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Abstract 

The gradual depletion of fossil fuels underscores the pressing need for technological advancements in 

renewable energy. These technologies are essential to address the inefficiencies in power generation from heliostat 

fields. This paper proposes an innovative heliostat field layout model aimed at significantly enhancing the efficiency 

of photovoltaic power generation. By carefully optimizing the positioning, height, and size of the heliostats, the 

model results in a substantial increase in annual heat output. Additionally, an improved Dung Beetle optimization 

algorithm (RCDBO) is introduced, which integrates random walk and cross strategy to enhance solving efficiency 

and accuracy while effectively avoiding premature convergence. Simulations demonstrate that the proposed 

algorithm achieves a 3% increase in efficiency compared to the traditional DBO algorithm, confirming the 

superiority of the RCDBO algorithm.  
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1. Introduction 

In recent years, energy production from fossil fuels has increased greenhouse gas (GHG) emissions, contributing to 

climate change in some developed and developing countries [1]. To reduce the reliance on fossil fuels, countries are actively 

developing renewable energy sources [1-2]. Solar energy, as a paradigm of sustainable development and green energy, is 

increasingly receiving widespread attention and favor around the globe due to its abundant energy reserves and clean, non-

polluting characteristics [3]. In solar tower power plants, the heliostat mirror field accounts for 50% of the total cost and causes 

40% of the power loss [4]. Mirror layout is one of the critical factors in determining the energy harvesting efficiency and price 

of a heliostat system. In tower PV power plants, the construction cost of the heliostat mirror field accounts for 30% to 50% of 

the total investment [5]. Therefore, optimizing the layout of the heliostat mirror field is very important to improve the energy 

harvesting efficiency. However, many of these studies still need to work on the inefficiency problem [6]. 

Numerous scholars have integrated heliostat field planning with various innovative algorithmic models to design a more 

scientifically sound and reasonable mirror field. Based on this integration, they have proposed diverse arrangement methods 

for heliostat fields suited to different scenarios. Concerning model development, Atif et al. [7] formulated a mathematical 

model and employed differential evolution to conduct annual finite optimization of the heliostat field. Zou et al. [8] focused 

on optimizing the layout of solar mirror arrays using the Niching and Elite Competition Swarm Optimization (NECSO) 
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algorithm. This study introduces the competitive mechanism and efficacy of the NECSO algorithm, contrasting its performance 

against seven other algorithms. Experimental results demonstrate that NECSO excels in large-scale challenges and effectively 

addresses optimization issues in solar mirror array layouts, showcasing its superior performance and stability across various 

applications. 

Pisani et al. [8] presented a novel approach for optimizing the field of multi-tower heliostats using quantum computers, 

solving complex optimization problems that are challenging for conventional computational methods through quantum 

annealing. This innovative application of quantum computing to heliostat field optimization offers a new paradigm. Regarding 

algorithm development, Reddy et al. [9] used the derivative logarithmic sigmoid-woodpecker mating algorithm (DLS-WMA). 

They optimized an artificial neural network (O-ANN) to combine a cogeneration power plant with solar photovoltaic power 

generation in an industrial distribution system. The methodology aims to achieve a cost-effective and efficient system design 

to improve the efficiency of cogeneration power plants. Yadav et al. [10] conducted a comparative analysis of bionic algorithms 

for tracking the Global Maximum Power Point (GMPP) of PV systems under standard conditions, step changes in irradiance, 

and partial shadowing conditions.  

Haris et al. [11] applied genetic algorithms to optimize the reflector field layout of solar thermal power plants, aiming to 

enhance the efficiency of central receiver solar thermal plants. Wang et al. [12] discussed the collaborative optimization of the 

mirror field and receiver in centralized solar power plants, aiming to improve system performance and reduce costs. Wang et 

al. [13] explored real-time targeting strategy optimization for the solar tower mirror field, proposing an enhanced particle 

swarm optimization (PSO) algorithm that treats mirrors as intelligent agents and incorporates a group inheritance mechanism 

to boost the algorithm's real-time efficacy.  

Xie et al. [14] enhanced the Grey Wolf optimization algorithm by improving the convergence factor and weight updating 

formula, effectively mitigating local optima issues. Current research has focused on large-scale heliostat fields, but there is a 

considerable research gap in small-scale heliostats.  

This paper explores ways to optimize energy production for maximum power output. It also proposes new models and 

layout optimization strategies for small-scale heliostat fields, supporting sustainable development goals. The contributions of 

this study are as follows:  

(1) The layout of the traditional heliostat field is improved to enhance the power generation efficiency of the heliostat field.  

(2) The dung-beetle optimization algorithm is improved by introducing the unique strategies of random walk and lateral 

movement, which enhances the search capability and adaptability of the algorithm in solving complex problems; the 

improved algorithm is then combined with the new layout of the heliostat field, which further enhances the power 

generation efficiency of the heliostat field. Then, the improved algorithm is combined with the new layout of the heliostat 

mirror field to further improve the power generation efficiency of the field.  

(3) To verify the proposed scheme's accuracy, simulation experiments are carried out with MATLAB and compared with 

cutting-edge optimization algorithms, such as SSA, POA, DBO, etc. The results show that the RCDBO algorithm not only 

outperforms the other algorithms in the benchmark function test but also has a better performance in the power generation 

efficiency of the heliostat mirror field. 

2. Mathematical modeling  

In this part, the first part begins with a thorough description of the problem faced to ensure an accurate understanding of 

the problem. Next, Part II provides a detailed description of the parameters in the mathematical model. These parameters 

include not only the key variables that directly affect the solution of the problem but also those parameters that are ancillary 
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and provide additional information. Finally, Part III constructs a mathematical model that provides an in-depth analysis of the 

problem using mathematical tools and methods. The model enables the simulation of the actual scenario of the problem, 

predicts possible outcomes, and provides a basis for decision-making. 

2.1.   Problem description
 

Heliostat is a critical component of tower power stations, consisting of a mirror and a tracking system. Its size, height, 

quantity, and position significantly influence the optical and thermal efficiency of the heliostat field, subsequently impacting 

the power station's economy. Thus, the optimal design of the fixed sun mirror field is a crucial research area for tower power 

stations to maximize the annual average output thermal power per unit mirror area. To attain this objective, the focus is on the 

heliostats within a specific area of the heliostat field. There exists a complex interplay among the installation height
jh , position

( , )j jx y , and other parameters. The challenge lies in the layout planning, which must be strategically executed to optimize the 

performance of the heliostat field. A schematic diagram depicting the operational mechanism of the heliostat field has been 

constructed and presented in Fig. 1 to elucidate the principles of power generation within a heliostat field. 

 

Fig. 1  

2.2.   Symbol specification  

In the mathematical modeling section of this study, a tabular format is used to detail the critical parameters in the model. 

This presentation not only improves the readability of the information but also facilitates the reader to quickly grasp the core 

features of each parameter. The table lists the name and definition of each parameter and their specific role in the model. The 

details are shown in Table 1: 

 Table 1 Symbol Explanation Table
 

Parameter implication 

ijm  Let ijm
 
be variable 0-1, when ijm

 
indicates that a heliostat with height 

type j  is installed at position i , otherwise, no installation is required. 

i  Represents all positions in the heliostats field coordinate system 

j  The number of the heliostats 

LH  Represents the side length of a rectangular heliostat. 
LW  Represents the side width of a rectangular heliostat. 

S  Represents the area of the heliostat； S LW LH=   

DH  Represents the diameter of the circle of rotation trajectory of the 

rectangular heliostat； 2 2DH LW LH= +  

R  Represents the radius of the installation range of the ring heliostat 

field； 
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2.3.   Model assumption 
 

(1) Determination of position: Select the center of the heliostat field as the position coordinate of the absorption tower and the 

coordinate origin of the three-dimensional coordinate system. The north, east, and upward are positive (the positive 

direction of the x-axis represents the north), and the position and installation height of the heliostats are indicated by the 

coordinate method. Unit: 𝑚. 

(2) It is assumed that the heliostats encircle the collector in a circular arrangement. 

(3) Since the heliostats were constructed in an arid climate zone, the impact of weather has been temporarily disregarded in 

the analysis. 

2.4.   Mathematical model representation 
 

Considering the layout optimization model of the heliostat field, the power model is introduced, which is utilized to 

calculate the annual average thermal output power of the heliostat field. This calculation serves as the evaluation standard for 

the design of the heliostat field. Additionally, an optimization model for the heliostat field layout has been established to 

enhance the performance benefits of the heliostat field. 

Annual average thermal output power 
fieldE  calculation model: 

Due to variations in time and across seasons, changes in the sun's position result in alterations to the sun's azimuth and 

altitude angles. Consequently, the mathematical representation is as follows: 

0
( , , , )

sunsetyear

field
sunrise

field

all

E x y h t dt
E

T
=
 

 (1) 

The Equation, allT  represents the total time, and the upper and lower limits of the integration represent sunrise time and sunset 

time, respectively. 

2.4.1.   The output thermal power of the heliostats field 
 

( , , , )
N

u

field j j j j j ij

j

E DNI S x y h t m=    (2) 

0 exp
sin s

c
DNI G a b



  
= + −  

   
 (3) 

Where 0G
 
is the solar constant and its value is 

21.366 /KW m ，H  is the altitude (unit: km ）, a , b , c  are the relevant constants, 

and the solar altitude angle s  stands for Solar Altitude Angle, which is the angle between the sun's rays at a given location 

and the surface tangent that passes through the location and connects it to the earth's center. More information about a , b , c

and sin s  can be found in the references [14] 

DNI  is the irradiance of normal direct radiation. It has been mathematically characterized as shown in the formula (3); 

N  is the total number of heliostats(Unit: count); jS
 
is the lighting area of the j  heliostats (unit:

2m ); j  is the optical 

efficiency of the mirror j . 
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Normal direct radiation irradiance DNI  calculation model: 

Normal direct radiation irradiance DNI refers to the solar radiation energy per unit area and per unit time in the plane 

perpendicular to the sun's rays on the Earth. For its verification and detailed information, see reference [14]: 

The calculation model of the instantaneous optical efficiency   of heliostats has been proposed and verified in [15]. 

cossb at trunc ref     =
 (4) 

Where stands for shadow occlusion efficiency; cos  stands for cosine efficiency; at  represents the atmospheric transmittance;

trunc  represents the collector truncation efficiency, which is calculated using the HFLCAL model; 
ref  stands for specular 

reflectivity, where 
ref  is determined by the mirror material and can be seen as a constant, the value in this experiment is 0.92. 

The mathematical representations for these efficiencies are provided in the following equations. 

2.4.2.   Shadow occlusion efficiency model 

Due to the varying heights of some heliostats. The fact that the frames of two adjacent heliostats are not parallel in actual 

conditions at the same solar altitude angle, the projections of the shading and blocking areas are not parallel either. This study 

employed the oblique projection method to determine the shadow occlusion efficiency sb  between the mirrors accurately. 

Detailed information about the method's characterization and verification can be found in reference [11]. 

2.4.3   Cosine efficiency calculation model 

According to the law of reflection, the cosine factor consists of the product between the incident solar unit vector and the 

heliostat normal unit vector, which is mathematically characterized as follows: 

cos cos( ) S N = = 
 

(5) 

Where   represents the incident Angle between the solar unit vector S  and the normal unit vector; for details on the 

mathematical formulation, see [14-20]. 

2.4.4.   Atmospheric transmittance model  

This paper adopts an atmospheric attenuation efficiency model with a visibility of 40 km in clear weather, which was 

proposed and verified in [15-17]. Its mathematical representation is as follows: 

( )

( ) ( )

20.99321 0.0001176 1.97 1000

exp 0.0001106 1000

HR HR HR

at

HR HR

d d d m

d d m


 − +  
=  

−   

 ，

 ，
 (6) 

Where HRd  represents the distance from heliostats to the collector. 

2.4.5.   Collector truncation efficiency model 

The HFLCAL model is a convolution model widely used to estimate truncation efficiency. The HFLCAL model is used 

to calculate the interception efficiency. In the HFLCAL model, the flux distribution of the heliometer located within the 

receiver boundary can be integrated to obtain the intercepted power fraction, which is commonly used to calculate the 

truncation efficiency. Detailed information on specific characterization and validation can be found in reference [16]. 
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tot tot

x y
dxdy
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 +
= − 

 
  (7) 

Where, tot  represents the total dispersion of the flux distribution, which is calculated as follows: 

2 2 2 2 2( )tot HR sun bq ast tractd    = + + +  (8) 

The Equation, sun  represents the shape of the sun, 
bq  represents the beam quality error caused by the slope error of the 

mirror, ast  represents the astigmatism effect, and track  represents the tracking error; 

( )
2

2bq slope =  (9) 

( )2 20.5

4

t s

ast

HR

H W

d


+
=

 
(10) 

Where, slope  represents the slope error of the mirror surface, tH  represents the size of the light spot on the collector in the 

numerical direction, and sW  represents the size of the light spot on the collector in the horizontal direction. For more 

information about the HFLCAL model, please refer to references [16-17]. 

2. 5.   Layout optimization model: 

Objective function: Since the heliostat field can convert the collected thermal energy into electrical energy, which in turn 

can serve more industries, this paper uses the maximum annual average thermal output power max fieldE  as a criterion to assess 

the efficacy of the heliostat field design. Therefore, this paper establishes an objective function to maximize this parameter to 

reflect the optimization of the design for thermal performance. 

Constraint condition: 

(1) Due to the challenges in converging reflected light within 100 meters around the collector and the limited scope of 

the heliostat field, the number and coordinates of the heliostats installed require specific attention. Consequently, the 

constraints are defined to accommodate these particularities in the installation parameters: 

, ;
ij

u

j

m N i I=    (11) 

2 2100 350j jx y + 

 

(12) 

2 2

j jx y R+ 

 

(13) 

(2) To ensure that the heliostats do not touch the ground when rotating, specific measures were implemented; the 

installation height of the mirror must be greater than half of the width of the mirror. 

1

2
h LW  (14) 

( ) ( )
2 2 1 1

5, ,
2 2

a b a b a bx x y y DH DH a b j− + −  + + 

 

(15) 

In addition, to ensure the cleaning and maintenance of the mirror, the distance between the heliostats and the heliostats 

must be greater than 5 m; In formula (15). 
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(3) To ensure uniform installation heights for the heliostats on each ring, the following restriction is applied: 

.

HRa HRb

a b

d d

s th h

=


=
 (16) 

. .

HRa HRc

a c

d d

s t h h





 

(17) 

3. Random walk and cross dung beetle optimization algorithm. 

Dung Beetle Optimizer (DBO) is a new swarm intelligence optimization algorithm proposed by Xue et al. in 2022. [18]. 

The algorithm is inspired by the rolling, dancing, foraging, stealing, and breeding behaviors of dung beetles. In the algorithm, 

the position of each dung beetle represents a solution to the problem, and the position of the optimal dung beetle is the optimal 

solution to the problem being solved. Because of its relatively simple algorithmic structure and good performance, it has been 

successfully applied to optimization problems in many fields, but it still needs to be improved. For example, the solution 

accuracy needs to be improved, the convergence speed is slow, and the local optimum is not jumped out in the late iteration. 

Therefore, to address the above problems, this paper proposes the dung beetle optimization algorithm with random wandering 

and vertical and horizontal crossover.  

3.1.   The crossbar strategy disturbed the ball-rolling behavior of dung beetles 

As the first stage behavior of the dung beetle algorithm, the rolling behavior of the dung beetle determines the optimization 

ability of the whole algorithm by searching the global position. In this improvement, a random walk strategy was adopted to 

carry out a disturbance at the stage of dung beetle ball rolling behavior [19]. In order not to increase the algorithm's complexity, 

it is set that when the optimal value of the dung beetle algorithm does not change during the five iterations, the random walk 

strategy is adopted. 

The random walk strategy formula is as follows: 

    ussum 1 ussum 2 ussum( ) 0, 2 ( ) 1 , 2 ( ) 1 , , 2 ( ) 1nX t c r t c r t c r t= − − −  (18) 

Take a random function ( )r t  as follows: 

1, rand 0.5
( )

0, rand 0.5
r t


= 
 „

 (19) 

Because the trajectory of the intelligent algorithm has a specific range, it cannot update the position of the algorithm 

directly with the above formula. It needs to be normalized to ensure that the algorithm walks within a certain range, as shown 

in the following equation. 

( )( )

( )

t t t

t ti i i i

i i

i i

X a d c
X c

b a

− −
= +

−
 (20) 

In the formula, t

iX  represents the position of the i -th dung beetle in the t -th iteration; 
ia  and 

ib are the minimum and 

maximum values of the i -th dimensional random walk variable, respectively; t

ic  and t

id  are the minimum and maximum 

values of the i -th dimensional random walk variable in the t -th iteration, respectively. 
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3.2.   The crossbar strategy disturbed the ball-rolling behavior of dung beetles 

The strategy of cross and cross includes horizontal cross and vertical cross. The blind spots can be reduced and the 

algorithm has a better global search ability when the population is searched by horizontal cross. The premature convergence 

of most population intelligent search algorithms is caused by some stagnant dimensions of the population. Vertical crossing 

can promote some stagnant dimensions of the population to get rid of premature convergence so that the algorithm can jump 

out of the local optimal. Meanwhile, the operation of crossing can increase the diversity of the population. The cross-cutting 

strategy also involves a competitive process in which the resulting children are compared with their parents to ensure that the 

updates are made in a better direction. Horizontal and vertical crosses are carried out successively, and the two crosses 

influence each other to improve the algorithm's solving accuracy and accelerate the convergence speed. The following is a 

brief introduction to these two cross-operations. 

Horizontal crossing is an arithmetic crossing that operates on all dimensions between two different individuals. 

Individuals in the population are randomly matched first, then the paired individuals are randomly matched, and then the two 

paired individuals are crossed laterally. Suppose that 1iSM  and 2iSM  are paired paternal individuals, with their children 

representing 
1

hc

iSM  and 
2

hc

iSM , resulting from the following mathematical representations: 

1 1 1 1 2 1 1 2(1 ) ( )hc

i j i j i j i j i jSM r SM r SM c SM SM=  + −  +  −  (21) 

2 2 2 2 1 2 2 1(1 ) ( )hc

i j i j i j i j i jSM r SM r SM c SM SM=  + −  +  −
 

(22) 

1 1 2(1 )vc

ij ij ijSM r SM r SM=  + −   (23) 

Where 
1i jSM  and 

2i jSM  represent the j th dimension of 1iSM  and 2iSM , respectively， 1, 2, ,j D=
, 1

hc

i jSM and 

2

hc

i jSM  are the j th dimensions where 1i jSM  and 2i jSM  cross horizontally to produce children on the j th dimension, 

respectively. 1r  and 2r  are uniformly distributed random numbers in the (0,1)  range, while 1c  and 2c  are uniformly distributed 

random numbers in the ( 1,1)−  range. The resulting progeny are compared with its Parent generation separately, preserving the 

individual with a smaller objective function value. Vertical crossover is the dimensional arithmetic crossing of all individuals 

on two different dimensional operations. Each individual performs a longitudinal crossover to update only one of the 

dimensions, leaving the other dimensions unchanged, providing a plan for the stagnant dimension to jump out of the local 

optimal without destroying another possible optimal dimension. Assuming vertical crossover, two dimensions 1j and 2j are 

randomly selected, and the 1j th dimension of its Offspring vc

iSM  is given by Eq. (23), while the other dimensions remain 

consistent with the parent iSM . 

Among them, r is a uniformly distributed random number within the (0,1) range. Compare the generated offspring with 

their parents and retain individuals with smaller objective function values. The vertical and horizontal cross strategy is applied 

at the end of the dung beetle algorithm to perturb the entire population. To avoid increasing algorithm complexity, this 

improvement introduces a cross-strategy factor pv , which is mathematically represented as follows: 

1.52 (1 ( / ) )

3

b M
pv

 −
=  (24) 

Among them, b represents the current number of iterations, and M represents the total number of iterations. When r pv , 

the vertical and horizontal crossing strategy is adopted, and when r pv , the vertical and horizontal crossing strategy is 

skipped in this iteration. Here is the pseudo-code for the RCDBO algorithm: 
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Algorithm RCDBO Algorithm 

 1: Input: pop, M, c, d, dim, fobj 
Trajectories, 2: Output: fMin, bestX, Convergence curve, 

fitness history, position history 
3: Initialize parameters and bounds 
4: Initialize population x using chaos mapping 
5: for each individual i in population do 
6:        Calculate fitness fit(i) = fobj(x(i, :)) 

 7: end for 
 8: Set pFit = fit, pX = x, XX = pX 
 9: Find global optimum fMin and bestX 
10: for each iteration t from 1 to M do 
11

: 

Record historical data 
12

: 

Determine worse, r2, RB, min c, max d 
13

: 

for each producer i do 
14

: 

if t > 5 and convergence curve unchanged then 
15

: 

Apply random walk strategy 
16

: 

else 
17

: 

Update position using original strategy 
18

: 

end if 
19

: 

Apply bounds and calculate fitness 
20

: 

end for 
21

: 

Find current optimum fMMin and bestXX 
22

: 

Update positions Xnew1, Xnew2, Xnew11, Xnew22 
23

: 

for each non-producer i do 
24

: 

Update position using respective equations 
25

: 

Apply bounds and calculate fitness 
26

: 

end for 
27

: 

Update global best positions and finesses 
28

: 

if random probability > pv then 
29

: 

for each individual i in population do 
30

: 

Apply horizontal and vertical crossover strategies 
31

: 

end for 
32

: 

end if 
33 Record convergence curve 
34 end for  
35 Function: Apply bounds  

3.3.   Feasibility analysis of random walk and cross-dung beetle optimization algorithm 

In this study, the algorithm is evaluated using several high-dimensional test functions and is compared with new 

optimization algorithms, including Dung Beetle Optimization (DBO), Sparrow Search Algorithm (SSA), and Pelican 

Optimization Algorithm (POA), to validate the optimization performance of the Random Walk and Crossbar Dung Beetle 

Optimization Algorithm (RCDBO). Where the parameters Dung Beetle Optimization Algorithm (DBO) have a proportion of 

rolling dung beetles of 0.2, a proportion of brood balls of 0.2, a proportion of dung beetle hatchlings of 0.25, and a proportion 

of stealing dung beetles of 0.35; Sparrow Search Algorithm (SSA) has a parameter warning value of 0.6, a proportion of finders 

of 0.7, and a proportion of those who are aware of being by a hazardous sparrow of 0.2; and the parameter constant R in Pelican 

Optimization Algorithm (POA) has a parameter constant of 0.2;  

Several typical CEC-Benchmark functions are selected to assess the enhanced results of the RCDBO algorithm. The 

benchmark function test set is documented in reference [21]. The population size of the algorithm is set to 30, with a maximum 

of 500 iterations. Each algorithm, combined with the test functions, was independently executed 30 times to record the optimal 

values, average values, and standard deviations of the test function results, which are detailed in Tables 2 through 6. 
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Table 2 Results of the test function 1f  

Test function Algorithm Optimal value Average value Standard deviation 

1f  

RCDBO 0.0000  0.0000  0.0000  

DBO 1592.0659 10−  
1124.3729 10−  

1112.3952 10−  

SSA 1135.4505 10−  
492.2692 10−  

481.2429 10−  

POA 1191.6599 10−  
1031.0499 10−  

1033.9202 10−  

Table 3 Results of the test function 2f  

Test function Algorithm Optimal value Average value Standard deviation 

2f  
RCDBO 0.0000  0.0000  0.0000  

DBO 809.4745 10−  
586.1809 10−  

573.3852 10−  

SSA 0.0000  311.2190 10−  
314.3667 10−  

POA 592.7574 10−  
515.2632 10−  

502.5455 10−  

Table 4 Results of the test function 6f  

Table 5 Results of the test function 7f  

Test function Algorithm Optimal value Average value Standard deviation 

7f  
RCDBO 0.0000  0.0000  0.0000  

DBO 069.1194 10−  0.0050  0.0245  

SSA 161.1904 10−  0.0002  0.0001 

POA 1.3499  2.7444  0.6083  

Table 6 Results of the test function 9f  

Test function Algorithm Optimal value Average value Standard deviation 

9f  
RCDBO 0.0000  0.0000  0.0000  

DBO 1255.6211 10−  
282.4222 10−  

289.2163 10−  

SSA 0.0000  171.6661 10−  
177.2842 10−  

POA 1163.0633 10−  
1011.5152 10−  

1016.3485 10−  

It can be seen from the above table that the comprehensive optimization ability of the RCDBO algorithm is relatively 

better. For the optimal solution of the test function 1f ， 2f ， 6f ， 7f ， 9f , the accuracy of the RCDBO algorithm is significantly 

higher than that of the other two algorithms. Regarding mean value and standard deviation, the RCDBO algorithm is several 

orders of magnitude higher than other algorithms. For 9f  function, although the RCDBO algorithm is consistent with the 

optimal value of the SSA algorithm in the final numerical accuracy, its optimization process is faster than the SSA algorithm. 

The RCDBO algorithm has better optimization and stability according to the above results. 

4. Simulation experiment 

The simulation experiments in this study are divided into two phases, firstly to verify the feasibility of the model and 

secondly to demonstrate the effectiveness of the improved algorithm in solving the model. In the first phase, through scientific 

and systematic experimental design, we verified the applicability and effectiveness of the model in simulating a specific 

phenomenon, providing an empirical basis for the model. In the second phase, through a series of experiments, we tested and 

demonstrated the advantages of the improved algorithm in increasing the solving efficiency and optimizing the results while 

maintaining the solving accuracy. The experimental results of these two phases not only confirm the practicality of the model 

and algorithm but also provide a solid foundation for future research and applications. 

Test function Algorithm Optimal value Average value Standard deviation 

6f  
RCDBO 072.8828 10−  1.6879  6.4228  

DBO 25.0725  25.7796  0.30474  

SSA 093.1019 10−  
057.9753 10−  

43.88411 10−  

POA 26.7304  28.1180  0.6964  
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4.1 Model validation 

The computational approach of this model was utilized within MATLAB to optimize the heliostat field located at the 

Nujiang (28.38° N, 98.65° E) in Yunnan Province to determine the maximal average annual heat output power achievable. 

Table 7 presents the critical parameters for configuring the computational model, alongside the environmental characteristics 

of the region and details regarding the heliostat field. 

Simulation experiments were conducted using MATLAB to validate the practical applicability of the proposed model to 

engineering problems. The process involves two stages: initially, the planar position ( , )j jx y  of the entire heliostat field is 

ascertained. Subsequently, the Dung Beetle Optimization (DBO) algorithm is employed to solve two variants of the heliostat 

field model. The conventional variant assumes a uniform mounting height h  for all heliostats, while the novel variant allows 

for differing mounting heights for some heliostats. The objective is to compute the maximum annual average heat output power 

fieldE . The outcomes of these simulation experiments are presented in Table 8: 

Table 7 Details of experimental parameters 

Parameter Value Unit Parameter Value Unit 

jx  100 350jx   m  H  1526  m  

jy  100 350jy   m  N  2104  count  

jh  2 5jh   m  LH  5.5  m  

Th  84  m  LW  5.5  m  

rh  8  m  
sun  2.51  mrad  

Tx  0  m  
track  0.63  mrad  

Ty  0  m  
bq  0.89  mrad  

Table 8 Improved before-and-after comparison data tables 

parameter Before improvement After improvement 

fieldE  43.8995 10 MW  44.0124 10 MW  

j  0.62230  0.64033  

sb  0.9512  0.9638  

cos  0.6865  0.6968  

trunc  0.9892  0.9897  

at  0.9634  0.9634  

The simulation experiment data, as delineated in Table 8, reveal that the newly developed model has demonstrated marked 

improvements in parameters sb , cos , and trunc  when juxtaposed with the traditional heliostat field model. This comparison 

presupposes that the two heliostat fields have the same plane position ( , )j jx y of the heliostats they contain at the time the 

comparison is made. The enhancement in parameters is especially notable, with a more significant improvement compared to 

parameters cos  and trunc . This substantial improvement is predominantly due to the innovative feature of the model, which 

includes using varied mounting heights for specific heliostats, thereby effectively reducing the incidence of shadow occlusion. 

The identical plane position ( , )j jx y  in both models results in a consistent value for at  derived from each model. The new 

model has notably achieved an approximate 2% increase in the average annual heat output. These results not only affirm the 

viability and superiority of the proposed model but also open up possibilities for further improvements in the heat output 

efficiency of heliostat mirror fields, marking a significant step forward in the field of solar energy concentration. 
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4.2 Model solving 

Utilizing the relevant parameters outlined in Table 7, the proposed model was simulated and solved using advanced 

optimization algorithms, including RCDBO, DBO, SSA, and POA. The resulting experimental data are presented in Table 9, 

Fig. 2, and Fig. 3. 

Table 9 Comparison data of various algorithms 

parameter Before improvement After improvement 

fieldE  43.8995 10 MW  44.0124 10 MW  

j  0.62230  0.64033  

sb  0.9512  0.9638  

cos  0.6865  0.6968  

trunc  0.9892  0.9897  

at  0.9634  0.9634  

Upon comparing the data in Table 9 and Fig. 3, it is readily apparent that the improved dung beetle algorithm (RCDBO) 

outperforms the dung beetle optimization algorithm (DBO), the sparrow algorithm (SSA), and the pelican algorithm (POA) in 

terms of total instantaneous time integration efficiency and various efficiencies of the proposed heliostat mirror field model. 

This substantiates that the RCDBO algorithm exhibits superior optimality and stability in optimizing the heliostat mirror field. 

Moreover, Fig. 2 clearly illustrates that the average annual heat output power computed by the RCDBO algorithm significantly 

surpasses that of other algorithms. Regarding specific data, the annual average heat output power 
fieldE  computed by RCDBO 

is approximately 3% higher than that of the preceding algorithm and about 2% higher than that of the other two optimization 

algorithms. These data demonstrate the feasibility of the RCDBO algorithm in solving the new model of the heliostat mirror 

field, a result that holds considerable significance for research and application in the field of solar energy. 

  

Fig. 2 Efficiency contrast bar chart Fig. 3 Efficiency histogram 

The dung beetle algorithm will be Improved (RCDBO) to depict the layout pattern of the proposed model and the 

efficiency distribution within the heliostat field more effectively. Utilizing the data derived from this solution, all heliostats 

throughout the entire field will be ranked based on their efficiency. Their equivalent circles will then be color-coded to 

construct an efficiency contour map, as depicted in Fig. 4. Furthermore, a detailed view of the high-efficiency zones averaged 

annually within the heliostat field will be presented, as shown in Fig. 5. 
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Fig. 4 Layout efficiency contour Fig. 5 Partial view of the high-efficiency area 

Fig. 4 presents a three-dimensional depiction of the arrangement scheme for the newly introduced heliostat field. Fig. 5 

reveals the localized distribution of the sectors that exhibit greater efficiency within the field. Considering that the simulation 

experiment is conducted north of the Tropic of Cancer, the heliostats located in the northern sector of the field receive a higher 

degree of solar exposure, which inherently results in superior performance in terms of efficiency when compared to those 

situated in the southern sector. As a result, the regions within the heliostat field that demonstrate high efficiency are 

predominantly concentrated in the northern area. 

5. Conclusion 

In this study, the problem of low power generation efficiency of the traditional heliostat field is considered, and the 

conventional heliostat field layout model is improved. This study introduces random wandering and vertical and horizontal 

crossover strategies and proposes an improved dung-beetle optimization algorithm (RCDBO). Additionally, the validity of the 

proposed model and algorithm is verified through the simulation experiments with accurate data.  

This research results can be applied to the photovoltaic field, and the annual average thermal output power of the fixed-

sun mirror field reaches 67% through the application in the Nujiang area. Although this study has improved the annual average 

heat output power. However, the study's limitations are that land utilization, construction costs, and operational costs still need 

to be considered. Future studies on fixed-heaven mirror fields should focus not only the efficiency improvement but also on 

the land use rate, construction costs, and operational costs to achieve greater economic benefits. 
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