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Abstract 

The method of Radar Target Detection by Analysis and Statistical Classification of the Cellular Emission 

(DRACEC) can be functionally divided into three fundamental stages: Acquisition, Adaptation, and Detection. 

During Acquisition it is required to continuously exchange information between the hardware in FPGA and the 

software, without affecting the performance of the latter. This paper proposes the simplest communication interface 

that satisfies these requirements when DRACEC is applied to a small searching window. The solution is 

implemented on the serial port and ensures that samples stored in FPGA are available at the computer for the 

remaining processing stages. One fundamental characteristic of the proposal is a protocol designed to control the 

communication flow, which is implemented through a dedicated program thread. This allows software performance 

to not deteriorate during communication and lays the foundations for using multithreading techniques to develop the 

stages of DRACEC. 
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1. Introduction 

The novel technique known as DRACEC [1-2] improve the detection probability for low signal-to-noise ratio 

environments [1]. Furthermore, it is applicable to scenarios where the statistical distributions of the random variables used for 

decision making are unknown or difficult to estimate. DRACEC is based on the use of large-size samples of parameters such as 

the amplitude, frequency, polarization, etc., of the signals scattered by the resolution cells that compose the surveillance region. 

As a fundamental characteristic, a classification vector (pattern) is obtained, whose components (features) are a determined 

number of moments of the selected signal parameters, enabling the classification of the resolution cells in one of two classes: 

background (target absent) or anomaly (target present). Since the decision is carried out through a finite set of moments, 

DRACEC is usually referred to as a detection method in the moment's space, which differentiates it from traditional techniques. 

In addition, the amplitude of the video signal at the radar receiver is the most commonly selected parameter, due to the 

simplicity in obtaining measurements.  

Taking into account that the random variables used for detection are a set of normal-distributed moments [1-2], DRACEC 

matches the environmental conditions better than methods based on processing the signal parameters, which assume models 

for their distributions. Therefore, by means of DRACEC, the problem of the a priori indetermination is significantly reduced. 

Another distinctive characteristic of DRACEC is the multidimensional approach to detection and the concept of 

anomaly-to-background ratio instead of the classical signal-to-noise ratio. This gives a higher detection and classification 
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capacity, which makes it possible to achieve a distinction among targets attending to the statistical behavior of the eco-signals. 

The method is suitable as a complementary technique in systems that use others up-to-date detection methods and could be 

employed only in certain areas of the surveillance region, where it is required to detect with a high probability low observable 

target. 

DRACEC is functionally divided into three stages: Acquisition, Adaptation, and Detection, which could be implemented 

in hardware or software depending on their characteristics and the available technology [3-4]. The temporary requirements for 

samples acquisition involve dedicated hardware, usually FPGA (Field Programmable Gate Array) [5]. On the other hand, the 

mathematical complexity of the Adaptation and Detection algorithms and the necessity of displaying results to the user, 

demand the development of software with Graphical User Interface (GUI) in a computer.  

The Acquisition stage requires uninterrupted information exchange between hardware and software. For example, once 

the FPGA is configured with the operating modes chosen by the user, the samples are continuously transmitted to the computer. 

In this case, it would be unfeasible to dedicate a software function to communication, since the application would be 

“attending” it continuously, at the cost of not performing well the remaining tasks and affecting the overall system 

performance. All these statements manifest the need for an interface for achieving an uninterrupted communication between 

the FPGA and the computer, which allows acquiring the samples for further processing. The communication through this 

interface should not deteriorate the performance of the remaining stages of DRACEC and should be as simple as possible. 

This paper presents a solution to the above-mentioned problem, by implementing the hardware and software elements that 

allow computer-FPGA communication through the simplest interface: the serial port. From the software point of view, a GUI 

developed in Qt [6-7] is proposed, whose main objectives are to configure the hardware and receive the samples previously 

stored in FPGA. On the other hand, the hardware components are implemented in a development kit of Altera [8-9], dedicated 

to control the samples reading and its transmission to the computer. As a fundamental characteristic, a protocol is designed to 

control the communication flow, which is implemented by means of a dedicated program thread. The latter allows software 

performance to not deteriorate during communication and lays the foundation for developing the remaining stages of 

DRACEC using multi-threading techniques. In the next section, the use of the serial port as a communication interface is 

justified. Subsequently, its software and hardware elements are presented and finally, the interface is verified through the 

obtained results. 

2. Selection of the Communication Interface 

Currently, the use of DRACEC is limited to a certain number of resolution cells, particularly those where small targets are 

to be detected, without affecting the radar performance during surveillance [1]. Therefore, this method should be applied only 

over a small searching window when compared to the surveillance region. Taking the Navi Radar 4000 (NR-4000) [10] as a 

reference radar, a typical configuration of the searching window would be 8 angular sectors and 64 range rings, for a maximum 

of 512 resolution cells [3]. Table 1 shows some features of the NR-4000 that determine the formation of the searching window 

and the amount of data to be sent to the computer.  

The four operating modes are selected according to the range scale in which the radar work [10], establishing different 

pulses durations (with the consequent change in range resolution) and repetition frequencies. Also of interest are the rotation 

speed of the antenna, the half power beam width [11] and the number of received pulses. The first feature imposes an upper 

limit on the time required to send the acquired samples to the computer, and therefore, directly affects the choice of the 

communication interface. The half power beam width establishes the angular resolution of the radar, while the number of 

received pulses represents the number of echoes per resolution cell for each angular sector and is determined by 

6rf       [12], where the meaning for each symbol is in the last column of table 1. 
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Table 1 NR-4000 Scanner Technical Specifications 

Feature Value Symbol 

Half Power Beam Width (azimuth) 1.8
o
   

Antenna Rotation Speed [RPM] 22   
Operating Modes 1 2 3 4 - 

Pulse Duration [ns] 80 200 400 800   
Range Resolution [m] 12 30 60 120 R  

Pulse Repetition Frequency [Hz] 2000 1000 750 500 rf
 

Received Pulses 27 13 10 6 
 

Samples per Antenna Revolution 13824 6656 5120 3072 - 

Bytes per Antenna Revolution 27648 13312 10240 6144 - 

The maximum amount of data to be sent to the computer after each antenna revolution is indicated in the last two rows of 

the table. The operation mode 1 is the most critical in this sense, since for any angular sector 27 pulses are received per 

resolution cell, and after a full scan of the searching window (with a maximum of 512 cells) a maximum of 13824 samples will 

be available. Although the acquisition system is external to the communication interface [3, 13], it should be mentioned that it 

has an Analog-To-Digital Converter (ADC) of 14 bits [3, 14], hence each sample is represented by two bytes and the maximum 

amount of data available per revolution will be 27648 bytes. 

Another element to keep in mind is the way of sampling required by DRACEC since the accumulated samples must be 

statistically independent. This is essential if we want a set of normal-distributed moments for decision making, which is a 

fundamental advantage of DRACEC as a parametric method [1]. Each sample is taken from the random process  k t , which 

describes the amplitude of the video signal for the resolution cell k according to 

 
360

0, , 1; 0, ,    
R k

t i M j
k t i T j T t
   

      
(1) 

where 360T  is the duration of one antenna revolution, 1R rT f  and 2k kt R c  , where kR are the cell’s range and c is 

the light speed. In Eq. (1) M stands for the number of antenna revolutions necessary to obtain a suitable set of samples for 

moments computation, which in statistical argot is the sample-size [1]. For each revolution,  samples per cell are acquired, 

which are correlated and therefore are not useful for computing the moments directly. In marine clutter environments, 

decorrelation is achieved at intervals greater than 10 ms [15-16], but the maximum value of RT  reached with the NR-4000 is 

only 2 ms, for operating mode 4. So the most feasible way to accumulate decorrelated samples without applying mechanical or 

other modifications to the NR-4000 is through consecutive 360º sweeps. This offers the possibility to compute   moments 

for each resolution cell after M antenna revolutions [3], associating the samples in a sweep-to-sweep way, instead of from 

pulse-to-pulse. 

The most common computer-FPGA communication interfaces in the radar field are UART, USB, and Ethernet. Among 

the representative examples, the authors of [17] implement a radar controller in FPGA, which sends commands to the 

transmitter and receiver modules via serial port in order to achieve beam steering of the radar antenna. In [18] are detailed the 

primary systems of ocean observatories, which have sensors that communicate through a backup RS-232 serial interface. On 

the other hand, [19] describes a protocol used to reliably transmit a time-critical synchronization pulse, as well as 

multi-channel bidirectional RS-232 data, over a single low-quality twisted pair cable. The work of [20] describes the 

interactive software and firmware for a ground-penetrating radar that uses the Universal Serial Bus (USB) for communication 

between the computer and radar peripherals. This USB interface was configured as a virtual serial port with typical connection 

settings. The paper [21] address the modernization of an old analog radar through a dedicated library over the USB port, which 
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facilitates the exchange of the antenna direction and other parameters. In [22] a system based on a 1 Gbit-Ethernet can achieve 

high-speed data transfers to a computer functioning as a multi-beam forming processing unit, while in [23] it is proposed a GUI 

that establishes the control specifications for a ground-penetrating radar. This interface uses TCP/IP link for communication 

with hardware. 

UART is generally used to transmit small amounts of data [17-19], as well as to exchange commands for configuration 

and control. On the other hand, both USB [20-21] and Ethernet [22-23] allow exchanging large volumes of data in quasi-real 

time, and are commonly used in the so-called radar-PC [20, 23], modern digital radar systems [22] or to digitize analog radars 

to extend their useful life [21].  As it is known, Ethernet and USB transmit at a considerably higher speed than UART, although 

they increase the complexity of the necessary controllers. However, the required time to accumulate a new set of independent 

samples will be the same for all interfaces, since it only depends on the antenna rotation speed. Each revolution takes 2.73 

seconds, which establishes the maximum allowable time for transmission of the acquired samples before a new acquisition 

begins. So it does not matter how quickly you can transmit during a revolution if you must wait 2.73 seconds to send a new set 

to the computer [3].  

Taking advantage of these reasons, any of the above-mentioned interfaces allow transmitting the maximum of 27648 

bytes (corresponding to one set of samples for the critical case in mode 1) in less than 2.73 seconds. So the chosen 

communication interface is UART since it is the simplest to implement and satisfies the needs of DRACEC when using the 

NR-4000 and a small searching window. The software elements of the designed interface will be treated below. 

3. Software Elements 

The proposed software takes advantage of the parallel processing capabilities of current computers and consists of two 

program threads: the main thread to handle the GUI and a thread dedicated to communication with FPGA. As mentioned 

before, the software was developed using Qt due to the facilities of this platform for implementing high-performance GUI [7, 

24-25]. In addition, the classes offered by Qt are used for serial port communication (QSerialPort) and the work with multiple 

program threads (QThread). Next, the GUI is described in order to contribute to the understanding of the protocol and the 

communication thread. 

3.1.   Graphical user interface 

The mains objectives of the GUI are to select the searching window, to establish the radar operating mode and the display 

of user-useful information. Fig. 1 shows the GUI, which has two tabs: one to configure the acquisition specifications and 

another to represent the acquired samples. The second tab is only for system verification, so the emphasis will be on the 

elements in the first one (“Configuration”). 

 
Fig. 1 Graphical user interface 

The four spin-boxes identified under the labels “Initial Range”, “Final Range”, “Initial Angle”, and “Final Angle”, 

configure the searching window. The default variation of the initial and final ranges depends on the selected mode, while the 
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angular sectors remain unchanged unless the user modifies them directly. The searching window by default contains the 

maximum of 512 cells, distributed in 64 range rings and 8 angular sectors. However, the figure shows an arbitrary 

configuration of 53 rings and 5 sectors, hence the 53*5 notation used in the informative label about the total cells. The user can 

vary the value of each spin box to locate the searching window between the scale limits and the 360º. The increase allowed for 

the rings is equal to the range resolution, which depends on the operating mode, while the sectors increase is always 1.8°. 

The spin-boxes values that establish the limits of the searching window are not directly useful for the acquisition system 

in FPGA since these values are used as indexes for angle and range counters in hardware and therefore must be positive 

integers. The indexes for the rings need 2 bytes since they can take any value between 0 and 499 [3]. Each index is determined 

through Eq. (2), which uses the number from the spin-box, as well as the minimum range (
min 2.5R R  ) and resolution 

( R ) 

minspinBox.value() -
        ,m

R
R m i f

R
 


 (2) 

where m = i for the initial ring and m = f for the final ring. 

On the other hand, the indexes for the initial and final angular sectors will take a value between 0 and 199 [3], therefore a 

single byte is enough. This value will be given by Eq. (3), which takes into account the number entered by the user through the 

spin-box, the minimum angle of 0.9º and the resolution by the azimuth of 1.8º.  

spinBox.value() -0.9
        ,

1.8
mA m i f 

 

(3) 

Returning to the example of Fig. 1, a total of 265 cells were selected, distributed in 5 angular sectors and 53 range rings. 

After evaluating Eqs. (2) and (3), the indices 139iR   and 191fR   are obtained for the initial and final rings, while those 

corresponding to the initial and final sectors are 14iA   and 18fA  . By means of these indexes, the hardware system will 

define precisely the sampling intervals of the video signal [3].  

Finally, the “Start” button gathers the specifications and prepare the initial configuration frame. This frame starts the 

communication with the hardware through the selected serial port. The confirmation of the initial frame and the protocol will 

be treated in the next section. Both software and hardware will remain running continuously until the user presses the “Stop” 

button, which indicates that the system must be restored to its initial state. The normal operation could also be stopped due to 

communication errors, which will be referred to next. 

3.2.   Communication protocol 

In order to achieve communication between computer and FPGA, a set of rules must be established to organize the 

information exchange, hereinafter referred to as a protocol [17, 19, 26]. Transmission by serial port consumes considerable 

time, although it does not represent the major system delay, which is associated with the accumulation of statistically 

independent samples [3]. For this reason, the protocol must satisfy the temporary requirements of DRACEC, and be simple, so 

as not to cause unnecessary delays in the configuration and information transmission. It is emphasized that none of the 

stop-and-wait schemes [27] commonly used by UART interfaces are required since the computer and the FPGA will not 

transmit data at the same time (except for a case that will be analyzed below). Furthermore, none of the components involved in 

communication (computer and FPGA) will exceed the other in speed.  

The proposed protocol is based on the 5 bytes with the specific meaning shown in Table 2, represented by hexadecimal 

format. The first three bytes serve as delimiters between the different data types of the initial configuration frame, while the last 

two contribute to control the information flow. All communication is made taking into account the format of 8 data bits, 1 stop 

bit, 1 start bit and speed of 115200 bit per seconds, following the RS-232 standard [28]. 
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Table 2. Commands used in the protocol  

Command Meaning 

0xAA Searching Window Beginning 

0xBB Mode Beginning 

0xCC Total Samples Beginning 

0xDD Send Samples Request 

0xEE End of Communication 

The communication is established by an initial frame of 11 bytes arranged as shown in Fig. 2. The bytes marked in red 

color contain delimiters characters. Between 0xAA and 0xBB it is established the searching window through the index of  

Eqs. (2) and (3). The eighth byte, denoted as mode, may take the values 0x00, 0x01, 0x02 or 0x03, to establish the radar 

operating mode.  

mode
Ri 

low
Ri

high
Rf

low
Rf

high
AiAA BB

Total
low

Total
high

CC

 

Fig. 2 Bytes of the initial configuration frame 

On the other hand, the last two bytes define the number of addresses to be read from memory, which stores the samples. 

This number is determined by Eq. (4), and it is transmitted to the FPGA in order to free the hardware of this computation and 

simplify it. Note that only the index of the initial angular sector is included in the frame since only this and the total number of 

samples are required to acquire the desired set. 

   1 1f i f iTotal R R A A        
    

(4) 

The typical flow of communication is shown in Fig. 3. Once the FPGA receives the initial configuration frame, it sends 

back the same 11 bytes, as acknowledgment (ACK). In the computer, each byte of the ACK is compared with the 

corresponding one of the initial frames. If at least one is different, the user is notified and the byte 0xEE is sent to the FPGA, 

returning the system to its initial condition. The above is also done if no ACK is received by the computer at a previously 

established time. In case the ACK is correct, the computer remains “listening” to the port, waiting to receive the samples. 

��.

Computer

FPGA

 

Fig. 3 The communication flow between computer and FPGA 

Once the samples are available in the FPGA, this notifies the computer by transmitting the byte 0xDD. The computer will 

respond with another byte 0xDD, denoted as ACK DD, to indicate its disposal to receive the samples and then, the FPGA 

begins the transmission. This flow of byte 0xDD, ACK DD, and samples will be repeated until the user ends the 

communication sending 0xEE, which is the case shown to the right of Fig. 3. The 0xEE byte could be sent to the FPGA at any 

time required by the user (using the “Stop” button), so this will be the only possibility of simultaneous transmission between 

hardware and software. As it will be treated in the design of the hardware, the reception of 0xEE has the highest priority, 

because its objective is to restart the system and immediately interrupt any running process.  

In addition to serving as delimiters, the characters 0xAA, 0xBB and 0xCC constitute a mechanism to verify that no bytes 

have been lost. The protocol states that if the configuration frame received by the FPGA is not correct, it does not send any 
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confirmation. From the computer side, if there is a lapse of three seconds without receiving an ACK, the communication is 

interrupted by sending 0xEE and the system is returned to its initial state. This procedure of waiting and sending 0xEE is 

common to handle any error, such as the absence of 0xDD or the unexpected interruption of samples transmission. 

3.3.   Program thread dedicated to communication 

After knowing the protocol characteristics, its implementation through a dedicated program thread will be addressed. The 

communication is carried out by an object of class CxThread, developed by the authors. This class inherits from QThread [6] 

and begins to run as an independent thread when the inherited method start() is called. The only functionality of start() is to 

invoke the pure virtual method of QThread named run(), which will execute the tasks associated with the new thread. In this 

way, to develop any task parallel to the main thread (the GUI thread), it will be enough to create an object whose class inherits 

from QThread and re-implement the run() method with the desired task. Fig. 4 shows the way in which the general tasks of the 

communication thread have been organized. 

Pressing the “Start” button (see Fig. 1) will gather the specifications that define the initial configuration frame. Then 

several variables are established to control the communication flow, whose meanings will be clear later. Next, it is verified 

whether the thread is executed for the first time, or is inactive after a previous execution. In the first case, its execution begins 

with the start() method for invoking run(), while in the second, the thread is “awakened” using the wake() method of the class 

QWaitCondition [6]. The thread may be “sleeping” due to completed acquisition sections, and by calling wake() it resumes 

execution from the same line of code where it was blocked. 

Start 
Communication

Set Initial Frame
Set Variables:

phaseCx = OPEN
ddRx = false

endFlag = false

NOYES

Started Thread ?

Start Thread
start()

Wake Thread
wake()

run()
 

Fig. 4 General operation of the program thread dedicated to communication 

In the right part of Fig. 4, the implementation of the run() method is summarized. The thread will be running “forever” by 

the while loop unless it is blocked, either by waiting for some data or by the user’s decision. The variable named phaseCx 

indicates the communication status and is the key to control its flow. The procedures for the four possible cases of this variable 

are shown in Fig. 5 and 6. Note also, the object of class QSerialPort [6] that serves to perform communication through the serial 

port. 

As shown in Fig. 5, when starting the thread execution, the variable phaseCx takes the value OPEN. During this phase, the 

port is configured for the speed and format established by the protocol. If an error occurs when trying to open the port (busy 
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port, for example) the communication is terminated, so the variable phaseCx takes the value CLOSE and the next iteration to 

execute the corresponding code (see Fig. 6). If the port was opened correctly, phaseCx takes the value TX_CMD and proceeds 

to send the initial configuration frame in the next iteration. 

switch (phaseCx)

Configure Port
Open Port

phaseCx = OPEN

NO

YES

Error ?

phaseCx = TX_CMD

phaseCx = CLOSE

YES

NO
endFlag == false

Write Initial Frame
waitForBytesWritten()

phaseCx = CLOSE

phaseCx = TX_CMD

Timeout ?
YES NO

Wait Initial Frame ACK 
waitForReadyRead()

correct ACK ?

YES

NO

phaseCx = RX_DATA

Next Iteration

Next Iteration

 

Fig. 5 General Cases OPEN and TX_CMD of the variable phaseCx to control the communication flow 

The first step of the TX_CMD phase is to verify that the end of the process indicator (Boolean variable endFlag) is false, 

so that transmission of the configuration frame begins. This is done by writing the data to the serial port using the 

waitForBytesWritten() function, which locks the thread until at least 1 byte has been written. In case that the elapsed time is 

one second and the data has not been written, the communication is terminated. If the bytes were written without trouble, a wait 

for ACK of the initial frame is done and the thread is blocked by waitForReadyRead() until receiving the 11 bytes. If the 

received frame differs from the one sent, either in the number of bytes or in its content, the communication is terminated. The 

communication will also be terminated if the elapsed time without receiving a response from hardware is five seconds. If the 

ACK is correct, the next iteration will execute the RX_DATA phase. 

The execution of the thread continues as shown in Fig. 6. As in TX_CMD, the RX_DATA phase starts verifying the end 

of process indicator. Depending on the value of the ddRx variable, the thread is blocked while it is waiting for byte 0xDD from 

FPGA to indicate the availability of the samples. If this byte is received by the computer, 0xDD is written to the port so that the 

hardware begins the transmission of the samples in the next iteration (see Fig. 3). The bytes received by the computer are stored 

in an array of type QByteArray [6] in order to be emitted by the signal acquiredBytes(), which will be attended by a slot in the 

main thread. In future work this signal could be connected to another thread that implements other functionalities of DRACEC, 

for example, the moment's computation [3] or anomalies detection [1, 29-30]. This procedure continues running until an error 

occurs or by pressing the “Stop” button, which indicates that acquisition is finished. In any of these cases, the phase executed in 

the next iteration will be CLOSE.  
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switch (phaseCx)

YES

NO
finFlag == false

phaseCx = CLOSE

phaseCx = RX_DATA

ddRx == true
YESNO

Wait Samples
waitForReadyRead()

Reception 
Complete ?

SI

NO

Emit acquiredBytes
ddRx = false

Next Iteration

Wait 0xDD
waitForReadyRead()

Timeout ?

phaseCx = CLOSE

YES

NO

Write 0xDD
ddRx = true

YES

Open Port ?

Write 0xEE
waitForBytesWritten()

Received Byte == 0xDD
NO

YES

Timeout ?

NO

YES

NO

Wait 0xEE ACK
waitForReadyRead()

Received Byte == 0xEE

Notify ACK Received

YES

CLose Port
endFlag = false

wait()

NO

phaseCx = CLOSE

Next Iteration

 

Fig. 6 General Cases RX_DATA and CLOSE of the variable phaseCx to control the communication flow 

According to Fig. 6, the fundamental operations of the CLOSE phase are to send the 0xEE command to the FPGA and 

block the thread until the user presses the “Start” button again. The actions of this phase are executed for two reasons: after the 

occurrence of some error during the communication (busy port, timeout, etc.) or by pushing the “Stop” button, whose effect is 

to assign “true” to the endFlag variable. The thread is blocked by the wait() method of the QWaitCondition class [6] and 

“wakes up” with the wake() method, once the “Start” button is pressed. The dashed lines of the last two blocks in Fig. 6 indicate 

that the thread will pass to the next iteration only after a call to wake(), since before it will remain blocked. 

4. Hardware Elements 

After addressing the fundamental software components, it is possible to have a global idea of the hardware characteristics, 

whose flow chart is shown in Fig. 7 and follows the communication protocol. Initially, the hardware waits for the configuration 

frame and sets the specifications defining the operating mode and searching window. This comprises the storage of 8 bytes 

(five for the searching window, one for operating mode and two for the samples total) in a group of registers that will be used 

by the acquisition system to establish the sampling intervals of the video signal [3]. Then the ACK of the initial frame is sent to 

the computer so that the software validates the configuration and it is ready to receive the byte 0xDD. 
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start

NO

SI
Initial Frame Received ?

Enable Acquisition

Set Parameters

YES

End Acquisition ?

NO YES

Send 0xDD

0xDD Received ?
NO

YES

Send Samples

End Transmission ?
NOYES

Send ACK

0xEE Received ?

YES

NO

Send 0xEE

Simmulated Delay

 

Fig. 7 Flow chart for the hardware system 

Next, it is enabled the system responsible for sampling the video signal, which is external to the communication interface 

and does not constitute the center of this work. In a brief way, its objective is to store the samples obtained through A/D 

conversion, taking into account that each one corresponds to a specific triad of range, angle and received pulse [3]. Due to the 

characteristics of the NR-4000, every 2.73 seconds new samples will be available, as it was addressed in section 2. Therefore, 

this delay must be simulated by the hardware in order to get a better approximation to the real operation of the communication 

interface. For this reason, after 2.73 seconds a timer indicates that the “simulated acquisition” has been completed and the 

hardware sends the byte 0xDD to the computer. Then, the communication thread in the software will respond with 0xDD to 

begin the transmission (see Fig. 3). Once the transmission is over, the next simulated delay begins and the process repeats 

indefinitely. The system returns to its initial state only when the “Stop” button of Fig. 1 is pressed and the byte 0xEE is sent to 

the FPGA. This is highlighted in Fig. 7 by the red dashed lines, since the logic for the reception of 0xEE is executed 

continuously and independently of the rest of the system. 

Fig. 8 shows the hardware components, where the central element to guarantee the flow of Fig. 7 is the Finite State 

Machine (FSM) called Control. It stores the bytes corresponding to the searching window, the operating mode and the total 

samples in the set of registers identified as PARAMETERS. These bytes are received through the UART receiver proposed in 

[31], which is represented as RX_UART in the figure. Another functionality of Control is to use the multiplexer identified as 

MUX to share the transmitter TX_UART [31] between three subsystems with specific functions, represented as ACK, 

Samples_TX and END. 

The ACK logic is responsible for sending the ACK of the initial configuration frame to a computer for validating the 

received data. Once the ACK transmission is completed, the transmitter control goes to the logic Samples_TX, whose first task 

is to enable the delay that simulates the acquisition process and upon completion, sends to the computer the 0xDD byte, 

indicating that the samples stored in RAM memory are available. According to Table 1, the RAM memory must store a 

maximum of 13824 samples, so it has a capacity of 16384 locations of 14 bits. The RAM reading is carried out by the 
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aforementioned Samples_TX logic, while the writing is handled by the external acquisition system [3]. Since this system is not 

considered in this work, the memory contains known samples (describing a saw-tooth function) with the purpose of verifying 

their correct transmission to the computer. 

CONTROL

RX_UART

ACK
PARAMETERS

END

M
 U

 X

RAM
16k x 14

SAMPLES_TX

TX_UART

 

Fig. 8 Fundamental components of the communication interface hardware 

 Independently of the described components, the END FSM has the sole purpose of attending the software request for 

ending all processes. This device continually compares any received byte with 0xEE, and if it is equal, restarts the whole 

system. If byte 0xAA is received, which suggests a transmission with the configuration frame, the Control state machine 

disables the end-of-process logic until the frame reception is completed. This is due to the possibility of receiving a byte with 

value 0xEE as part of the operating specifications. 

5. Verification of the Communication Interface 

With the aim of verifying the proposed interface, Fig. 9 shows an image of the Qt Application Output after pressing the 

“Start” button. By means of the function qDebug() [6], the communication phases can be observed in close relation with Fig. 3, 

5, and 6, thus illustrating the flow of the communication thread. The red rectangle highlights the repetitive processes of 

samples reception, which run uninterruptedly until the user presses the “Stop” button. 

 

Fig. 9 Application output in Qt to indicate the different communication phases 

As mentioned in the previous section, the RAM in FPGA contains known samples of a saw-tooth function, loaded by 

means of the memory initialization file. In order to consider the critical quantity of samples, the RAM locations are filled 

consecutively with values from 1 to 1728 (27 received pulses for each one of the 64 range rings) and this arrangement repeats 

eight times (for the eight angular sectors). Fig. 10 displays the received samples for this critical case, which correspond to a 

searching window of 512 cells and operating mode 1.  
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Fig. 10 Samples received on the computer for the critical searching window 

On the other hand, Fig. 11 plots the received samples for a searching window of 265 cells and operating mode 3, which is 

the same case shown in Fig. 1. Both figures demonstrate that the communication between software and hardware is done 

correctly since the samples match with those stored in RAM. Operations like tab switching, zoom-in and zoom-out were 

performed on the graphics and it was confirmed at run time that the GUI does not “freeze”, despite being continuously 

receiving the samples. These facts confirm that overall software performance is not affected. 

 

Fig. 11 Samples received on the computer for the example of Fig. 1 

6. Conclusions 

The proposed communication interface allows the samples stored in the FPGA to be available on the computer without 

affecting the software performance. Although the serial port is a slow communication interface, it is the simplest among those 

that satisfy the DRACEC requirements when it is analyzed a small window in comparison with the surveillance region. If it is 

necessary to increase the number of resolution cells in the window or the antenna rotation speed, another communication 

interface should be used with higher transfer speeds, such as USB or Ethernet. 

The capacity of current computers for using multiple program threads improves the performance of tasks that can run 

independently. This constitutes a considerable advantage for the implementation of DRACEC method, whose stages execute a 

set of algorithms that perform computations independently and exchange their results. The designed software uses a thread 

dedicated to communication and establishes the principles to develop the algorithms of Adaptation and Detection, following 

the multithreading philosophy. 
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