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Abstract 

The present investigation is concerned with vibration analysis of a homogeneous, isotropic thermo elastic 

micro beam with double porosity structure subjected to sinusoidal pulse heating.  Lord-Shulman [1] theory of 

thermo elasticity with one relaxat ion time is used to solve the problem. Laplace transform technique has been 

used to obtain the expressions for lateral deflection, axial stress, axial displacement, volume fract ion field and 

temperature distribution. A numerical inversion technique has been applied to recover the resulting quantit ies in 

the physical domain. Variations of axial displacement, axial stress, lateral deflection, volume fraction field and  

temperature distribution against axial distance are depicted graphically to show the effect of porosity and 

relaxation time parameters . Some particular cases are also deduced.  
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1. Introduction 

Pores and fractures can be seen in engineering structures due to reasons like erosion, corrosion, fatigue or accidents 

which affect the dynamic behavior of the entire structure to a considerable extent. This leads to the development of double 

porosity model which has its applications in geophysics, rock mechanics and many branches of engineering like civ il 

engineering, chemical engineering and the petroleum industry. Biot [2] proposed model for porous media with single 

porosity. Later on Barenblatt, Zheltovand and Kochina [3] introduced a model for porous media with double porosity 

structure. The double porosity model consists of two coexisting degrees of porosity in which one co rresponds to porous 

matrix and other corresponds to fissure matrix.   

Aifantis [4-6] introduced a multi-porous system and studied the mechanics of diffusion in solids. Wilson and Aifanits [7] 

presented the theory of consolidation with the double porosity. Khaled, Beskos and Aifantis  [8] employed a finite element 

method to consider the numerical solutions of the differential equation of the theory of consolidation with double porosity 

developed by Wilson and Aifantis [7]. Beskos and Aifantis  [9] presented the theory of consolidation with double porosity-II 

and obtained the analytical solutions to two boundary value problems. Khaliliand and Selvadurai [10] presented a fully 

coupled constitutive model for thermo -hydro –mechanical analysis in elastic media with double porosity structure. Various 

authors [11-13] investigated problems for elastic solids and thermo elastic solids in the theory of thermo elasticity with 

double porosity based on Darcy’s law. 

Nunziato and Cowin [14] developed a non-linear theory of elastic material with voids. Later, Cowin  and Nunziato [15] 

developed a theory of linear elastic materials with voids for the mathemat ical study of the mechanical behavior of porous 
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solids. Iesan and Quintanilla [16] derived a theory of thermo elastic solids with double porosity structure by using the theory 

developed by Nunziato and Cowin. Darcy’s law is not used in developing this theory. So far not much work has been done 

on the theory of thermo elasticity with double porosity based on the model proposed by Iesan and Quintanilla [16]. Recently, 

investigations have been started in the theory of thermo elasticity with double porosity [16] which has a significant 

application in continuum mechanics. 

The demand for engineering structures is continuously increasing. Aerospace vehicles, bridges, and automobiles are 

examples of these structures. Many aspects have to be taken into consideration in the design of these structures to improve 

their performance and extend their life. One aspect of the design process is the  dynamic response of structures. The 

dynamics of distributed parameter and continuous systems, like beams, were governed by linear and non -linear partial 

differential equations in space and time. 

Micro-scale mechanical resonators have high sensitivity as well as fast response and are widely used as sensors and 

modulators. Recently, micro- and nano-mechanical resonators have attracted considerable attention due to their many 

important technological applicat ions. Accurate analysis of various effects on the ch aracteristics of resonators, such as 

resonant frequencies and quality factors, is crucial for designing high-performance components. The vibration problems of 

uniform Euler- Bernoulli beams can be solved by analytical or approximate approaches [1 7, 18]. Bo ley [19] analyzed the 

vibrations of a simply supported rectangular beam subjected to a suddenly applied heat input distributed along its span. 

Manolis and Beskos [20] examined the thermally induced vibration of structures consisting of beams exposed to rap id 

surface heating. Huniti, Al-Nimrand Naij [21] investigated the thermally induced displacements and stresses of a rod using 

the Laplace transformation technique. Biondi and Caddemi [22] studied the problem of the integration of the static governing 

equations of the uniform Euler-Bernoulli beams with discontinuities, considering the flexural stiffness and slope 

discontinuities. Fang, Sun and Soh [23] analyzed the vibrations in micro beam resonators induced by laser. Sharma and 

Grover [24] analysed the thermo elastic vibrat ions in micro-/nano-scale beam resonators with the presence of voids. Esen [25] 

presented the analysis of transverse and longitudinal vibrat ions of a thin p late which carries a load moving along an arbitrary 

trajectory with variab le velocity. Dehrouyeh-Semnani, Dehrouyeh, Torabi-Kafshgari and Nikkah-Bahrami [26] d iscussed the 

model of damped sandwich beam based on symmetric-deviatoric couple stress theory and investigated the vibration damping 

characteristics of the micro beam. Dehrouyeh-Semnani, Dehrouyeh, Torabi-Kafshgari and Nikkah-Bahrami [27] analysed 

the free flexural v ibration phenomenon of functionally graded micro beams with geometric imperfection.Mojahedi and 

Rahaeifard [28] studied a non-linear model for coupled three dimensional micro beam as well as static bending and free 

vibration analysis of a micro bridge. 

In the present paper, vibration analysis of an Euler-Bernoulli thermo elastic micro beam with double porosity structure 

due to sinusoidal pulse heating is studied. Lord -Shulman theory of thermo elasticity is used to investigate the problem. 

Laplace transform has been applied to find the expressions for lateral deflect ion, axial stress, axial displacement, volume 

fraction fields and temperature distribution. The resulting quantities are obtained in the physical domain by using a 

numerical inversion technique. Variat ions of axial d isplacement, axial stress, lateral deflection, and volume fraction field and 

temperature distribution against axial distance are depicted graphically to show the effect of porosity and thermal relaxation 

time. Some special cases of interest have also been deduced. The problem has a great significance in many branches of 

engineering like soil engineering, civil engineering etc. The double porosity model appears in  several areas of mechanics, 

such as composition and behavior of bones as well as some phenomenon of geophysics. The intended applications of this 

theory are to geological materials such as rocks and soils and to manufactured porous materials su ch as ceramics and pressed 

powders. Study of vibration ana lysis of micro  beam for such model has many applications in real world where the interest is 

in various phenomena occurring in earthquakes and measurement of displacements, stresses and temperature field due to the 

presence of certain sources. 
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2. Basic Equations 

Following Iesan and Quintanilla [16] and Lord and Shulman [1]; the constitutive relat ions and field equations for 

homogeneous isotropic thermo elastic material with double porosity structure in the absence of body forces, extrinsic 

equilibrated body forces  and heat sources can be written as: 

2.1. Equations of motion: 

 2
, , , , ,i j ji i i i iu u b d T u              (1)  

2.2. Equilibrated Stress Equations of motion: 

22
1 , 1 3 1 1 ,r rb bu T                 (2) 

2
1 , 3 2 2

2
2 ,r rb du T                 (3) 

2.3. Equation of heat conduction: 

  * *
0 0 , 1 0 2 0

21 j jT u T TT C T K
t

      
 

    
 

 (4) 

where   and  are Lame’s constants,   is the mass density;    3 2 t     ; t  is the linear thermal expansion;
* C is 

the specific heat at constant strain,  iu  is the displacement components; 
ijt is the stress tensor; 1 and 2  are coefficients of 

equilibrated inertia;   is the volume fraction field corresponding to pores and  is the volume fraction field corresponding 

to fissures;
*K is the coefficient of thermal conductivity;

0 is the thermal relaxat ion time,
1 and 

2 are coefficients of 

equilibrated inert ia and 1 1 2, ,? , ,b d b     are constitutive coefficients;   ij is the Kronecker’s delta; T  is the temperature 

change measured form the absolute temperature  0 0 0T T  ; a superposed dot represents differentiation with respect to time 

variable t . 

3. Formulation of the problem 

Let us consider a thermo elastic micro beam with double porosity structure along the axial direct ion ( x -axis) of the 

beam. The beam has cross- sectional area A , moment of inertia I , length L , width a  and thickness h  as shown in the Fig. 1.  

The micro beam undergoes bending vibrations of s mall amplitude about the x -axis such that the deflection is 

consistent with the linear Euler-Bernoulli theory. Therefore, the displacements can be written as  

1 2 3, 0, ( , )
w

u u z u u w x t
x


    


 (5) 

                            z                    
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                                                                                                                                                                                         h 
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Fig. 1 Geometry of the beam 
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where w is the lateral deflection and u is the axial displacement. The one-dimensional constitutive equation can be written 

as 

2

2
( 2 )x

w
t

x
bz d T  


   


 (6) 

where xt is the axial stress.

 

The equation of motion of free flexural vibrations of the beam is given by

 2 2

2 2
0

M w
A

x t


  
     

 (7) 

where A ah  is the cross-section area and M is the flexural moment of cross section of micro beam. The flexural moment 

of the cross section of the beam, with the aid of Eq. (6) is given by 

2  
2

2

2

( , )   ( 2 )

h

xh T

w
M x t a t zdz I M M M

x
  




    


  (8) 

where
3 12I ah is the moment of inertia of the cross -section and ,M M  are the volume fraction field moments and TM is 

thermal moment of the beam and are given by 

   
2 2 2

2 2 2

, ,

h h h

Th h h
M b a zdz M d a zdz M aTzdz   

  
      (9) 

Substituting Eq. (8) in Eq. (7), we get the equation of motion of the micro beam as 

2 2 24 2

4 2 2 2 2
( 2 ) 0T

M M Mw w
I A

x t x x x

 
  

     
            

 (10) 

Eqs. (2)-(4) with the aid of Eq. (5) can be written as 

1 1 3

2 2 2

1 1

2 2 2

2 2 2 2 2 2

w
z

x z x z x t
b b T

    
      
   

           
 

     
 

      
 

(11) 

2 2 2 2 2 2

3 2 2 22 2 2 2 21 2
z

x z x z x t

w
b d T

    
      

   
           

 

     
 

      
 

(12) 

2 2 2
*

2

*
0 0 1 02 22 01 T T T C

T T w
K z

z x
T

t tx
     

    
   

    
                  

 

(13) 

4. Solution of the problem 

For the present micro beam, we assume that there is no flow of heat and volume fraction fields across the surfaces  

( 2)z h   so that 0T z z z          at 2z h  . For a very  thin beam, assuming that volume fraction fields and 

temperature increment in terms of  sin z h function along the thickness direction. Therefore, 

 

 

 

( , , ) ( , )sin

( , , ) ( , )sin

( , , ) ( , )sin

x z t x t z h

x z t x t z h

T x z t x t z h

 

 



 

 

 

 
(14) 

Substituting Eq. (14) in Eqs. (11)-(13), and then into Eq. (10) yields 

4 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2

2 2 2
( 2 ) 0

w w abh adh a h
I ah

x t x x x


  

  

        
            

 (15) 
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Multiplying Eqs. (11)-(13) by z and integrating them with respect to z within the limits 
2

h to
2

h , we get 

2 2 2 2 2 2 2

2 2 2 21 1 3 12 21
24

b wh

h h x
b

x x t

 
 


  

       
           

 


   

 
 

   
 (16) 

2 2 2 2 2 2 2

3 2 2 21 2 2 2 2 2 224

d h

x h x h x t

w
b

 
    

       
           

 


   

 
 

   
 (17) 

22 2 2
*

2

*0
1 020 02 21

24

T
T T C

t t t t

h w
K

tx h x


 


 

            
          

              
 (18) 

Introducing non-dimensional variables as 

' ' ' ' '1 1 1
,  ,  ,  ,  ,x

x

t L
x x u u w w t

L L L E 
        

' ' ' '1 1
0 0  ,  ,  ,  

c c L
t t

E L L


 


         

(19) 

where 
 2

1

3 22
andc E

   

  


 


is Young’s Modulus. Making use of Eqs. (15)-(18), we obtain

 

4 2 2 2 2

1 2 3 44 2 2 2 2
0

w w
a a a a

x t x x x

 
 
 
 

       
    

      
(20) 

2 2 2 2

5 6 7 8 9 10 11 122 2 2 2
0

w
a a a a a a a a

x x x t

 
     

    
   
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(21) 

2 2 2 2
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0a a a a a a a a

x x

w

x t

 
     

    
   
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

 

(22) 
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tx x t t

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     

     
     

       
 

(23) 

where 

2 2 2 2
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,
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(24) 

5. Initial and boundary conditions 

The initial conditions of the problem are assumed to be homogeneous and are taken as 
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0 0
0 0

0 0
0 0

( , ) ( , )
 ( , ) 0,  ( , ) 0,

( , ) ( , )
( , ) 0,  ( , ) 0

t t
t t

t t
t t

w x t x t
w x t x t

t t

x t x t
x t x t

t t

 
 

 
 

 
    

 

 
     

 

 (25) 

These initial conditions are supplemented by considering that the two ends of the micro beam are clamped: 

0.
0,

( , )
( , ) 0

x L
x L

w x t
w x t

x



 


 (26) 

The micro beam is thermally loaded by sinusoidal pulse heating incidents into the surface of the micro beam 0x   with 

pulse width 0t as  

0
0

0
0

sin 0
( , )

0 , 0
x

t t t
tx t

t t t









 
 

 

 
(27) 

We also assume that the volume fraction fields and the temperature should satisfy the following relation: 

0 0
 ( , ) 0, 0, ( , ) 0, 0, 0

x x
x L x L x L

x t x t
x x x 

  

        
  

 (28) 

6. Solution in the Laplace transform domain 

Applying the Laplace transform defined by 

 
0

[ ( )] ( ) stf s L f t f t e dt


    (29) 

to the Eqs. (20)-(23) under the initial conitions (25), after some simplifications, we obtain
  

 
10 8 6 4 2

1 2 3 4 510 8 6 4 2
, , , 0

d d d d d
B B B B B w

dx dx dx dx dx

 
         

    
(30) 

1 2 3 4 5, , , ,B B B B B , are given in the appendix I. The solution of the Eq. (31), in the Laplace transform domain can be written 

as 

    i i

5
-λ x λ x

1i 2i 3i i i+5

i=1

w,Φ,Ψ,Θ = 1,g ,g ,g (D e +D e )  (31) 

1 2 3, , ; 1,2,3,4,5i i ig g g i  are given in the appendix II. Here , 1,2,3,4,5i i  are the roots of the characteristic equation 

10 8 6 4 2
1 2 3 4 5 0B B B B B           (32) 

Making use of Eq. (31) in Eq. (5) and with the aid of Eqs. (14) and (19), we obtain the corresponding expressions for axial 

displacement and axial stress in the Laplace transform domain as 

 
5

5

1

i ix x
i i i i

i

dw
u z z D e D e

dx

  




       (33) 

   
5

2
1 2 1 3 2 3 5

1

sin ( ) i ix x
x i i i i i i

i

t P z z h P g P g g D e D e
   





     
   (34) 
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where
1 2 3

( 2 )
, ,

b d
P P P

E EL EL

   
    , the boundary conditions (26)-(28) in the Laplace transform domain take the 

form as 

0

2 2 20. 0
0, 0

( , )
( , ) 0, ( , ) (s),

x L x
x L

tdw x s
w x s x s F

x t s



 


    
 

 

(35) 

0 0
( , ) 0, 0, ( , ) 0, 0, 0

x x
x L x L x L

x s x s
x x x 

  

  
      

  
 

In order to determine the unknown parameters, substituting Eq. (31) in the boundary conditions (35), we obtain a system of 

ten linear equations in the matrix form as  
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3 5 3 51 2 4 1 2 4

1

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

11 12 13 14 15 11 12 13 14 15

11 1 12 2

1 1 1 1 1 1 1 1 1 1

L L L LL L L L L L

L L L LL L L L L L

L

e e e e e e e e e e

e e e e e e e e e e

g g g g g g g g g g

g e g e

        

        

 

         

         

 

   

   

 

    

    

  3 5 3 52 4 1 2 4

3 5 31 2 4 1 2 4

13 3 14 4 15 5 11 1 12 2 13 3 14 4 15 5

21 22 23 24 25 21 22 23 24 25

21 1 22 2 23 3 24 4 25 5 21 1 22 2 23 3 24 4

L L L LL L L L L

L L LL L L L L

g e g e g e g e g e g e g e g e

g g g g g g g g g g

g e g e g e g e g e g e g e g e g e

      

       

       

        

 

   

  

     5

3 5 3 51 2 4 1 2 4

1

2

3

4

5

6

7

8
25 5

9
31 32 33 34 35 31 32 33 34 35

10
31 1 32 2 33 3 34 4 35 5 31 1 32 2 33 3 34 4 35 5

LL

L L L LL L L L L L

D

D

D

D

D

D

D

D
g e

D
g g g g g g g g g g

D
g e g e g e g e g e g e g e g e g e g e



        



            

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

      

0

0

0

0

0

0

0

0

(s)

0

F

 
 
  
  
  
  
  
   
  
  
  
  
  
  
  

  

 

(36) 

On solving the above system of Eq. (36), we obtain the values of unknown parameters , 1,2,...,10iD i  . This completes the 

solution of the problem in Laplace transform domain. 

7. Particular cases 

With the help of the problem investigated in the present paper, we can also deduce some prob lems by setting the values 

of some parameters equal to zero in the present problem which  is discussed in detail.  Some of the part icular cases which we 

have deduced from the present investigation are as follows: 

Case 7.1 If 1 3 2 2 0b d          in  Eqs. (1)-(4), along with Eq. (6), then the corresponding basic equations and the 

one dimensional constitutive relation takes the form as  

 2
, , ,i j ji i i iu u b T u            (37) 

2
, 1 1 1r rbu T            (38) 

 * *
0 0 , 1 0

21 j jT T C T K Tu
t

    
 

   



 

  (39) 

2

2
( 2 )x

w
t z

x
b T  


 


   (40) 

On solving the above system of Eqs. (37)-(40), we obtain the corresponding expressions for a thermo elastic micro beam 

with single porosity. 

Case 7.2 If 0 0   in  Eq. (4), then the corresponding heat conduction equation in context of coupled theory (CT) o f thermo 

elasticity becomes 

* *
0 , 1 0 2 0

2
j jT u T T T K TC        (41) 

On solving Eqs. (1)-(3), (6) and (41), we obtain the corresponding expressions for a thermo elastic micro beam with double 

porosity in context of coupled theory (CT) of thermo elasticity. 
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8. Inversion of the Laplace domain 

To determine the displacement, stresses and temperature distribution in the physical domain, we will adopt a numerical 

inversion method given by [29]. 

In this method, Laplace domain ( )f s can be inverted to time domain ( )f t as  

1

11 1 1

1
( ) ( ) Re exp , 0 2

2

t N

k

e k k t
f t f f t t

t t t

   



    
         

     
  (42) 

where Re is the real part and   is the imaginary number unit. The value of N  is chosen sufficiently large and it represents 

the number of terms in the truncated Fourier series such that 
1

1 1

( ) exp( )Re exp
N N t

f t t f
t t

   


    
       

     
,  

1 is a 

prescribed small positive number. Also, the value of  should satisfy the relation 4.7t  for the faster convergence [30]. 

9. Numerical results and discussion 

For the purpose of numerical computation, a beam made of copper like material is analyzed. The material parameters 

are as shown in Table 1. 

Table 1 The aspect ratio of the beam is fixed as 310, 0.5, 6L h a h x h    

Parameter Value Parameter Value 

  10 27.76 10 Nm  *K  
3 1 13.86 10 Ns K   

* C  
3 2 2 13.831 10 m s K   0T  293 K  

  10 23.86 10 Nm    3 38.954 10 Kgm  

t  5 11.78 10 K   2  10 22.4 10 Nm  

0t  0.1s  3  10 22.5 10 Nm  

v  0.22    51.1 10 N  

t  0.12s    51.3 10 N  

1  5 20.16 10 Nm  1b  50.12 10 N  

d  10 20.1 10 Nm  2  5 20.219 10 Nm  

1  12 2 20.1456 10 Nm s   2  12 2 20.1546 10 Nm s   

b  10 20.9 10 Nm  1  10 22.3 10 Nm  

The software MATLAB has been used to find the values of lateral deflect ion, axial stress, axial displacement, volume 

fraction field  and temperature d istribution. The variat ions of these quantities with respect to axial distance have been shown 

in Figs. 2-11. In Figs. 2-6, effect of porosity is shown graphically. In these figures, solid line corresponds to thermal double 

porous material (TDP) and small dashes line corresponds to thermal single porous material (TSP). Also, the effect of 

relaxation time is depicted graphically in Figs. 7-11. In Figs. 7-11, where solid line corresponds to Lord-Shulman (LS) 

theory of thermo elasticity and small dashes line corresponds to coupled (CT) theory of thermo elasticity.  

9.1 Effect of porosity 

Fig. 2 shows that the value of lateral deflection w init ially increases for 1 3.8x  and decreases onwards with the 

increase in  the value of axial distance x . Similar behavior of variat ion is shown for both TDP and TSP but the magnitude of 

values is more for TDP in comparison to that of TSP. From Fig. 3, it is evident that for TDP, the value of axial stress xt  

increases for 1 2x   , decreases for 2 9x   and again increases afterwards. Although, the trend and behavior of 

variation is similar for both TDP and TSP with difference in the magnitude of values.  The values are higher for TSP than 

that of the values for TSP except for the region 9x   where the trend gets reversed. Fig. 4 depicts that the values of volume 
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fraction field   decreases initially and then increases slowly and steadily as 2x  . It is also found that due to effect of 

porosity, the magnitude of values are more for TDP in comparison to the values for TSP. Fig. 5 represents that the value of 

temperature d istribution T  increases monotonically with increase in axial distance x  for both TDP and TSP but the 

magnitude of values of T  are higher in case of TDP as compared to the values for TSP due to the effect of porosity. Fig. 6 

shows that variation of axial displacement  u  shows similar pattern for both TDP and TSP near the point of application of 

source whereas the behavior of variation is opposite as moving away from the source. The magnitude of values of  u  is 

more near the application point of the source and it decreases as moving away from the source in caseof TDP while for TSP, 

the value initially increases and becomes oscillatory as x increases.  
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Fig. 2 Variation of lateral deflect ion w  against axial    

distance x  

  Fig. 3 Variation of axial stress xt against axial distance x  
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Fig. 4 Variat ion of volume fraction field  against axial 

distance x  

Fig. 5 Variat ion of temperature distribution T against axial 

distance x  
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Fig. 6 Variat ion of axial displacement u  against axial 

distance x  

  Fig. 7 Variation of lateral deflection w  against axial 

distance x  
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Fig. 8 Variation of axial stress xt against axial distance x  Fig. 9 Variat ion of volume fraction field  against axial    
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Fig. 10 Variation of temperature d istribution T against axial       

distance x 

Fig. 11 Variat ion of axial d isplacement u  against axial 

distance x  

9.2 Effect of thermal relaxation time  

Fig. 7 depicts that for LS theory, the value of lateral deflection w  increases for 1 2.6x  and decreases afterwards with   

the increase in the value of axial distance x while for CT theory , it increases for the regions 1 2x  , 5 8x  and 

decreases in the subsequent regions . From Fig. 8, it  is noticed that due to effect  of relaxation t ime parameter, the magnitude 

of values of axial stress is more for CT theory of thermo elasticity at  both, near and away from the source application  point. 

The trend and behavior of variation is opposite for LS and CT theories of thermo elasticity. Fig. 9 shows that the value of 

volume fraction field   decreases initially and then increases as 2x  . It  is also found that due to relaxation t ime effect, the 

value decreases near the application point of the source for LS theory while an opposite behavior is noticed in  case of CT 

theory of thermo elasticity. Fig. 10 represents that for LS theory, the value of temperature distribution T  increases 

monotonically  with increase in  axial d istance x while for CT theory, it increases slowly and steadily as x  increases. The 

magnitude of values is  higher for CT theory near the source application point while an opposite trend is noticed away from 

the source. From Fig. 11, it  is evident that for LS theory, the value of axial displacement u  increases for1 2x  , decreases 

for 2 8x  and increases afterwards. Due to relaxat ion time effect, the magnitude of values of u is more for CT theory in  

comparison to LS theory except for the region 2 5.3x   where an opposite trend of variation is noticed. 

10. Conclusions 

In this work, v ibration analysis of a thermo elasticmicro beam with double porosity structure in context of Lord-

Shulman theory of thermo elasticity, subjected to sinusoidal pulse heating is studied. Effects of porosity and thermal 

relaxation time parameter are shown graphically on lateral deflection, axial stress, axial displacement, volume fract ion field 
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and temperature d istribution. It  is observed that porosity has a significant effect on the all the physical quantities. It has both 

increasing as well as decreasing effect on the resulting quantities. Also, all the field quantities are observed to be very 

sensitive towards the thermal relaxation t ime parameter which shows that it is very important to take into account the 

relaxation time parameter.  

This type of study is useful due to its physical application in geophysics, rock mechanics, mechanical engineering , civil 

engineering and industrial sectors. The results obtained in this investigation should prove to be beneficial for the researchers 

working on the theory of thermo elasticity with double porosity structure. The introduction of double porous parameter to the 

thermo elastic medium represents a more realistic model for further studies. 
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