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Abstract 

The Fluid-Structure Interaction (FSI) has gained great interest of scholars recently, meanwhile, extensive 

studies have been conducted by the virtue of numerical methods which have been implemented on wind turbine 

models. The blades of a wind turbine have been gained a deep insight into the FSI analyses, however, few studies have 

been conducted on the tower and nacelle, which are key components of the wind turbine, using this method. We 

performed the one-way FSI analysis on a 2-MW offshore wind turbine, using the Finite Volume Method (FVM) with 

ANSYS CFX solver and the RNG k-ε turbulence model, to achieve a comprehensive cognition of it. The grid 

convergence was studied and verified in this study, and the torque value is chosen to determine the optimal case. The 

superior case, which was chosen to conduct the FSI analysis, with a relative error is only 2.15%, thus, the accuracy of 

results is credible. 
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1. Introduction 

Energy dilemma has been occurred globally in recent decades. The traditional energy resources have experienced shortages 

dramatically, and the emission of exhaust gas caused by excessive consumption of fossil fuels has resulted in air pollution severely. 

Renewable energy, such as wind energy, solar energy, tidal energy and nuclear energy, has been adopted in some fields. Wind 

energy, which can be captured by wind turbines, has been acquired a relatively wide utilization by these machines. The wind turbine 

blades, which are made of composite materials, satisfies complicated design constraints, such as lower weight and proper stiffness, 

good resistance to the static and aerodynamic loading [1]. However, with the increasing size of the wind turbine blade, problems 

associated with it; for instance, structural strength, manufacturing and transportation difficulties have been occurred simultaneously 

[2]. A typical wind turbine fails 2.6 times during the first decade [3], and because of their continual operation, the rotor assembly 

was the most vulnerable component when compared with the gearbox and generator [4]. Thus, a lot of studies, such as one-way and 

two-way FSI analyses, have been conducted on the rotor to analyze it’s structural properties.  

The motion of the wind turbines is caused by a pressure differential between the two sides of blades, and research 

methods of the aerodynamic loading have gone through some transformations. The blade element momentum theory (BEM) 

was used in 1D codes which are quite simple and takes very short computational times as a point of departure, but they need 
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experimental airfoil aerodynamic coefficients which are not easy to achieve [5]. The 3D computational fluid dynamics (CFD) 

numerical codes can solve the Navier-Stokes equations in detail with more realistically physical properties; however, long 

computational time and high quality of meshes is required simultaneously. The BEM transfers the aerodynamic loading into 

concentrated force and applies it to the blade surface; nevertheless, the pressure distribution on the blade surface cannot be 

reflected authentically. The 3D CFD numerical method has the advantage that surface pressure distribution can be obtained by 

the CFD software, and then loads the surface pressure into the mechanical system to calculate the structure properties, for 

example, stress, strain and deformation. This method is called one-way FSI analysis because only the data of fluid pressure 

acting at the structure is transferred to the structure solver and then being analyzed. For two-way FSI, the displacement of the 

structure is transferred to the fluid solver at the same time [6]. A non-matching fluid-structure interface discretization developed 

in [7] was used for FSI formulation. The partitioned approach-based non-conforming mesh method [3, 7] adopted in this paper 

can be divided into one-way and two-way FSI analyses. Grid convergence plays a crucial role in simulation software. Besides, 

Graf and Lukas [8] indicated that grid convergence studies were not typically conducted during the numerical investigation of 

large-scale real-world problems, since the simulation was quite time-consuming. Fine meshes show a subtle difference in results, 

however, coarse meshes require more integration points for large variations exist in the geometrical mapping [9]. Nabi and 

Khoury [10] indicated that a model converges on an accurate solution at a relatively coarse grid. Therefore, to conduct a grid 

convergence of a model is important. 

This study focuses on the one-way FSI analysis of the offshore wind turbine, taking the aerodynamic pressure loading on 

the surface into consideration, and elaborating the process of load transfer from the fluid solver to the structural solver as well. 

The optimal case with the minimum relative error was validated and used to conduct this study, and the rational number of grids 

was determined, too.  

2. Wind Turbine Model  

2.1. Structure model and materials of the blade  

The power curve of the offshore wind turbine, shown in Fig. 1, gives a definitely clear depiction of the relationship 

between wind speed and electrical power. Fig. 1 shows that the rated wind speed is 15m/s, and the cut-in and cut-out wind speed 

is 3 m/s and 25 m/s, respectively. Fig. 2(a) depicts the wind velocity, which is given by Eq. (1), varies with time. The initial wind 

velocity at hub height is 10 m/s, and the periodic of the wind is about 20.5s. The maximum wind velocity value occurs at 5.2 s, 

with the value is close to 15 m/s. Fig. 2(b) indicates that the maximum rotor angular velocity is 20 r/min which occurs at 5.2 s as 

well. The relationship of the wind speed and rotor angular velocity is given by Eq. (1) and Eq. (3) [11].The structure of a wind 

turbine is mainly divided into four key components: the blade, hub, nacelle and tower. The blade, which is made of composite 

materials to achieve a higher specific strength and specific stiffness, has been gained a comprehensive study of FSI analyses to 

achieve the mechanical properties, such as surface pressure distribution, stress and strain [12-14]. The Tower and nacelle, which 

are key components of an offshore wind turbine, to the best of best knowledge, they gained few studies these years. Table 1 

shows the properties of the composite material DL900 which are used for used for the blade, and the density of it is 1900 kg/m
3
. 

Other components use the materials of structural steel. We substituted D (D=85 m) for both the rotor diameter and the rotor 

domain (Inner flow field domain), and the diameter of the rotor domain equals to the rotor diameter. 

Table 1 Mechanical properties of the composite materials for blade 

L900 
EX EY EZ GXY GXZ GYZ PRXY PRXZ PRYZ 

32.8 GPa 9.56 GPa 9.56 GPa 3.9 GPa 3.1 GPa 3.1 GPa 0.258 0.129 0.129 
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Fig. 1 Power curve of the offshore wind turbine 

 

 

(a) Wind velocity changing over time 

 

(b) Rotational speed changing over time 

Fig. 2 Gust wind speed and rotor angular velocity varying with time 

The function of the wind speed is expressed as follows: 

    
 

( ) 0.37 sin 3 1 cos 2 0
( , ) gust

V z V t T t T for t T
V z t

V z otherwhise

     
 
  

(1) 

Where V(z) is the wind speed at hub height, Vgust is the gust wind speed and detail denotation is given in [11]. T is the gust 

characteristic time 10.5 s, which is given in [11] as well. 
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The tip-speed ratio is defined as the ratio between the linear blade tip speed and wind velocity, and is written as follows: 

= R

H

R

V




 
(2) 
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(3) 

What we chose the tip-speed ratioλ=6, ωR is the angular velocity of the rotor, D denotes the rotor diameter, n is the 

rotational angular velocity, and VH represents the wind speed here. 

2.2. Flow field model  

Designing a reasonable flow field domain is significant to the CFD analysis. Creating a smaller flow field which is used to 

domain used to conduct this analysis could not obviate the effect of wake effects.  However, if it was colossal then it might 

generate redundant number of cells, and increase the computational time. The ANSYS Design Modeler application's geometry 

engine has a one cubic kilometer size box limitation, centered about the world origin [15]. Taking the dimensions’ ratio of the 

flow field domain design [13] into account, we create the out flow field domain with a length: width: height ratio is 7D: 5D: 2D 

(D presents the rotor diameter, 85m), which is shown in Fig. 3. The boundary conditions (BC) were defined as follows: a 

transient analysis with total time 21s and time step 0.01s were defined in the analysis type; a frozen rotor type of the Rotor 

domain, which can be used for axial compressors and turbines,  used as the rotor as it changes the reference frame while 

maintaining the relative position of the components; the left face of the outer flow field domain was defined as the Wind (Inlet) 

BC, and the inlet velocity denoted as the V(z,t) in Eq. (1) is defined by the CFX Expression Language (CEL); the right face of 

it was used as the Outlet BC, and the opening boundary condition, which allows the fluid to cross the boundary surface in either 

direction, was adopted; Symmetry BC were used for the lateral surface because it can reduce the size of the outer flow field 

domain and eliminate the real wall effects; the no slip wall was applied at the bottom wall of the flow field. 

 

Fig. 3 Computational fluid dynamic domain 

2.3. Grid convergence  

Achieving the accuracy of results for a flow field domain is of vital importance. The accuracy of results and the 

reasonable number of grid cells need striking a balance. The number of grid cells dominates the efficiency of computational 

time. Hence, conducting the study of grid convergence is necessary and significant. As far as we know, Lanzafame [5] converted 

the mesh from tetrahedral to polyhedral geometry in order to reduce grid numbers and Wang and Zhan [16] performed only five 

cases on the total dynamic torque coefficient to achieve the optimal grid number. Though grid convergence was conducted by 
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these scholars with different methods, more cases should be conducted to achieve the finest grid cells. We conducted gird 

convergence study on nine cases shown in Table 2, using the torque, power and relative error to verify the results of the wind 

turbine. The formulation of power and torque is written as 

9550

T n
P




 
(4) 

where P (KW) is the electrical power; T (Nm) is the torque of wind turbine, n (r min^-1) is the rotational velocity. 

Table 2 The simulation results and relative error of different cases 

Cases Torque（Nm） Power (MW) Relative error (%) 

Case_1 322968 0.676 66.2 

Case_2 1745300 3.655 82.75 

Case_3 1811540 3.794 89.7 

Case_4 984782 2.062 3.1 

Case_5 975499 2.043 2.15 

Case_6 909347 1.904 4.8 

Case_7 840529 1.76 12 

Case_8 770835 1.614 19.8 

Case_9 904009 1.893 5.35 

The Equations of dynamic torque coefficient CT and power coefficient CP are defined as  

2(1/ 2)
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Where the unit of P (power of the rotor) in Eq. (6) is watt; T is the dynamic torque; ρ denotes the density of air, 1.225 

kg/m
3
; V is the wind velocity; R is the radius of the rotor domain, and S represents the swept area (5674.5 m

2
); ω is the rotor 

angular velocity. 

The relative error which is given by Eq. (7) is the absolute error divided by the magnitude of the exact value (rated power, 

2MW). 

100%R

R

R
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E

P


 

 
(7) 

where ER indicates the relative error; P and PR denote the power calculated by Eq. (4) in these simulations and the rated power, 

respectively. 

Table 2 shows nine cases clearly above, and case_5 is the best case whose relative error is only 2.15%.To achieve an 

explicit description of the grid cells among the nine cases, Table 3 is given to validate the grid convergence. It is cushy to notice 

from Table 3 that the mesh converged with approximately 1.025×10
6
 total grid cells. 
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Table 3 The grids number of different cases 

 

 

 

 

 

 

 

 

2.4. Numerical methods  

 The RNG k-ε turbulence model which was proposed by Yakhot et al. [17], using a rigorous statistical technique: 

renormalization group theory. The transport equation is given by Eq. (8). It has certain advantages when compared with the 

standard k-ε model, such as, improving the accuracy for rapidly strained flows significantly, enhancing accuracy for swirling 

flows, and providing an analytically-derived differential formula for low-Reynolds-number effects. Nonetheless, the RNG 

k-ε model seems to take 10-15% more CPU time than the standard k-ε model on account of the extra terms and functions in the 

governing equations and a greater degree of nonlinearity [18]. All these relative equations are discretized with the FVM, using 

a Second Order Upwind scheme. 
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Where the RNG k-ε turbulence model coefficient 1RNG
c is written as 

1
1.42

RNG
c f
 
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(9) 

Details of these symbols used in Eq. (8) and Eq. (9) can be found in [18]. 

The node-projection (N-P) schemes, which is one of methods used to transfer the fluid traction to the structural mesh 

surface, was analyzed comprehensively by Farhat et al. [19] and used in our study. The N-P scheme illustrated in Fig. 4 projects 

the fluid nodes onto the structural surface element to extract the load vector on the solid interface nodes. The extracted load 

vector on the structural surface node is written [19, 20] as 

1

( )
fm

j j i i

s s f
i

F N x F

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(10) 

Where Fs
j
 is the discrete value of Fs at the fluid point j, Ff

i
 is the discrete value of Ff at the structure node i; Ns

j
 denotes the 

standard finite element shape function, associated with node j of the structural interface mesh and mf is the number of structure 

nodes on the structural interface meshes; xi  denotes the location of node i of the fluid interface mesh. 

Cases 
Total grids 

Outer flow  

field grids 

Rotor flow  

field grids 

Nodes Elements Nodes Elements Nodes Elements 

Case_1 11650 6917 6421 3704 5229 3213 

Case_2 78456 49052 35308 20643 43148 28409 

Case_3 502592 347132 401295 279589 101297 67543 

Case_4 126480 672015 78605 418638 47875 253377 

Case_5 194992 1025009 90068 464934 104924 560075 

Case_6 233831 1245885 124392 648165 109439 597720 

Case_7 301645 1602014 148412 770811 153233 831203 

Case_8 353878 2030036 344508 1982599 9370 48437 

Case_9 533225 2984699 424015 2388061 109210 596638 
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Fig. 4 Node-projection scheme for load transfer 

3. Results and Discussion  

The FSI analysis was conducted on the offshore wind turbine, especially the results of the blade, were given a comparison 

with other scholar's study. Moreover, the other components of the wind turbine were analyzed and discussed in the meantime. 

As we set up the time-step 0.01 s, and the output frequency option in the output control is set "Every Time-step". According, it 

yields a corresponding result each time-step. However, conducting the analyses for each time-step is unpractical and 

time-consuming as we set up the total time 21 s, therefore, 5.2 s was chosen to perform the study because the maximum wind 

speed is close to the rated speed value. Fig. 5 shows the surface pressure distribution and mechanical properties of the blade. 

Fig. 5(a) shows the surface pressure distribution of one of the three blades in CFX solver, and Fig. 5(b) depicts the 

equivalent pressure distribution of it in Structure solver. Comparing the surface pressure distribution in Fig. 5(a) and Fig 5(b), 

both of them achieve the agreement that a larger surface pressure value occurs at the tip of the blade. However, the pressure 

legend in Fig. 5(a) indicates that the surface pressure has positive and negative values, while only positive values occurs in Fig. 

5(b). The fluid domains were calculated with FVM in CFX solver, using the optimal case with the rational grid cells. Thus, we 

generated a relatively matching mesh in the Structural solver to guarantee the data exchange of loads between these two solvers. 

The positive pressure values which is in CFX solver are changed into tension in Structural solver while negative pressure values 

turn into compressive stress. The Structure solver, using the node-projection scheme to map the load, does not distinguish 

properties (positive or negative) of values. Consequently, all their values in the structural solver turn into positive. The main 

difference lies in the direction: tension is perpendicular to the surface and towards the outer, on the other hand, compressive 

stress is towards the inner with the direction perpendicular to the surface. 

Fig. 5(c) and Fig. 5(d) show the distribution of stress and strain of the blade. Fig. 5(c) indicates that the main stress of the 

blade is located away from 70% to 90% of the root, and the strain distribution is similar to it. The results in Fig. 5(d) have an 

agreement with the study of Chen et al. [1], and we can conclude that the results are credible. Two reasons were pointed out by 

Chen to explain it:  

(1)    The normal operation that used the rated wind speed had less impact on the strength of the root than the limited load 

condition. 

(2)  The surface pressure applied on the blade finite element model directly rather than translate the surface pressure into 

concentrated load.  

Another reason we deemed it should also be considered is that the surface pressure directions have changed in the data 

translating process, and the mapping of data between these two solvers could not be absolutely accurate, which resulted in the 
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unevenness of pressure. 

  
  

(a) Surface pressure 

distribution in CFX 

(b) Surface pressure 

distribution in Structure 

(c) Equivalent stress  

of the blade 

(d) Equivalent strain  

of the blade 

Fig. 5 Surface pressure distribution and mechanical stress and strain of the blade 

Fig. 6 depicts the maximum stress and strain which locate at the junction of the blade and hub. In this paper, gravity and 

inertial force which have a crucial effect on the analysis are taken into account. Thus, moments of the blades are very large 

especially when the length of the blade performed in this study is long. The stress concentration always occurs at some positions, 

such as the sharp corners, holes, notches and grooves. The junction of the blade and hub is a sharp corner, that is the reason why 

the maximum stress occurs at this positions. Considering all these factors, the maximum value occurs at this location is rational. 

  

(a) Equivalent stress of the hub (b) Equivalent strain of the hub 

Fig. 6 Mechanical properties of the hub 

Root 
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(a) Equivalent stress of the nacelle 

 

(b) Equivalent strain of the nacelle 

Fig. 7 Mechanical properties of the nacelle 

Fig. 7 indicates that the main stress and strain are situated in the lower part of the front of the nacelle. The nacelle is supported 

with the tower, and it is fixed with the tower. However, the tower is fixed to the ground regardless of how much the wind velocity 

(typhoon may be not included) is. The swept area S is large, besides the surface pressure on these blades generates a considerable 

pressure which loads on the front side of the nacelle. The front side of the nacelle withstands the pressure from both the pressure of 

the rotor and the hub. Therefore, a larger stress and strain occurred in these corners, where stress concentration lies. 

  

(a) Equivalent stress of the tower (b) Equivalent strain of the tower 

Fig. 8 Mechanical properties of the tower 
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4. Conclusions  

In this study, the FSI analysis with a numerical simulation was conducted on the offshore wind turbine, and the results of 

the FSI were analyzed in some degree. The main conclusions of this study are listed below. 

(1)    The one-way FSI analysis was conducted on the full machine, using the FVM and RNG k-ε turbulence model, to achieve 

the mechanical properties of the offshore wind turbine. The data exchang process between CFX solver and Structural 

solver was analyzed as well.   

(2)   Grid convergence has critical effects on the accuracy of results and computational time. However, few studies on the 

offshore wind turbine have been conducted. In this study, the grid convergence was analyzed and verified with several 

cases. The case, which was verified as the optimal case, was determined and used to conduct the FSI analysis. Thus, the 

results achieved in these analyses with the minimum relative error are credible. 

(3)    The mechanical properties of the offshore wind turbine, such as stress and strain, were studied for the full machine. The 

strain of the blade was compared with other scholar's results, and gains a good agreement with it. Other components, such 

as the hub, nacelle and tower, were given a comprehensive analysis on its mechanical properties as well. 
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