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Abstract 

This study aims to develop lightweight and comfortable wearable devices using surface-relief grating, which 

can be designed to meet different diffraction conditions. However, extensive calculations must be performed to 

obtain the impact of the variation in the structural dimensions. The finite element method is used to solve the 

diffractive efficiency and then replaced by trained artificial neural networks with a single hidden layer containing 25 

neurons. By using raw data with geometric parameters as the features, the performance of the network is investigated 

with different numbers of raw data; in addition, the regression analysis shows a high R-value of approximately 0.999. 

The predicted results are compared with those calculated from the simulation. The diffraction efficiency tendencies 

vary with the different geometric parameters, which show a high level of agreement between the predicted and 

calculated data; this confirms that the proposed method supports and reduces the burden of extensive calculations. 
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1. Introduction 

Due to the flourishing development of virtual reality (VR), augmented reality (AR) [1], and mixed reality (MR) [2], the 

research and optimization of head-mounted displays (HMDs) have become crucial in recent years [3-6]. To enhance the ease 

with which people can enter the virtual world, a lightweight design has become key to the creation of HMDs, serving as an 

interface between the real and virtual worlds and enabling them to be worn for an extended period. In traditional display 

systems, the light of the image is directed from a projector to a display through diverse combiner configurations with multiple 

optical components. Such structures not only require a larger space to accommodate multiple elements but also increase the 

overall weight; this significantly affects the comfort and portability of the device during extended usage. Moreover, the system 

is constrained by the design of the combiner, which significantly affects its flexibility. 

The use of waveguide-guided optical systems has emerged as a popular solution in recent years [7-13]. Since Levola [10] 

proposed building VR displays using the diffractive waveguide in 2006, numerous studies on this technology have been 

conducted. The coupling of light into the waveguide is another aspect that requires consideration. The volume of the system 

can be reduced by fabricating diffractive optical elements on the waveguide surface to efficiently couple incident information 

light. This methodology has enabled the design of diffraction elements that are tailored to different input conditions. Different 

diffractive optical elements, such as surface-relief gratings (SRGs), volume holographic gratings, and meta-surfaces, are 

employed as in-couplers or out-couplers to concentrate energy into specific diffraction orders. 
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To take full advantage of the information light, a polarization–multiplexing meta-grating was proposed in 2021 by Liu et 

al. [11]. The incident circularly polarized light can be separated into opposite diffraction orders by the specially designed 

phase-based meta-grating according to the different handedness. This approach, which involves information light directly 

carrying two stereoscopic images with opposite circular polarization, enables 3D vision. On the other hand, Lin et al. [12] 

optimized the diffraction efficiency by inserting an interlayer into a traditional diffractive waveguide. The potential use of 

several optical materials as the inserting layer was discussed in this study, with MgF2 finally being selected as the inserting 

material. Via the insertion layer, the proposed diffractive waveguide can enhance the optical efficiency of the waveguide and 

produce an angular selectivity. In 2023, Liu et al. [13] proposed a programable on-chip integrated metasystem that can produce 

a wavelength-demultiplexing projection of an image. 

The in-coupler is inverse-designed to fit two different wavelengths in the visible light range and can diffract them into 

different directions. After being manipulated by these diffractive elements, the image enters the waveguide, propagates 

through total internal reflection (TIR), and is directed toward the emitting position. The light exits the waveguide through a 

coupler featuring the same diffraction conditions and is guided to the observer’s eyes [14]. SRG is a design commonly used for 

diffractive optical elements [15-23]. Via the direct fabrication of grating structures on the surface of the waveguide, various 

SRG structures have been proposed to achieve a high diffraction efficiency. Typically, SRGs consist of groove-shaped 

structures on the surface, with an additional slanted angle applied on the grooves; the diffractive light can therefore be 

concentrated into first-order diffractions. To further enhance the diffraction efficiency, SRG structures with different shapes 

have been designed; these include blazed grating [20], trapezoidal grating [21], 2D SRG [22], or even double-layer grating [23], 

thus increasing the complexity of SRGs. 

To concentrate the diffractive energy on the first-order diffraction while suppressing the zero-order diffraction, a 

non-symmetry shape is frequently required for SRG structures; for example, grooves with inclined angles can be used. The 

SRG’s non-symmetric periodic structure makes it sensitive to the incident angle and wavelength of the incoming light, with a 

narrow range of incident angles and wavelengths leading to the realization of a high diffraction efficiency. Diffractive optical 

elements based on the SRG design are therefore able to achieve low dispersion and a wide field of view in an image display. 

Although display elements that are designed based on SRGs suppress zero-order diffraction, if the -1-order and +1-order 

diffractions have comparable efficiencies, a partial loss of energy will be observed. For HMDs, this allows observers other than 

the user to see the displayed content, thus infringing on the user’s privacy and security. 

To perform an optimization analysis on the designed SRG components, the geometric parameters of the structure are 

treated as variables and their efficiency at ±1-order diffraction is determined by the number of calculations. In addition to 

providing the optimal structure size with the highest efficiency, this enables tables based on different incident angles to be 

generated; these reference tables for different sizes can then be searched for the best diffraction efficiency or diffraction angle 

at the corresponding incident angle. Compared to the rigorous coupled-wave analysis (RCWA) that is frequently used in 

traditional calculations, this study uses the finite element method (FEM) [24], which is suitable for problems with higher levels 

of complexity. 

Based on the calculation method that meshes whole structures into small elements, the FEM is well-known for its ability 

to solve physical problems in complex structures or those with multiple physical conditions; it can also simultaneously account 

for multiple variables, such as different incident angles with different incident wavelengths. Despite its ability to handle 

complex calculations more efficiently, this analysis process still requires a significant amount of time. If detailed size–

efficiency relationships must be calculated using reference tables, the computational workload will increase. 

In recent years, artificial neural networks (ANNs) have been used to solve repetitive problems with complex relations that 

must be calculated. This extraordinary capacity for calculation has been used to design optical devices [25-28]. To achieve the 

inverse design of optical elements, the tandem network training needs a forward modeling network to confirm the accuracy of 
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the inverse-prediction component; therefore, a forward prediction network is necessary [28]. This study uses ANNs to assist in 

calculating the diffraction efficiency of SRG components. Two separate ANNs are trained based on the diffraction efficiency 

of the +1-order and the -1-order diffraction; this enables calculations to be performed with high efficiency when using the 

geometric parameters and the incident angle as the input data. This study also examines the impact of using various amounts of 

data in the ANN training datasets to reduce the computational workload required. Finally, this study shows the actual results 

obtained by the ANN when inputting data that are not included in the training dataset. 

2. Materials and Methods 

Fig. 1 shows a unit cell of the SRG, which is created by arranging periodically slanted grooves on a glass waveguide 

surface that has refractive indices of 1.5 and 1 for the glass and air, respectively. The incident light comes from the air below, 

which has a wavelength of 532 nm, and is transmitted into the glass waveguide.  

 

Fig. 1 Sketch of the unit cell of the SRG 

In the figure, the period length is a = 433 nm, and the groove width is set as half of a. The groove depth is defined as d, and 

the slant angle is defined as α. External incident light enters from the air below and is set by a port boundary condition, with the 

incident angle defined as θ. Another port boundary condition is applied to the top boundary of the unit cell within the glass 

waveguide, and the receiver receives the transmitted light and calculates the diffraction efficiency. By setting periodic 

boundary conditions on both sides of the unit cell, the FEM can simulate the infinite periodic grating structure within the unit 

cell and compute the corresponding diffraction efficiency. The incoming light comes from the area of air below and is 

transmitted into the SRG made of glass in the above area. The periodic boundary conditions are applied to the boundaries on 

both sides of the unit cell. 

In the FEM setup, both incident and diffracted light travel through the port interfaces, and S-parameter calculations are 

used to determine the efficiency of different diffraction orders. As the main variables, the depth d is calculated from 50 nm to 

500 nm, and owing to fabrication constraints, the slant angle α is only considered from 0° to 20°. Considering the influence that 

light incidence from different directions has on the structure, the slant angle is fixed at a positive value, and the incident angle 

θ is considered from -10° to 10°. The values of α and θ, which are labeled in the figure, are positive and are counted from the 

normal line. Several components can be obtained under different diffraction conditions by varying the three variables 

mentioned above. The ±1-order diffraction results and diffraction efficiencies for each component are calculated using the 

FEM. The obtained data serve as the original database, from which several data are extracted for the subsequent training of the 

ANN. The data not used for training can be employed as test data to evaluate the ability of the trained ANN to predict the 

diffraction efficiency. 
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The ANN configuration used to predict the diffraction efficiency is shown in Fig. 2. The figure shows that the ANN has a 

simple basic structure that consists of three main layers: the input, hidden, and output layers. In the input layer, three 

parameters — the geometric parameters d, α, and the incident angle θ — serve as the input features and are fed into the training 

dataset through three neurons. To use the ANN to replace extensive computations at its full capacity, not all the data solved by 

the FEM are used in the training dataset. 

In this study, the slant angle α is sampled every 4°, totaling six values, and the incident angle θ is sampled every 5°, 

totaling five values for the training data. Finally, owing to its broad coverage, the depth d is divided into three groups for 

comparison, and each is sampled at 20, 30, and 50 nm. Therefore, each group of datasets contains six slant angle α values and 

five incident angle θ values with different depth d values for the training of the ANN. Subsequently, the influence that the 

amount of training data used has on the training results is compared. 

 

Fig. 2 ANN configuration for diffractive efficiency prediction 

The geometric parameters d and α, as well as the incident angle θ, are input as the training features; the +1-order and the 

-1-order diffraction efficiencies are, respectively, treated as the training target in the output layer. In the hidden layer, the 

number of hidden layers and neurons within each layer are considered variables. However, in this study, the variation in the 

diffraction efficiency is more linear compared to other problems, and some of the calculations have explicit formulas. 

Therefore, in this study, a simple single-layer hidden layer structure is used, and only 25 neurons are required to provide 

sufficient fitting. Finally, to provide different diffraction efficiencies based on the different conditions in which the diffraction 

element is used, the diffraction efficiencies of the ±1-order diffractions are predicted separately using two ANNs. In the output 

layer, the +1-order and the -1-order diffraction efficiencies are used as the training target for the two ANNs, and a single output 

neuron is used in the output layer for both ANNs. These predicted values are then compared with the diffraction efficiencies 

calculated using the FEM. 

3. Results 

Figs. 3-4 shows the regression analysis results of the two networks used to predict the +1-order and the -1-order 

diffractions. The networks are trained using datasets that contain varying amounts of data. The regression analysis plots the 

target values of the neural network on the horizontal axis and the actual values obtained by the ANN on the vertical axis, with 

each result predicted for each input data point plotted on a graph. When the predicted values are closer to the target values, the 

data points are closer to the diagonal line x = y. Therefore, when the slope of the linear regression results for all the data points 

is closer to 1, the predicted results are more accurate. Figs. 3(a) to 3(c) shows the training results for the +1-order diffraction. 

They are presented sequentially, with one sample taken every 20, 30, and 50 nm for depth d; these are extracted from the 

original database, totaling 690, 480, and 300 training data points, respectively. 
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(a) Depth d took every 20 nm (b) Depth d took every 30 nm (c) Depth d took every 50 nm 

Fig. 3 Regression analysis for +1-order diffraction efficiency with different quantities of depth d data 

According to the R-values shown at the top of each graph in Figs. 3-4, as the quantity of extracted data decreases, the 

regression coefficient R also decreases. However, even when less than half of the originally available data shown in Fig. 3(c) is 

used, a high R-value exceeding 0.999 is maintained. On the contrary, Figs. 4(d) to 4(f) shows the training results obtained for 

the -1-order diffraction. Similar to the +1-order diffraction, it is evident that as the quantity of sampled data decreases, the 

R-value decreases. Although the R-value in Fig. 3(f) decreases below 0.999, indicating a slight decrease in accuracy, it remains 

within an acceptable range. 

   

(a) Depth d took every 20 nm (b) Depth d took every 30 nm (c) Depth d took every 50 nm 

Fig. 4 Regression analysis for -1-order diffraction efficiency with different quantities of depth d data 

The diffraction efficiency results produced by the ANN when using minimal training data and those obtained by the FEM 

were compared, as shown in Fig. 5. Because this study involves the simultaneous use of three variables, Fig. 5 plots the 

diffraction efficiency using each variable on the x-axis while appropriately selecting values for the remaining two variables; 

this is for ease of comparison. Figs. 5(a) to 5(c) shows the trends in the diffraction efficiency as the corresponding parameter 

varies. First, Fig. 5(a) shows the variation in the +1-order diffraction efficiency as α varies. The lines represent the trends 

obtained using the FEM calculations, and the markers represent the predicted results generated by the ANN. 

The results for the two sets of parameter combinations are plotted separately in the figure. In this context, Sim. and Pre. 

(Case 1) represent the results for d = 350 nm and θ = -10°, while Sim. and Pre. (Case 2) represent the results for d = 350 nm and 

θ = 10°. Thus, from Fig. 5(a), it can be observed that for +1-order diffraction under the conditions of α > 0, θ = 10° is required 

to achieve high +1-order diffraction efficiency. Furthermore, under the condition of θ = 10°, α of approximately 18° provides 

the highest +1-order diffraction efficiency, reaching approximately 50%. A comparison between the results predicted by the 

ANN and the FEM calculations revealed that they were in almost perfect accord with the actual calculated values. The markers 
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in the figure represent the data extracted every 2°; in contrast to the sampling in which α is extracted every 4°, it can be 

observed that some of the data points not included in the training dataset are interspersed and still provide continuous and 

accurate predictions. 

Subsequently, in Fig. 5(b), with θ as the horizontal axis, the variations in the +1-order diffraction efficiency are shown for 

two SRG structures with d = 350 nm and α = 4° and 14°. The results are depicted by Sim. and Pre. (Case 1) for α = 4° and Sim. 

and Pre. (Case 2) for α = 14°. Since α is sampled every 4°, α = 14° is not included in the training dataset, indicating that this set 

of data belongs to the test data. In the figure, it can be observed that when the groove slant angle is 14°, the +1-order diffraction 

efficiency has a maximum value of approximately 65% at an incident angle of positive 5°. When the slant angle is small, the 

highest first-order diffraction efficiency occurs at an incident angle of 10°. 

When comparing the results of the ANN and FEM, it is evident that even the data for α = 14°, which was not included in 

the training dataset, shows good fitting. The overall maximum error occurred in the data for α = 4°, as indicated by the marked 

point in the figure, with a numerical error of approximately 1.55. Finally, for the first-order diffraction results, Fig. 5(c) shows 

d on the horizontal axis. The Sim. and Pre. (Case 1) represent the results for α = 4° and θ = 10°, while the Sim. and Pre. (Case 

2) represent the results for α = 14° and θ = 10°. It can be observed that the structure represented by the Sim. and Pre. (Case 2) 

exhibited a significantly high +1-order diffraction efficiency and reached its maximum at approximately d = 380 nm. 

Regarding the performance of the ANN predictions, both structures exhibited excellent fitting results, with slight errors in the 

range of d = 300–350 nm. 

 

(a) Efficiency varies with α 

  

(b) Efficiency varies with θ (c) Efficiency varies with d 

Fig. 5 +1-order diffraction efficiencies at 50 nm with varying parameters 

On the other hand, Fig. 6 compares the results of the -1-order diffraction efficiencies predicted by the ANN and the results 

calculated by the FEM. Fig. 6 uses α, θ, and d as the horizontal axes, respectively, to present the corresponding -1-order 

diffraction efficiency, as is the case in Fig. 5. First, it can be observed from all three figures that, compared to the +1-order 
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diffraction efficiency, the -1-order diffraction efficiency was effectively suppressed at lower levels, showing an inversely 

proportional trend between the +1-order and -1-order diffraction. Regarding the ANN predictions, it can be observed from Fig. 

6(a) and 6(b) that Pre. (Case 1) and Pre. (Case 2) overlap significantly with the line graph of the FEM calculations, indicating 

that the ANN exhibits a high level of accuracy. In Fig. 6(c), there is more error around d = 300–350 nm, which suggests that 

this part of the data has a higher level of similarity in the raw database; this makes it challenging to distinguish and predict the 

precise values. Simultaneously, the maximum value on the y-axis in Fig. 6(c) is 8%, indicating that even though there appears 

to be a larger error in this figure, the actual numerical difference is less than 0.5. 

 

(a) Efficiency varies with α 

  

(b) Efficiency varies with θ (c) Efficiency varies with d 

Fig. 6 -1-order diffraction efficiencies at 50 nm with identical parameters 

 

  

(a) +1-order efficiency variation with α (b) +1-order efficiency variation  with θ 

Fig. 7 Predicted efficiencies for a d = 220 nm SRG using ANN with a 50 nm training sample 
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(c) -1-order efficiency variation with α (d) -1-order efficiency variation with θ 

Fig. 7 Predicted efficiencies for a d = 220 nm SRG using ANN with a 50 nm training sample (continued) 

Finally, to test the predictive performance of the ANN using non-training set data, the diffraction efficiency lines 

corresponding to d = 220 nm, which is not included in the training dataset, are drawn in Fig. 7; this is similar to using α = 14° 

in Figs. 5-6. Figs. 7(a) and 7(b) show the +1-order diffraction efficiencies corresponding to Figs. 5(a) and 5(b), respectively. 

Figs. 7(c) and 7(d) represent the -1-order diffraction efficiencies corresponding to Figs. 6(d) and 6(e). As shown in Fig. 7, the 

ANN prediction results marked with red circles and red triangles overlap significantly with the lines calculated using the FEM. 

In Fig. 7(c), there is a slight deviation in some of the Pre. (Case 2) points on the Sim. (Case 2) line representing θ = 10°, but it 

still maintains an error below 1%. 

4. Discussion 

According to the regression analysis in Fig. 3, it can be concluded that an ANN configuration with a single hidden layer 

containing 25 neurons can accurately predict the diffraction efficiency. Moreover, only 300 training data points were required 

to achieve an accuracy close to 0.999, thus effectively reducing the preparation time required for ANN training and the 

computation time required for SRG research. By comparing the predicted results obtained by the ANN with the values 

calculated by the FEM, it can be confirmed that almost all the structural parameters yielded results that did not differ 

significantly from the numerical calculations. 

In this study, because the SRG was designed to concentrate the diffraction efficiency on +1-order diffraction, the evident 

suppression of the -1-order diffraction led to smaller numerical differences between the target values. Consequently, when the 

same weight was applied to predict most of the other values associated with the -1-order diffraction, it was challenging for the 

ANN to predict small values with small differences accurately. This challenge was reflected in a decrease in the overall 

accuracy, as shown in the results in Fig. 6(f). However, the error remained within a relatively small range and did not 

significantly affect the primary outcomes. Finally, based on the results in Figs. 4-7, it is evident that the ANN could accurately 

predict the diffraction efficiency, even for test data that were not included in the training dataset; the objective of replacing 

numerical calculations was therefore achieved.  

5. Conclusion 

In this study, the proposed method uses a relatively simple ANN architecture that requires only a small amount of training 

data to directly predict the ±1-order diffraction efficiencies of the corresponding diffractive devices based on their structural 

dimensions and incident angles. Considering the inherent linear relationship in the diffraction efficiency of the SRG 

components, the amount of training data required could be further reduced by increasing the number of hidden layers or 
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neurons in the hidden layers of the ANN architecture. This reduction in the time required to prepare the data could potentially 

enhance the capabilities of auxiliary calculations. The proposed method could be further developed into an inverse design 

network, as the forward training process. 
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