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Abstract 

The iron ore industry faces increasing electricity demand due to industrialization, making effective 

management of electricity demand crucial. This study proposes a temperature compensation model using Support 

Vector Regression (SVR), aiming to enhance the accuracy of sensors in monitoring electricity demand. An 

experiment is conducted to assess the impact of temperature on sensor measurements, and a modified Whale 

Optimization Algorithm is employed to correct the sensor outputs. The proposed model is compared with both PSO-

SVR and unimproved WOA-SVR. Results show that the proposed model significantly improves accuracy, achieving 

a determination coefficient of 0.7882 and a relative standard deviation of the error square sum of 4.6412%. The 

results of this study not only enhance power demand management in iron mining but also hold potential applications 

across various industries. 
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1. Introduction 

In recent years, amidst the rapid evolution of the global economy and the swift pace of industrialization, energy demand 

has emerged as a pivotal factor constraining the sustainable development of nations [1-4]. The iron ore power industry stands 

as a cornerstone of national economic and social progress [5-8]. Nonetheless, challenges persist in managing demand 

effectively within the iron ore power sector. At the heart of these challenges lies the issue of how temperature fluctuations 

impact the performance of monitoring sensors. These sensors play a pivotal role in the iron ore power system, facilitating real-

time monitoring of operational status, temperature, and other critical parameters of power equipment. However, the variability 

in ambient temperature can lead to deviations in sensor performance, thereby compromising the accuracy of monitoring and 

management within the power system. Thus, enhancing measurement precision necessitates the implementation of temperature 

compensation mechanisms for the sensors [9]. 

Currently, temperature compensation methods commonly employed are categorized into hardware compensation and 

software compensation [10]. Hardware compensation relies on exploiting the inverse temperature coefficient of an additional 

component to counteract the temperature drift coefficient inherent in the sensor, offering the advantages of simplicity and real-
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time response. For instance, Sheng et al. [11] introduced a high-precision, cost-effective compensation technique along with a 

novel internal compensation mechanism aimed at mitigating the significant impact of temperature drift on the measurement 

accuracy of fiber Bragg grating (FBG) sensors caused by Fabry-Perot (F-P) filter. Employing least squares support vector 

regression (LSSVR), a temperature drift model is established, effectively addressing issues of substantial errors and sluggish 

computation.  

Gan et al. [12] developed a dual-axis sensor with a temperature compensation function based on fiber grating for vascular 

interventional surgery. Its four FBG-embedded fibers are suspended in a circular array inside the flexure hinge to minimize 

transverse strain crosstalk and improve measurement accuracy. The temperature compensation effect of the sensor can be used 

for accurate force measurement under different temperature conditions. Meanwhile, Zhang et al. [13] outlined the design 

principles of an on-chip temperature compensation interface ASIC, leveraging the amplitude of the drive feedback AC voltage 

signal as a virtual temperature sensor. This innovative approach enables on-chip temperature compensation for gyroscope 

output angular velocity signals, enhancing overall system performance and reliability.  

To address the issue of low sensitivity or limited detection range encountered with SPR sensors, Tian et al. [14] have 

introduced a cascaded fiber SPR sensor boasting high sensitivity along with a temperature compensation feature. This 

innovation offers the potential for highly efficient and accurate detection even in complex environmental conditions. 

Nevertheless, the existing hardware compensation methods commonly employed suffer from drawbacks such as limited 

accuracy, cumbersome calibration processes, and increased expenses, thus hindering their practical viability in engineering 

applications [10]. 

Software compensation involves acquiring data through calibration experiments and using algorithms or models to 

establish a mapping relationship between sensor input and output. In contrast to hardware compensation, software 

compensation offers the advantages of high precision and low cost. For instance, Wang et al. [15] proposed an INS temperature 

drift compensation method based on gravitational search algorithm (GSA) tuned support vector regression (SVR) to solve the 

problem that the traditional temperature drift compensation method requires a long time to calibrate each inertial sensor 

separately. This method has better performance and significantly improves compensation accuracy and efficiency.  

To solve the influence of temperature on the gyroscope, Ouyang et al. [16] established a temperature compensation model 

for the output signal of the gyroscope by using Long Short-Term Memory (LSTM), Support Vector Machine (SVM) and Deep 

Belief Network (DBN). A denoising algorithm using Variational Mode Decomposition (VMD) and Sampling Entropy (SE) 

was developed to eliminate the influence of factors other than temperature on the MEMS gyroscope. Finally, temperature 

experiments show that the rate of random drift and bias instability of the gyroscope compensation output signal is significantly 

reduced. Aiming at the problem that the accuracy of traditional SOC estimation algorithms decreases significantly under low 

temperature and low SOC conditions, Chen et al. [17] designed a new SOC estimation framework, which combines a new 

radial basis function neural network (RBFNN) battery model, temperature compensation strategy and unscented Kalman filter 

(UKF). The experimental results show that the framework has excellent generalization performance.  

Yu et al. [18] proposed an unsupervised deep network (DNTC) method to compensate for the temperature of non-

stationary data. This method not only effectively deals with large-scale sequences, but also takes into account their non-

stationary characteristics, showing excellent compensation effect. Zhao et al. [19] introduced an enhanced surface fitting 

method leveraging the improved grey wolf algorithm (IGWO), devising a robust mathematical framework for comprehensive 

compensation to effectively counteract nonlinearities and temperature-induced drift in sensors. To improve the bias stability 

of fiber optic gyroscope (FOG) inertial navigation systems in different ambient temperature environments, Tian et al. [20] 

proposed a new temperature compensation method based on the correlation analysis of the same batch of FOGs. Experiment 

results show that the proposed method has an excellent compensation effect for both high-precision and low-precision FOG.  
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To improve the ranging accuracy of UWB, Sheng Liu et al. established a temperature compensation model for ranging 

error by analyzing the influence of temperature and humidity on ranging results. The relationship between timestamp delay 

error and actual distance was also explored. Finally, a hybrid compensation model based on temperature and distance was 

obtained. The statistical results show that the hybrid compensation model has strong environmental robustness [21]. In a similar 

vein, Bobobee et al. [22] propose an improved particle swarm optimization-long short-term memory (IPSO-LSTM) model 

with temperature compensation ability for SOC estimation of lithium-ion batteries. The model combines the advantages of 

PSO and LSTM and has better accuracy and robustness [22]. However, the model or algorithm used in software compensation 

at this stage is highly complex and the compensation accuracy is low. 

Therefore, this paper proposes an SVR temperature compensation model based on the improved Whale Optimization 

Algorithm (WOA) optimization. WOA is used to optimize the penalty factor and kernel function of the SVR model globally, 

which reduces the influence of hyperparameter selection on the compensation accuracy of the SVR model and improves its 

effectiveness, to provide more accurate load forecasting for power demand of iron and steel industry. 

2. Support Vector Regression Model  

Support Vector Regression (SVR) is a Support Vector Machine (SVM) improvement and application. The main difference 

is that SVR aims to find an optimal hyperplane to minimize the total variance of all sample points relative to the plane. SVR 

achieves this goal by optimizing the problem, and has the advantages of robustness to outliers, simple decision model update, 

and high prediction accuracy. As shown in the following figure, Fig.1 represents the Partition line division of sample space; 

Fig. 2 shows the support vector nonlinear regression structure. 
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Fig. 1 Partition line division of sample space Fig. 2 Support vector nonlinear regression structure 

For a given temperature data set
1 1 2 2{( , ), ( , ), , ( , )}n nx y x y x y , the SVR model is trained to represent the relationship 

between the sensor temperature x and the compensated temperature y by regression function. By assigning to x, the function 

can get the corresponding predicted value, and the regression function is: 

( ) ( )Tf x x b = +     (1) 

where ( )f x  is the predicted target value;  is a weight vector; which is a mapping function of ( )x  from low-dimensional 

space to high-dimensional space concerning x ; b  is the bias term. 
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The basic form of SVR is to solve the model parameters by minimizing the loss function. According to the principle of 

structural risk minimization, it can be concluded that: 

,
1

1
min ( )

2

[ ( ) ]

. . [ ( ) ]

, 0

n

i i
b

i

i i i

i i i

i i

Q C

y x b

s t x b y


  

   

   

 

=

= + +

−  +  +


 + −  +





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In the context of this equation, min Q  represents the minimum value of the objective function. The weight vector is 

denoted by  , while C  represents the penalty factor. The variables i  and i  are slack variables, enabling some data points 

to deviate from the hyperplane. Specifically, i  accounts for cases where the predicted value is lower than the actual value, 

while i  corresponds to instances where the predicted value exceeds the actual value. Additionally,  represents a predefined 

tolerance parameter crucial for determining the range of support vectors. 

By introducing the Lagrange multiplier , , ,i i i ia   , the above optimization problem is transformed into a convex 

quadratic programming problem. The optimization problem is then converted into a dual problem through the pairing of 

, , ,b   , resulting in the following equations: 
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   (3) 

By introducing a kernel function, the nonlinear data samples are mapped to the high-dimensional data space, and the 

nonlinear fitting expression for temperature compensation is as follows: 

( ) ( )
*

* *

1

( ) ,
n

i i

i

f x K x y b 
=

= − +    (4) 

Here ( , )K x y is a kernel function that can realize nonlinear mapping. Through the kernel function, the problem can be 

transformed into a linear problem in high-dimensional space, which simplifies the problem. In the temperature compensation 

model, the kernel function is usually a Gaussian radial basis kernel function (standard deviation is  ), and the expression is: 

2

2
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   (5) 

The SVR flowchart is shown in Fig. 3: 
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Fig. 3 SVR calculation flow chart 

3. Whale Optimization Algorithm and Its Improvement 

After obtaining the SVR model, to optimize the parameters such as penalty factor and kernel function in the SVR model 

efficiently, a highly competitive swarm intelligence optimization algorithm is designed to obtain high-quality multi-

dimensional parameters. Given the advantages of the whale optimization algorithm with fewer parameters and excellent global 

search performance, this paper aims to enhance the whale optimization algorithm to improve the efficiency and effectiveness 

of the SVR model. 

3.1 Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) is an intelligent optimization algorithm that mimics the hunting behavior of 

whales. It operates in three key stages: encircling predation, spiral update, and prey search. The WOA harnesses group 

intelligence to efficiently tackle complex optimization challenges. 

(1) Surrounding predation 

In the predation stage, the whale group guides the nearest whale individual (i.e., the current optimal solution) to the 

vicinity of the prey by obtaining the prey location information, to encourage the whole group to gradually approach the prey. 

In practical problems, the global optimal solution of the problem is equivalent to the location of the prey. The mathematical 

expression at this stage is: 

*( 1) ( )X t X t A D+ = −     (6) 

* ( ) ( )D C X t X t=  −  (7) 
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where t  represents the number of iterations; ( 1)X t + is the position vector of the whale individual; 
* ( )X t is the position vector 

of prey; D is the distance between the whale individual and the prey position; both A  and C  are coefficient vectors, and the 

specific formula is shown in Equation (8) : 
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In the formula, 
1r and 

2r  are random variables in the range [0,1] respectively;  is the coefficient vector related to the 

number of iterations, composed of ( )t ; 
maxT  is the maximum number of iterations. 

(2) Spiral update 

In the process of spiral update, the whale takes the prey as the center gradually approaches the prey through the continuous 

spiral rise, and finally successfully captures the target. To ensure the synchronization of contraction encirclement and spiral 

approximation, the position update mode of the whale individual is judged by probability p . Assuming that the probability of 

both modes is 50 %, the position update formula in this process is expressed as: 

*

*

( )                     0.5
( 1)

cos(2 ) ( )   0.5bl

X t A D p
X t

D e l X t p

 −  
+ = 

  + 

    (9) 

where b  is used to define the spiral coil, which is a constant; l is a random number in the range of [-1,1]. 

(3) Search for prey 

In the prey search phase, whale individuals find new potential solutions through a random search, so individuals are 

randomly selected from the population for location updates. The expression of this phase is as follows: 

( 1) ( )rX t X t A D+ = −     (10) 

( ) ( )rD C X t X t=  −  (11) 

( )rX t in the formula represents the position vector of whale individuals randomly selected in the current population. 

When the coefficient 1A  , the whale is outside the shrinking enclosure, and a random search is performed at this time; when 

1A  , the whale is in the enclosure, select the spiral surround search. 

3.2 Improved Whale Optimization Algorithm 

The paper refines the Whale Optimization Algorithm by integrating chaotic mapping for initial population diversity and 

an adaptive weight mechanism to balance search exploration and exploitation, thereby improving convergence speed and 

overall performance. 

(1) Initial population based on chaos mapping 

In traditional WOA, the initialization of the population is usually random, which may lead to the uneven initial position 

of the algorithm in the search space and affect the search efficiency. To solve this problem, the improved Tent chaotic mapping 

algorithm introduced in this paper can generate an initial population that is more evenly distributed in the search space. This 

uniform initial distribution helps the algorithm to better cover the entire search space from the beginning, thereby improving 

the global search ability. The formula is as follows: 
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(2) Adaptive weight 

The adaptive weight method is another innovation point in this paper. It significantly improves the global search ability 

and convergence speed of the algorithm by dynamically adjusting the exploration and development behavior of individuals in 

the search process. In this method, the position update of each whale individual is adjusted by a weight that considers the 

distance between the current solution and the global optimal solution. This weight gradually decreases as the number of 

iterations increases, thereby balancing the randomness and certainty in the search process. The improved position update 

formula and   calculation formula are as follows: 
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where ( 1)X t +  is the position vector of the current solution. 

4. The Establishment of Temperature Compensation Model 

The selection of parameters in SVR directly impacts its training and generalization capabilities. Three key parameters, 

namely the penalty factor C , tolerance parameter  , and kernel parameter  , must be carefully adjusted. To enhance the 

temperature compensation effect, the parameters in the SVR model are optimized through improvements to the WOA 

algorithm. The resulting set of optimal parameters is then utilized for temperature compensation to enhance accuracy. The 

overall framework of the temperature compensation model, based on the improved WOA-SVR, is illustrated in Fig. 4. The 

construction concept is detailed as follows: 

Step 1: Obtain and preprocess the temperature data, and divide it into a test set and a training set. 

Step 2: Determine the training sample data set and normalize it. To speed up the solution and improve the compensation 

accuracy, this paper also uses the min-max standard method to normalize the data. The formula is: 

min

max min

new

x x
X

x x

−
=

−
 1   (16) 

Step 3: Optimize the model parameters. First, initialize the SVR model parameters and optimize the key parameters using 

an improved WOA algorithm. Set the population number to N and use the Tent chaotic map to initialize the population, 

obtaining the initial parameters and individual position X. Determine the optimization parameters and range, then calculate to 

find the individual position with the optimal fitness value. Record the optimal individual and position, and update A and C. 

Depending on the value of A, adopt different location update strategies and improve the location update with adaptive weight. 

In the temperature compensation model, the mean square error is typically selected as the fitness function. 

Step 4: Determine whether the algorithm satisfies the termination condition. If the algorithm terminates the iteration, it 

shows that the current value is the optimal parameter combination; if the algorithm continues to calculate, it indicates that the 

optimal value has not been reached until the termination condition is satisfied. The optimal parameter combination is output 

and assigned to the SVR model to construct an improved WOA-SVR model, and the prediction accuracy of the model is 
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verified by the test set. 

Step 5: Temperature compensation is performed on the verified model, and the results after compensation are obtained 

by denormalization. 

The flow chart of the above steps is shown in Fig. 4: 
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Fig. 4 General flow chart of temperature compensation model 

5. Simulation and Experiment 

In this paper, MATLAB R2020a simulation software is used to experiment with the operating environment of Windows 

11 (64bits). The data set used in the experiment is a sensor open source temperature data set of Github. Some of its temperatures 

and their corresponding dates and times are shown in the following Table 1: 

Table 1 Partial temperature data 

Time Temperature 

2022.06.29 13:06:30 38 

2022.06.29 13:07:00 38 

2022.06.30 11:20:00 23 

2022.06.30 11:40:00 23 

2022.06.30 12:00:00 23 

2022.06.30 12:20:00 24 

2022.06.30 12:40:00 25 

2022.06.30 13:00:00 25 

2022.06.30 13:20:00 25 

2022.06.30 13:40:00 26 

First, data preprocessing is performed on the above data set to eliminate outliers and null values. Then 80 % of the data 

set is selected as the training set, and the remaining 20 % is used as the test set. At the same time, in the algorithm design and 

comparison, the number of iterations set in this paper is 100, the number of populations is 50, and the parameter dimension is 

3. Finally, the temperature compensation is carried out according to the steps of Fig. 5, and the following temperature 

comparison diagram is obtained: 
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Fig. 5 Temperature comparison diagram 

To more intuitively reflect the superiority of the proposed algorithm, this paper will compare it with the particle swarm 

optimization support vector regression (PSO-SVR) prediction model and the unmodified WOA-SVR prediction model. The 

comparison between the compensated temperature of each algorithm and the test temperature is integrated as shown in Fig. 6: 

 
Fig. 6 Algorithm comparison diagram 

However, it can be seen from the above diagram that the compensation temperature diagram obtained by PSO-SVR is 

similar to the compensation temperature diagram obtained by the improved WOA-SVR. To show the superiority of the 

proposed algorithm more intuitively, four different evaluation indexes are introduced here: mean absolute percentage error 

(MAPE), mean square error (MSE), determination coefficient (R2), and relative standard deviation (RSD).  
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In the above formula, 
iy  and 

iy  represent the compensated temperature value and the initial temperature value 

respectively, and y  represents the average value of the initial temperature value. The closer the MAPE and MSE are to 0, the 

better the model selection and fitting, leading to more successful data prediction and a closer approximation to the perfect 

model. The greater the value, the greater the error; from the above expression, it can be known that the normal value range of 

R2 is [0, 1]. The closer it is to 1, the stronger the explanatory power of the variable of the equation to y  is, and the model fits 

the data well. The RSD value represents the degree of dispersion of the data. The smaller the value, the smaller the degree of 

dispersion, and the higher the prediction accuracy. On the contrary, the larger the value is, the greater the dispersion is, and 

the smaller the prediction accuracy is. The results of each model evaluation index are shown in Fig. 7 and Table 2. 

 
Fig. 7 Evaluation index comparison chart 

Table 2 Comparison table of each evaluation index 

Model MAPE MSE R2 RSD 

PSO-SVR 6.1557% 0.0025 0.5765 5.9408% 

WOA-SVR 11.0927% 0.0029 0.0300 9.9327% 

Improved WOA-SVR 4.5557% 0.0046 0.7882 4.6412% 

It can be seen from the above diagram and table that the MAPE value and RSD value of the improved WOA-SVR prediction 

model are lower than those of the PSO-SVR model and the WOA-SVR model. The value of the correlation coefficient is 

0.7882, indicating that the improved WOA-SVR model has better interpretation ability and better goodness of fit. It also shows 

the superiority of the model's performance and can better perform temperature compensation. As shown in Tab. 2, the range 

of MSE values of the three methods is 0 ~ 0.0050. Although the MSE value of the method used in this paper is slightly lower 

than the above two comparison models, the time required (not shown in the table) is far better than the other two models, and 

the other three aspects are better than the two comparison models, which means that the method used in this paper has a good 

effect in prediction. The results of comparative analysis and prediction show that the prediction accuracy of the improved 

WOA-SVR prediction model is higher than that of PSO-SVR and WOA-SVR prediction models. 

6. Conclusion 

In this paper, an improved WOA-SVR model is proposed to solve the load management requirements in the steel industry 

by studying the temperature compensation method of monitoring sensors. The simulation results lead to the following 

conclusions: 
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(1) By comparing the experimental results, it is found that the improved WOA-SVR model has better performance in 

temperature compensation, accurately predicts the influence of temperature change on sensor data, and improves the accuracy 

and stability of the monitoring system. 

(2) By improving the accuracy of compensation, this study indirectly reduces the cost required by the steel industry and 

improves the levels of industrial automation. 

(3) This study also promotes the sustainable development of the steel industry and related industries. 

(4) The experimental data sets are derived from specific environmental conditions and may not fully represent the actual 

operating environment in all steel industries.  

(5) Although the proposed improved WOA-SVR model shows good performance in experiments, the applicability of the 

model in different types of sensors and a wider temperature range has not been verified. 

In the future, further optimization of the improved WOA-SVR model can enhance its efficiency and accuracy in practical 

applications. Additionally, exploring the model's applicability in monitoring sensors across various industries could be 

beneficial. Furthermore, integrating the model with other advanced technologies, such as artificial intelligence, could enhance 

the monitoring system's performance to meet evolving load management needs. 
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