientNetV2-S distinguished itself as the top performer, as 

detailed in Table 2. This superiority is attributed to its innovative architecture that optimally balances depth, width, and 

resolution through compound scaling, allowing it to efficiently process the complexity of coffee bean images. Additionally, 

EfficientNetV2-S’s advanced regularization techniques and efficient convolutional blocks significantly enhance its capability 

to discern intricate details, further validating its selection for accurately assessing coffee bean quality among the diverse models 

considered. 
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Table 2 Efficiency comparison of different deep learning models 

Models Accuracy Precision Recall F1 Score 
VGG 84.99% 84.01% 91.15% 86.74% 

Xception 85.71% 86.01% 85.75% 86.31% 
ResNet18 87.52% 87.07% 94.13% 89.47% 

DenseNet121 88.51% 89.03% 88.61% 89.21% 
MobileNetV3small 90.72% 90.24% 90.83% 90.40% 
EfficientNetV2-S 92.24% 92.34% 92.24% 91.43% 

4.2.2.   Analysis of feature distribution results between source and target domains 

To validate the effectiveness of DA in roasted coffee bean quality inspection, the t-distributed stochastic neighbor 

embedding (t-SNE) method was employed to reduce the dimensionality of feature vectors output by the feature extractor. This 

projection transformed the high-dimensional data into a two-dimensional feature space, facilitating the visualization of DA 

experimental results. Fig. 10 illustrates the visualization results after applying t-SNE for data dimensionality reduction. Fig. 

10(a) displays the distribution of feature points for green and roasted coffee beans before DA. Significant differences in the 

distribution of green and roasted coffee beans were observed. In Fig. 10(b), the system’s feature points for raw and roasted 

beans overlap in the two-dimensional space after DA. This figure presents the distribution of coffee beans of different 

categories in the two-dimensional space. In this scenario, knowledge acquired from the source domain can be generalized 

better in the target domain, achieving the cross-domain transfer and reuse of domain-invariant knowledge. 

  
(a) Before DA (b) After applying DA 

Fig. 10 The distribution of feature points for raw and roasted beans in a two-dimensional space 

 

 
Fig. 11 Distribution analysis of features for different categories 
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As shown in Fig. 11, the feature distribution chart illustrates the characteristics of good beans and defective beans. The 

orange dots represent the good bean category for green coffee beans, while the red dots represent the defective bean category 

for green coffee beans. These two clusters are distinctly separated in the feature space. As for the green dots in the figure, they 

represent the good bean category for roasted coffee beans, and the blue dots represent the defective bean category for roasted 

coffee beans. Similarly, these two clusters in the feature space also exhibit clear separation. It is noteworthy that the red dots 

and blue dots belonging to the defective bean category overlap in a large cluster, and the orange dots and green dots belonging 

to the good bean category similarly overlap in another large cluster. There is a clear boundary between these two large clusters, 

indicating that the feature extractor of the proposed architecture possesses excellent feature extraction capabilities. It can 

extract well-distinguished features, demonstrating a clear distinction between the two categories. 

4.3.   Analysis of explainable models 

While DNN models have been successfully applied across diverse applications, such as intelligent detection and medical 

diagnosis services, the inherent opacity of AI poses a challenge. The machine’s inability to explain the decision-making process 

and the factors behind its actions affects users’ trust and confidence in its capabilities. To address this issue, saliency maps, as 

illustrated by Brocki and Chung [25], offer a means of visualizing the significance score assigned to each pixel in an image, 

presenting it as a heatmap. In this representation, pixels with higher scores manifest in brighter colors, while lower-scored 

pixels appear darker. Leveraging saliency maps allows for the interpretability of the model, providing valuable insights into 

the critical information within an image. 

 
(a) Green coffee beans 

 
(b) Roasted coffee beans 

Fig. 12 Saliency maps 

Fig. 12(a) and Fig. 12(b), display the original images of green and roasted coffee beans, along with their corresponding 

saliency maps. These saliency maps highlight potential defective areas in the form of green dots, offering a visual way to 

emphasize these problematic regions. In the Saliency map, green areas represent regions where the model has high confidence 
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in its predictions, implying accuracy in these predicted areas. Conversely, red areas indicate regions where the model considers 

there might be poorer predictions, potentially related to lower-quality areas of the coffee beans. These explanatory 

visualizations provide a clearer insight into the model’s confidence in predictions for various regions, allowing us to focus on 

areas where potential issues may arise. 

 
(a) Green coffee beans 

 
(b) Roasted coffee beans 

Fig. 13 Generating visual explanation maps using LIME 

Local interpretable model-agnostic explanation (LIME) [26], categorized under global explanation, utilizes simple 

regression or linear models to locally approximate the prediction results of a target black-box complex model, aiming to 

achieve interpretable models. LIME is a rapid method for analyzing the contribution of each feature, providing human-

interpretable explanations, thus aiding in understanding the decision behavior of ML models. As shown in Fig. 13(a) and Fig. 

13(b), LIME was employed to visualize explanations for the approach, revealing that the model emphasizes identifying 

distinguishing clues from the internal regions of coffee beans, rather than relying on the background of specific areas. The 

added clarification explains that green areas in the figures indicate positive influences, or features supporting the model’s 

decision, while red areas signify negative influences, pointing towards alternate classifications. This color-coded approach 

offers deeper insights into the model’s decision process by pinpointing crucial influencing features. 

5. Conclusions 

In this study, DA techniques are utilized to formulate models with domain-generalization capabilities tailored for the 

inspection of roasted coffee bean quality. The model leverages an extensive labeled dataset of green coffee beans to train an 

auxiliary model, and through adversarial learning, systematically reduces the distributional disparities in features between 

green and roasted coffee beans. Experimental results illustrate a significant improvement in the classification accuracy for 

roasted coffee beans, escalating from an initial 65.16% to 92.24%. This achievement underscores the proficiency of the 

approach in broadening the scope of green coffee bean quality inspection models, effectively accommodating datasets that 
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include roasted coffee beans. Future research is set to delve into sophisticated object detection and instance segmentation 

methodologies, such as those within the YOLO series or employing mask R-CNN techniques. Such methods show potential 

for advancing the system’s ability to assess multiple beans simultaneously and accurately evaluate partially occluded beans. 

The integration of these complex techniques is expected to address current limitations, enhancing the robustness and practical 

utility of the quality inspection system across a range of scenarios. 
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