
International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

A Mathematical Framework for Online Constant Coefficient Multiplication

Georgina Binoy Joseph1,*, R. Devanathan2

1
Toc H Institute of Science & Technology, Kochi, India.

2
Hindustan Institute of Technology & Science, Hindustan University, Chennai, India.

Received 16 November 2016; received in revised form 08 April 2017; accepted 09 April 2017

Abstract

Single and Mult iple constant multiplications are key operations in several digital signal processing algorithms.

This paper develops a mathemat ical framework for a novel adaptation of the parallel shift-and-add multip licat ion

algorithm for online arithmetic. Based on this adaptation, online constant coefficient multipliers for single constant

multip licat ion (SCM) and mult iple constant multip licat ions (MCM) of st reaming floating-point inputs are presented.

A finite impulse response filter implementation on Xilinx Virtex 6 Field programmable gate array (FPGA) is used as

an example to illustrate the merits of these filters. The results of this implementation show th at online multip liers

reduce resource utilization, online delay and increase clock frequency in comparison to existing designs. Online

multip le constant multip liers also show an average reduction of 65% in the number of slice LUTs and 37% in the

number of slice registers required when compared to existing dig it-serial multiple constant mult ipliers. Thus, the

proposed online arithmetic operators appear to be good alternatives for constant coefficient multiplication .

Keywords: real-time, online arithmetic, dig ital signal processing, single constant mult iplication, multip le constant

multiplications, field programmable gate array, floating-point

1. Introduction

Processing of digital signals in real-time requires efficient online arithmet ic operations on streaming data. Online

arithmetic operators process inputs and generate outputs serially most significant digit first (MSDF). Th is reduces the

complexity of the operators and the interconnections between different modules which results in a reduction in area and po wer

dissipation. The drawback is that the number of cycles required for receiving input and delivering output increases. The

execution of successive operations can be overlapped to compensate for this online delay. The resulting latencies are

comparable with that of pipelined large bit-width parallel operators.

Hardware implementations of single and mult iple constant multip licat ions (MCM) are important features of several DSP

algorithms, such as finite impulse response filters and discrete transforms. These implementations lead to improved

performance and reduced resource utilization and power consumption. Such multip licat ions are characterized by fixed

multip licands and do not need general purpose multip liers. The shift -and-add algorithm provides an efficient way of

implementing multip licat ion by constants without using mult ipliers. Graph based methods and common sub -expression

sharing are some of the techniques used in MCM algorithms .

While prior research on online MCM (OMCM) is not available, one can cite bit-parallel and digit-serial (least significant

digit first (LSDF)) implementations of constant coefficient mult ipliers which appears closest to OMCM. Bull et al. [1]

proposed the Bull-Horrocks (BH) algorithm for the synthesis of graphs that represent parallel implementations of coefficient

multip lier arrays of digital filters. In the Bull-Horrocks Modified (BHM) algorithm proposed by Dempster et al. [2], the use of

*

Corresponding author. E-mail: georgina@tistcochin.edu.in

Tel.: +919566110163

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

218

subtraction is facilitated by allowing fundamentals larger than those in the target set. RAG-n, a heuristic algorithm also

presented in the same paper, is a hybrid algorithm that uses the Canonic Signed Digit (CSD) representation for MCM

synthesis.

The 𝒜 operation, on two constants 𝑢, 𝑣 is defined by Voronenko et al. [3] as 𝒜 𝑝
(𝑢, 𝑣) = |2𝑙1 𝑢 + (−1)𝑠2𝑙2 𝑣|2−𝑟 . The

set 𝑝 = (𝑙1 , 𝑙2, 𝑠, 𝑟) is called the parameter set of 𝒜 𝑝. Imposing constraints on the variables in 𝑝 will result in different classes

of MCM problems. The BH algorithm imposes constraints that do not allow right shifts (𝑟 = 0) and restrict the values of

𝑙1 , 𝑙2 and 𝑠 such that 𝒜 𝑝
(𝑢, 𝑣) < 𝑠, the current constant being synthesized. The BHM algorithm permits only one of the

left shifts 𝑙1, 𝑙2 to be non-zero so that 𝒜 𝑝
(𝑢, 𝑣) results in odd values. It also permits 𝒜 𝑝

(𝑢, 𝑣) ≤ 2 max(A), where A = the

largest constant in the set of MCM constants. The Hcub algorithm presented by Voronenko et al. [3] produces better results

than the algorithms in [1-2] by using maximum-benefit and cumulative-benefit functions for the selection of fundamentals, but

it is computationally more expensive.

Exact and approximate algorithms developed by Aksoy et al. [4-8], cast the MCM problem as an Integer Linear

Programming problem based on Boolean networks. Solutions to the min imum area problem with or without delay constraints

are obtained for parallel and dig it-serial implementations. The results are compared with the RSAG-n and the RASG-n

algorithms proposed by Johansson et al. [9-10]. The RSAG-n algorithm chooses the intermediate fundamentals that require

minimum number of shifts, while the RASG-n algorithm adapts the RAG-n to serial inputs .

FPGAs provide a p latform for efficient hardware implementations of operations required in DSP a lgorithms: (1) the bit

level granularity of FPGAs permits the choice of standard and non-standard number representations with just the right number

of bits and the right number of operations on these bits leading to efficient hardware implementations. (2) Logic can be

customized to build specialized operators that are tailored to a particular application. (3) FPGAs can be used to process

computations spatially rather than temporally as in p rocessors allowing us to use both parallelism and pipelin ing to acce lerate

computations and increase throughput as emphasized in the book by Vanderbauwhede et al. [11]. (4) FPGAs are hardware

programmable with dynamic reconfiguration capability. Floating-point (FP) implementations are more suitable than fixed

point representations for digital signal processing (DSP) applications that require a large dynamic range. Two methods for

implementing mult ipliers of floating-point input operands with integer coefficients in FPGAs - one method using adder

arithmetic and the other using embedded multip liers – are p resented by Kumm et al. [12]. Bit-parallel implementations of

single and multiple constant multiplications using a Look up Table method for FPGAs is proposed by Faust et al. [13] .

Online multip licat ion being MSDF arithmetic enables the choice of the required amount of precision in the output. The

computation can be terminated once the required precision of the application has been achieved leading to truncated mult iplie rs

with variable output precision. This is in line with the “compute just right” concept advocated by Vanderbauwhede et al. [11].

Computing just right exp loits the built-in error resilience of the neuromorphic or DSP application and, thus, reduces area and

latency and conserves power. This is the underlying princip le of approximate computing [14-15]. The challenge in

implementing shift-and-add constant coefficient mult ipliers for online multiplication is the difficulty in implementing left

shifts as a left shifter implementation becomes a non-causal system in online arithmetic. Therefore, a technique that uses right

shifts instead of left shifts is proposed in this paper.

The main contributions of the paper are: (1) Online multip liers for multip lying a floating -point input operand with a single

constant coefficient multiplier (OSCM) using graph-based techniques are presented. A novel technique to adapt the

shift-and-add algorithm to online arithmet ic is proposed. (2) A mathematical framework for online mult iple constant

multip licat ion (OMCM) is presented. Constraints that are imposed are the maximum adder and online delay constraints. The

key parameters of these multip liers – online delay δ, clock frequency and resource utilization are analyzed and compared. (3)

The proposed mult ipliers are used in the implementation of an online FIR filter on FPGAs and comparat ive results are

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

219

presented. (4) A comparison of the resource utilization of OMCM networks with digit-serial implementations is presented.

To summarise the rest of the paper, Section 2 presents OSCM using carry-save (CS) number representation. Section 3

presents a mathematical framework for the synthesis of mult iple constant carry-save online floating point multipliers. In

Section 4, implementations of a FIR filter based on online single and multiple constant multip licat ions are presented. The

implementation results are presented in Section 5. The conclusions drawn from the comparison of the alternative designs are

presented in Section 6.

2. Online Single Constant Multiplication

Constant coefficient mult ipliers implemented using the shift-and-add technique can be represented by a directed acyclic

graph (DAG). The DAG of a general shift-and-add multiplier is shown in Fig. 1. The flow of data in the graph is unidirectional

from the input 𝑥 to the output y. Each node except the input node in the graph is an adder, and each constant 𝑠𝑖 = 2𝑖 on the

edge represents a left shift of 𝑖. The graph in Fig. 1 represents the equation 𝑦 = 𝑐. 𝑥 = 𝑠𝑖 . 𝑥 + 𝑠𝑗. 𝑥 where 𝑐 = 𝑠𝑖 + 𝑠𝑗, 𝑠𝑖 =

 2𝑖 , 𝑠𝑗 = 2𝑗 .

Fig. 1 Graph representation of shift-and-add multiplication

For parallel implementations, such mult ipliers can be implemented using left shifters and adders. However, hardware

implementations of left shifters are not suitable for online arithmetic because a left shift in MSDF arithmet ic would make the

system non-causal.

Online constant coefficient multiplication can be implemented using right shifts and additions. The parameter set for the

 𝒜 operation in online arithmetic is 𝑝 = (𝑙1, 𝑙2, 𝑠, 𝑟)where 𝑙1 = −𝑗, 𝑙2 = −𝑘, 𝑠 = 0, 𝑟 = +𝑙, where the scaling factor is 2𝑙.

The carry-save representation is preferred over the signed-digit representation to prevent the use of costlier subtraction and

reduce the online delay as shown by Joseph et al. [16]. Online addition can be performed using online full adders adding 4

operands, olFA4, p roposed by Olivares et al. [17]. A right shift of (𝑥 ≫ 𝑖) can be easily implemented by delaying 𝑥 by 𝑖 time

units. As the right shift implies division by 2𝑖, the output is a scaled version of 𝑦[𝑛] . Theorem 1 forms the basis of a novel

adaptation of the shift-and-add multip licat ion technique to online processing using the parameter set fo r online arithmet ic. This

enables the substitution of left shifts with right shifts. The output is thus scaled by the factor 2𝑘+⌊𝑙𝑜𝑔2 𝛼⌋ , which can be taken

care by adjusting the exponent.

Theorem 1: Online multiplication of an input vector by the constant 𝜑 = α𝜆,where α is an odd number, 𝛼 ≠ 1 and

𝜆 = 2𝑘 , 𝑘 = 0,1,2,3, … is the largest of the power of two factors of 𝜑,can be implemented by adding right shifted (delayed)

versions of the input and multiplying by a factor 2𝑘 +⌊𝑙𝑜𝑔2 𝛼 ⌋
.

Proof: Let α = 2𝑘1 + 2𝑘2 + 2𝑘3 + ⋯ + 2𝑘𝑚 , 𝑘1>𝑘2>𝑘3 … > 𝑘𝑚 = 0

 = 2𝑘1 (1 + 2−(𝑘1 −𝑘2) + 2−(𝑘1 −𝑘3) + ⋯ + 2−(𝑘1−𝑘𝑚)).

As 𝜑 𝑥 = α𝜆𝑥 and 𝜆 = 2𝑘, 𝑦 = 𝜑 𝑥 = 2𝑘+𝑘1 (𝑥 + ∑ 2−(𝑘1−𝑘𝑖) 𝑥𝑚
𝑖=2) = 2𝑘+⌊𝑙𝑜𝑔2 𝛼 ⌋(𝑥 + ∑ 2−(𝑘1 −𝑘𝑖) 𝑥𝑖)

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

220

The term 2−(𝑘1 −𝑘𝑖) 𝑥 represents a right shifted version of 𝑥. In online arithmetic, this represents 𝑥 delayed by 𝑘1 − 𝑘𝑖

time units. Thus, 𝜑 𝑥 can be written as the sum of shifted versions of 𝑥 mult iplied by 2𝑘+𝑘1 where 𝑘1 = ⌊log2 α⌋ is the largest

power of 2 in the binary representation of α. The above expression can be represented by the graph in Fig. 2.

Fig. 2 Multiplication by φ = αλ, λ = 2k, α ≠ 1

2.1. Multiplication by multiples of 3: 3𝜆, 𝜆 = 2𝑘, 𝑘 = 0,1,2,3, …

Multiplication by mult iples of 3 is used to illustrate the proposed technique based on Theorem 1.The constant 3 can be

represented as 3𝜆 , 𝜆 = 2𝑘 , 𝑘 = 0

3𝑥 = (2𝑘1 + 2𝑘2)𝑥 = 2𝑘1 (𝑥 + 2−(𝑘1 −𝑘2) 𝑥) , 𝑘1 = 1, 𝑘2 = 0

Therefore, the inputs to the adder for implement ing multiplication by 3 are 𝑥[𝑛] and 𝑥[𝑛] delayed by (𝑘1 − 𝑘2
) time

units, that is, 𝑥[𝑛 − (𝑘1 − 𝑘2
)] = 𝑥[𝑛 − 1]. Fig. 3 represents a multip lier implementing mult iplication by 3. The output

scaling factor is
1

2𝑘+⌊log2 3⌋ =
1

20+1 =
1

2
.

Fig. 3 Multiplication by 3 Fig. 4 Multiplication by 3 λ

The generalization is shown in Fig. 4 for multip licat ion by a constant 3 × 2𝑘 , where 𝑘 is an integer such that 𝑘 ≥ 0. The

online delay of this operation, which is the online delay of the olFA4, is such that 𝛿 = 2 .

2.2. Exponent adjustment

The scaling of the output can be taken care of by adjusting the exponent. The exponent has to be incremented by

𝐸𝑥𝑝 𝐴𝑑𝑗 = 𝑘 + ⌊𝑙𝑜𝑔2 𝛼⌋ = ⌊𝑙𝑜𝑔2 𝜑⌋ which can be carried out using a 3 operand online full adder with an online delay of 1.

2.3. Normalization of floating point outputs

Normalizat ion can be carried out by determining the bit growth. The maximum bit growth will be 2𝜑, as the mantissa of

IEEE-754 FP numbers have a range of [1, 2]. The actual bit growth can be determined by detecting the position of the leading

one in the output. If the bit growth is 𝜖, the exponent can be normalized by adding 𝐸𝑥𝑝 𝐴𝑑𝑗 + 𝜖 to it. The mantissa can be

normalized by scaling, that is delaying it by 𝜖 time units. This increases the online delay to 1 + 𝑒 + 𝑚𝑑 , where 𝑒 is the

number of exponent bits and 𝑚𝑑 is the online delay of mantissa shift-and-add network. When single constant coefficient

multip liers are used in DSP algorithms such as in FIR filters , the maximum bit growth up to the final stage can be predicted and

the normalization operation can be performed once as a final step. A separate exception handling module does exception

handling.

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

221

2.4. Online delay

Online delay is used as a parameter to determine if direct implementation of constant coefficient mult iplication based on

Theorem 1 is more suitable than an implementation of large constants using smaller fundamentals. This enables the search

algorithm to choose optimal fundamentals. The online delay of multiplication by a constant is given by Theorem 2.

Theorem 2: The online delay of the online multiplication implementation of Theorem 1 is 𝛿 = 2 × ⌈𝑙𝑜𝑔2 𝜌⌉, where the

Hamming weight of α is 𝜌.

Proof: The depth of the adder tree required to sum 𝜌 terms is ⌈𝑙𝑜𝑔2 𝜌⌉. Each adder (olFA4) has an online delay = 2.

Therefore, the online delay of the online SCM is 𝛿 = 2 × 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑎𝑑𝑑𝑒𝑟 𝑡𝑟𝑒𝑒 = 2 × ⌈𝑙𝑜𝑔2 𝜌⌉

Corollary 1: If 2𝑣−1 < 𝜑 < 2𝑣 , then the maximum number o f adders required is 𝑣 − 1 and the maximum online delay

is 𝛿𝑚𝑎𝑥 = 2 × ⌈𝑙𝑜𝑔2 𝑣⌉.

Proof: As 2𝑣−1 < 𝜑 < 2𝑣 , 𝜑 can be written as 𝜑 = 2𝑣−1 + 𝜃 where 𝜃 lies in the range [1, 2𝑣−1). The maximum

number of non-zero digits in 𝜃 is 𝑣 − 1 thus requiring the addition o f 𝑣 terms. Therefore, the maximum number of adders

= 𝑣 − 1. The depth of the adder tree to add 𝑣 terms is ⌈𝑙𝑜𝑔2 𝑣⌉. Hence the maximum online delay 𝛿𝑚𝑎𝑥 = 2 × ⌈𝑙𝑜𝑔2 𝑣⌉.

The special case of Theorems 1 and 2 when α = 1 is stated in Corollary 2 next.

Corollary2: Online Single Constant Multiplication by 𝜑= α𝜆, where 𝛼 = 1 𝑎𝑛𝑑 𝜆 = 2𝑘 , 𝑘 = 0,1,2,3, … is the largest

power of two factor of 𝜑, does not require the use of an adder network and online delay is zero .

Proof: A simple shift operation is sufficient to carry out mult iplication by powers o f 2. Thus adders are not required. In the

case of online arithmetic, the shift need not be performed and hence there is no online delay. The multiplication factor from

Theorem 1 is 2k+⌊log2 1⌋ = 2k.

3. Online Multiple Constant Multiplication

Online multip le constant multip lications (OMCM) involve mult iplication of a single input by different constant

coefficients. Fig. 5 shows a graph representation of an instance of the MCM problem given by the equations:

 𝑦1 = 𝑠1𝑥 + 𝑠2𝑥, 𝑦2 = 𝑠3𝑥 + 𝑠4𝑥, 𝑦 = 𝑠5𝑦1 + 𝑠6𝑦2

Fig. 5 Graph representation of an instance of the MCM problem

The intermediate nodes represent the output of multip licat ion by different constants. The intermediat e results are called

fundamentals [2] and can be used to produce the results of multiplication by larger constants. By combin ing results in this way,

networks that use fewer resources can be synthesized. For example, the online adder-network in Fig. 6 realizes an instance of

the MCM problem for multiplication of a single input 𝑥[𝑛] by multiple constants 3, 11 and 15.

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

222

Fig. 6 Online adder network for an instance of MCM

The realization uses intermediate results :

11𝑥 [𝑛] = 8𝑥[𝑛] + 3𝑥[𝑛], 15𝑥[𝑛] = 4𝑥[𝑛] + 11𝑥[𝑛]

The search for fundamentals to obtain an optimal MCM network is NP-complete. Constraints have to be imposed on the

search to obtain a solution in polynomial t ime. The number of online adders required and the online delay are two metrics used

to select fundamentals for synthesizing larger constants. Theorems 3-6 establish the effect of the choice of type and number of

fundamentals on these two metrics. The proposed online MCM technique uses a structure similar to the RAG-n algorithm. It

has an optimal part that attempts to synthesize the constants with one extra adder per constant and a heuristic part that operates

under a maximum adder or maximum online delay constraint .

3.1. Summation of intermediate constant and shifted input

Theorems 3 and 4 together with Coro llaries 3 and 4 state some basic results involved in the number of adders required and

the online delay when a larger constant is formed by adding an intermediate smaller constant and shifted input .

Theorem 3: If a larger constant 𝜑2 is formed by adding a smaller constant 𝜑1 and 2𝑘 , 𝑘 = 0,1,2,3, … , then the number

of olFA4s 𝑛 required for OMCM is 𝑛1 + 1, where 𝑛1is the number of olFA4s required to implement multiplication by 𝜑1.

Proof: 𝜑2 = 𝜑1 + 2𝑘 (1)

2𝑘 is a shift operation and does not require adders. Therefore, 𝜑2𝑥 = 𝜑1𝑥 + 2𝑘 𝑥 requires only one extra olFA4 to

perform the addition of 𝜑1𝑥 and 2𝑘 𝑥. Hence, n = 𝑛1 + 1.

Corollary 3: Considering 𝜑2 formed as in (1), OMCM does not increase the number o f olFA4s for 𝜑2𝑥 and can result in

a reduction in the number of olFA4s required if 𝑛2 > 1, where 𝑛2 is the number of olFA4s required to implement single

constant multiplication by 𝜑2.

Proof: Let the number of olFA4s required to implement 𝜑𝑖𝑥 be 𝑛𝑖 . Then 𝑛𝑖 will be greater than or equal to 1. For 𝑛2 = 1,

number of olFA4s = 𝑛1 + 𝑛2 = 𝑛1 + 1 = 𝑛. Thus, there is no increase in the number of olFA4s. For 𝑛2 = 2, number of

olFA4s = 𝑛1 + 𝑛2 = 𝑛1 + 2. In general, fo r 𝑛2 = 𝑝, number of o lFA4s = 𝑛1 + 𝑛2 = 𝑛1 + 𝑝. Reduction in the number of

olFA4s = 𝑛1 + 𝑝 − 𝑛 = 𝑝 − 1.

Theorem 4: If a larger constant 𝜑2 is formed by adding a smaller constant 𝜑1 and 2𝑘 , 𝑘 = 0,1,2,3, … , then the online

delay for OMCM implementation of 𝜑2𝑥 is 𝛿2𝑀𝐶𝑀 = 𝛿1 + 2, where the online delay due to multiplication by 𝜑1is 𝛿1.

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

223

Proof: From Theorem 3, only one extra addition is required to implement 𝜑2𝑥 if 𝜑1𝑥 is already implemented. 𝛿2𝑀𝐶𝑀 =

 𝛿1 + 𝑜𝑛𝑙𝑖𝑛𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑜𝑙𝐹𝐴4 = 𝛿1 + 2.

Corollary4: OMCM does not increase the online delay only if ⌈𝑙𝑜𝑔2 𝜌1
⌉ + 1 ≤ ⌈𝑙𝑜𝑔2 𝜌2

⌉, where𝜌1 and 𝜌2 are the

Hamming weights of 𝜑1and 𝜑2respectively.

Proof: Online delay for multip licat ion by 𝜑𝑖 = 𝛼𝑖𝜆 is 𝛿𝑖 = 2 × 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑎𝑑𝑑𝑒𝑟 𝑡𝑟𝑒𝑒 = 2 × ⌈𝑙𝑜𝑔2 𝜌𝑖
⌉, where 𝜌𝑖 is the

number of nonzero terms in the binary representation of 𝛼𝑖 . 𝛿2𝑀𝐶𝑀 = 𝛿1 + 2 = 2 × ⌈𝑙𝑜𝑔2 𝜌1
⌉ + 2. 𝛿2𝑀𝐶𝑀 ≤ 𝛿2 only if

2 × ⌈𝑙𝑜𝑔2 𝜌1
⌉ + 2 ≤ 2 × ⌈𝑙𝑜𝑔2 𝜌2

⌉, i.e. ⌈𝑙𝑜𝑔2 𝜌1
⌉ + 1 ≤ ⌈𝑙𝑜𝑔2 𝜌2

⌉.

3.2. Summation of q intermediate constants

Theorems 5 and 6 together with Coro llaries 5-7 state some basic results involved in the number of adders required and the

online delay when 𝑞 fundamentals are used to form a larger constant.

Theorem 5: If a larger constant 𝜑𝜗 is formed by adding smaller constants 𝜑𝑖 , i.e. 𝜑𝜗 = 𝜑1 + 𝜑2 + ⋯ + 𝜑𝑞 = ∑ 𝜑𝑖
𝑞
𝑖 =1

where 𝜑1 < 𝜑2 < ⋯ < 𝜑𝑞 < 𝜑𝜗 , then 𝑞 − 1 additions are required to obtain 𝜑𝜗 if 𝜑𝑖 , 𝑖 = 1, 2,… , 𝑞 are already computed.

Proof: For 𝜑𝜗 = 𝜑1 + 𝜑2

𝜑𝜗𝑥 = 𝜑1𝑥 + 𝜑2𝑥. As 𝜑1𝑥 and 𝜑2𝑥 have already been implemented; only one extra olFA4 is required for adding

𝜑1𝑥 and 𝜑2𝑥 to obtain 𝜑𝜗𝑥. The number of olFA4s for MCM, 𝑛 = 𝑛1 + 𝑛2 + 1, where 𝑛i is the number of olFA4s required to

implement multiplication by 𝜑𝑖 , 𝑖 = 1, 2.

For 𝜑𝜗 = 𝜑1 + 𝜑2 + ⋯ + 𝜑𝑞 = ∑ 𝜑𝑖
𝑞
𝑖=1 ;

𝜑𝜗𝑥 = ∑ 𝜑𝑖
𝑞
𝑖=1 𝑥 In this case, n = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑞 + q − 1 = ∑ 𝑛𝑖

𝑞
𝑖=1 + 𝑞 − 1.

Corollary 5: OMCM does not increase the number of olFA4s for 𝜑𝜗𝑥 = 𝜑1𝑥 + 𝜑2 𝑥 and can result in a reduction in the

number of olFA4s required if 𝑛𝜗 > 1 where 𝑛𝜗 is the number of olFA4s required to implement multiplication by 𝜑𝜗 .

Proof: Let 𝑛𝑖 be the number of olFA4s required to implement 𝜑𝑖𝑥 .Then, 𝑛𝑖 ≥ 1 . For 𝑛𝜗 = 1, number of olFA4s

= 𝑛1 + 𝑛2 + 𝑛𝜗 = 𝑛1 + 𝑛2 + 1 = 𝑛. Thus, there is no increase in the number of olFA4s. For 𝑛𝜗 = 2, number o f olFA4s

= 𝑛1 + 𝑛2 + 2. In general, fo r 𝑛𝜗 = 𝑝, number of o lFA4s = 𝑛1 + 𝑛2 + 𝑛𝜗 = 𝑛1 + 𝑛2 + 𝑝. Reduction in the number of olFA4s

= 𝑛1 + 𝑛2 + 𝑝 − 𝑛 = 𝑝 − 1.

Corollary 5: OMCM does not increase the number of olFA4s for 𝜑𝜗𝑥 = 𝜑1𝑥 + 𝜑2𝑥 + ⋯ + 𝜑𝑞𝑥 = ∑ 𝜑𝑖
𝑞
𝑖=1 𝑥 if

 𝑛𝜗 = 𝑞 − 1 and can result in a reduction in the number of olFA4s required if 𝑛𝜗 > 𝑞 − 1. Thus, an upper bound on the value

of 𝑞 for 𝜑𝜗 = ∑ 𝜑𝑖
𝑞
𝑖=1 to reduce the number olFA4s required is 𝑞 < 𝑛𝜗 + 1.

Proof: For 𝑛𝜗 = 𝑝, number of olFA4s = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑞 + 𝑛𝜗 = ∑ 𝑛𝑖
𝑞
𝑖=1 + 𝑝. Difference in the number of olFA4s

required = ∑ 𝑛𝑖
𝑞
𝑖=1 + 𝑝 − 𝑛 = ∑ 𝑛𝑖

𝑞
𝑖 =1 + 𝑝 – (∑ 𝑛𝑖

𝑞
𝑖=1 + 𝑞 − 1) = 𝑝 − (𝑞 − 1). There is no increase in the number o f o lFA4s

required if 𝑛𝜗 = 𝑝 = 𝑞 − 1. There will be a reduction in the number of olFA4s required if 𝑛𝜗 > 𝑞 − 1

Theorem 6: If a larger constant 𝜑𝜗 is formed by adding smaller constants 𝜑𝑖 , i.e. 𝜑𝜗 = 𝜑1 + 𝜑2 + ⋯ + 𝜑𝑞 = ∑ 𝜑𝑖
𝑞
𝑖=1

where 𝜑1 < 𝜑2 < ⋯ < 𝜑𝑞 < 𝜑𝜗 , then the online delay for the OMCM implementation of 𝜑𝜗𝑥 is

𝛿𝜗𝑀𝐶𝑀 = 𝑚𝑎𝑥 (𝛿1,𝛿2 , … , 𝛿𝑞) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉, where the online delay due to multiplication by 𝜑𝑖, 𝑖 = 1,2, . . 𝑞 is 𝛿𝑖.

Proof: From Theorem 5, 𝑞 − 1 extra additions are required to implement 𝜑𝜗𝑥 if 𝜑1𝑥,𝜑2𝑥, … , 𝜑𝑞𝑥 are already implemented.

𝛿𝜗𝑀𝐶𝑀 = 𝑚𝑎𝑥(𝛿1, 𝛿2,… ,𝛿𝑞) + 2 × 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑎𝑑𝑑𝑒𝑟 𝑡𝑟𝑒𝑒 𝑓𝑜𝑟 𝑞 − 1 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑚𝑎𝑥(𝛿1, 𝛿2,… , 𝛿𝑞) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

224

Corollary7: OMCM does not increase the online delay only if 𝑚𝑎𝑥(⌈𝑙𝑜𝑔2 𝜌1
⌉, ⌈𝑙𝑜𝑔2 𝜌2

⌉,… , ⌈𝑙𝑜𝑔2 𝜌𝑞 ⌉) + ⌈𝑙𝑜𝑔2 𝑞⌉ ≤

⌈𝑙𝑜𝑔2 𝜌𝜗
⌉ where 𝜌𝑖 is the Hamming weight of 𝜑𝑖 , 𝑖 = 1,2, . . 𝑞.

Proof: 𝛿𝑖 = 2 × 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑎𝑑𝑑𝑒𝑟 𝑡𝑟𝑒𝑒 = 2 × ⌈𝑙𝑜𝑔2 𝜌𝑖
⌉. 𝛿𝜗𝑀𝐶𝑀 = 𝑚𝑎𝑥(𝛿1,𝛿2, … , 𝛿𝑞) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉from theorem 6.

= 𝑚𝑎𝑥 (2 × ⌈𝑙𝑜𝑔2 𝜌1
⌉, 2 × ⌈𝑙𝑜𝑔2 𝜌2

⌉, … ,2 × ⌈𝑙𝑜𝑔2 𝜌𝑞 ⌉) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉.

𝛿𝜗𝑀𝐶𝑀 ≤ 𝛿𝜗only if 𝑚𝑎𝑥(2 × ⌈𝑙𝑜𝑔2 𝜌1
⌉,2 × ⌈𝑙𝑜𝑔2 𝜌2

⌉, … ,2 × ⌈𝑙𝑜𝑔2 𝜌𝑞 ⌉) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉ ≤ 2 × ⌈𝑙𝑜𝑔2 𝜌𝜗
⌉.

i.e. if 𝑚𝑎𝑥(⌈𝑙𝑜𝑔2 𝜌1
⌉, ⌈𝑙𝑜𝑔2 𝜌2

⌉,… ,⌈𝑙𝑜𝑔2 𝜌𝑞 ⌉) + ⌈𝑙𝑜𝑔2 𝑞⌉ ≤ ⌈𝑙𝑜𝑔2 𝜌𝜗
⌉. Hence the result.

Based on the results of Theorems 3-6 the following rules can be stated.

3.3. Rules for online multiple constant multiplications (OMCM)

Rule 1: The choice of whether to perform OSCM for 𝜑2𝑥 or OMCM as 𝜑2𝑥 = 𝜑1𝑥 + 2𝑘 𝑥 is governed by the trade-off

between the impact on the number of olFA4s n = 𝑛1 + 1as given by Theorem 3 and the effect on online delay 𝛿2𝑀𝐶𝑀 = 𝛿1 +

2 as given by Theorem 4.

Rule 2 : The choice o f whether to perform OSCM for 𝜑𝜗𝑥 or OMCM as 𝜑𝜗𝑥 = 𝜑1𝑥 + 𝜑2𝑥 + ⋯ + 𝜑𝑞𝑥 = ∑ 𝜑𝑖
𝑞
𝑖=1 𝑥 is

governed by the trade-off between the impact on the number of olFA4s n = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑞 + 𝑞 − 1 = ∑ 𝑛𝑖
𝑞
𝑖=1 + 𝑞 − 1 as

given by Theorem 5 and the effect on online delay 𝛿𝜗𝑀𝐶𝑀 = 𝑚𝑎𝑥(𝛿1,𝛿2, … , 𝛿𝑞) + 2 × ⌈𝑙𝑜𝑔2 𝑞⌉ as given by Theorem 6.

3.4. Separation cycles and minimum theoretic initiation interval

Online arithmetic permits overlapping the processing of successive instances of input vectors to increase throughput.

However, carefu l consideration of the impact of the online delay of exponent adjustment and mantissa multip licat ion is

required to determine the min imum theoretic init iation interval between two successive instances of the input vector. The

separation cycles are the clock cycles required before the digits of the next instance of the input vector can be input to th e

online module. The number of separation cycles is equal to the online delay of the module.

3.4.1. Separation cycles required for exponent adjustment operation

Let the online delay of the operation adjusting the exponent = 𝛿𝑒 . Then, the number of separation cycles required before

the next instance of the exponent can be input to the exponent adjustment module is 𝛿𝑒 cycles. However, since after the

exponent digits of the FP number are input, the mantissa digits are input to the mantissa mult iplier module , the minimum

number of separation cycles 𝑠𝑒 required reduces to

 0

0

0
e

e e

e

s
m if m

mif

 



  

 


 


 (2)

3.4.2. Separation cycles required for mantissa multiplication operation

Let the online delay of the mantissa shift-and-add network = 𝑚𝑑 . Then, the number of separation cycles required before

the next instance of the mantissa can be input to the shift and add network is 𝑚𝑑 cycles. However, since after the mantissa

digits of the FP number are input, the sign and exponent digits of the next instance are input to the sign and exponent

adjustment modules; the minimum number of separation cycles sm required reduces to

(1+) (1+) 0

0 (1+) 0

d d

m

d

e em i m
s

if m e

f  
 

 
 (3)

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

225

3.4.3. Minimum theoretic initiation interval

The in itiation interval is the total number of clock cycles required from the first dig it of the input to the last digit of t he

output of a particular instance of the FP vector. The minimum theoretic initiat ion interval 𝑖𝑖 between two successive FP input

vectors is 𝑖𝑖 = 𝑟 + 𝑚𝑎𝑥(𝑠𝑒 , 𝑠𝑚
), where 𝑟 is the number of dig its in the FP number including the sign d igit. The in itiation

interval has a direct impact on throughput.

4. Online Single and Multiple Constant Multipliers in FIR Filters

In this section, the online multip liers described in Sect ions 2 and 3 are used in FIR filter implementations to illustrate th eir

application.

4.1. Direct form FIR filter implementation

Fig. 7 shows the Direct Form implementation of a FIR filter given by the equation.

𝑦[𝑛] = 3𝑥[𝑛] + 11𝑥[𝑛 − 1] + 15𝑥[𝑛 − 2] + 11𝑥[𝑛 − 3] + 3𝑥[𝑛 − 4] (4)

The multip licands for each multip lier are d ifferent and hence this filter was realized using indiv idual online single

constant multip liers for each coefficient. The outputs of the multip liers are summed up using an online carry -save full adder

tree.

Fig. 7 Direct form FIR filter

4.2. Direct transposed form FIR filter implementation

The Direct Transposed Form of the same filter is shown in Fig. 8. As the input to each constant multiplier is the same, the

constant coefficient multipliers of this filter form were therefore realized using the online Multiple Constant Multiplier

network shown in Fig. 8.

Fig. 8 Direct transposed form FIR filter

5. Implementation and Simulation

The synthesized constants were implemented on the Virtex family of FPGAs. The implementation results for the Virtex 6

(xc6vlx75t-3ff484) FPGA are p resented below. Mathematical analysis was used to validate the designs which were also

verified by simulation using test benches that simulated the designs at all corners. Timing and I/O constraints were set in the

User Constraint Process of Xilinx ISE. Post Place and Route, the XPower Analyzer tool was invoked to evaluate power

consumption.

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

226

5.1. Online single constant multipliers

Online single constant mult ipliers were implemented fo r multip lication by φ = α λ, 𝜆=2k, 𝑘 = 0, 1, 2, 3… The results of the

implementation are p resented in Table 1. The online delay δ presented in Table 1 is the online delay 𝑚𝑑 of the shift-and-add

network. Online delay with normalization will be 𝑚𝑑 + 𝑛𝑑 ,where the normalizat ion delay 𝑛𝑑 = 1 + 𝑒, where 𝑒 is the number

of bits in the exponent.

Table 1 Online Single Constant Multiplication by φ

Φ = α 𝜆 δ Exp Adj
*

Delay

(ns)

Power-delay product

(ns-mW)

Clock frequency

(MHz)
LUTs

1λ 0 k + 0 1.280 1292.74 781.25 26

3𝜆 2 𝑘 + 1 1.348 1361.28 741.84 31

5𝜆 2 𝑘 + 2 1.348 1361.29 741.84 30

7𝜆 4 𝑘 + 2 1.468 1482.78 681.20 40

9𝜆 2 𝑘 + 3 1.268 1280.43 788.64 32

11𝜆 4 𝑘 + 3 1.633 1648.95 612.37 40

13𝜆 4 𝑘 + 3 1.439 1453.29 694.93 42

15𝜆 4 𝑘 + 3 1.920 1939.62 520.83 47
*
The exponent of the result of the multiplication has to be incremented by

 Exp Adj = ⌊𝑙𝑜𝑔2 𝜑⌋ as given in 2.2.

5.2. Online constant coefficient multipliers FIR filter implementation

Table 2 presents a comparison of OSCM and OMCM based mantissa module implementations of the FIR filters of Fig. 7

and Fig. 8. The Direct Transposed form (OMCM) shows on an average 23% improvement in clock frequency and uses 89%

fewer slice LUTs and 91% fewer slice reg isters than existing designs. The existing designs used for comparison are FPGA IP

core based designs - one using distributed memory and a second one using dedicated mult ipliers , as well as an implementation

using the approximate RoBA multip lier presented by Zendegani et al. [15]. The Verilog implementation available for Virtex 6

FPGAs is used for IP core based designs. The increase in δ of the IP core based design can be attributed to the fact that the IP

core mult ipliers have been designed for parallel arithmetic and hence use of these mult ipliers for online arithmetic requires a

conversion of serial data to parallel. This can be circumvented by high-speed serial I/Os that have gigabit serializer–

deserializer architectures. However, the use of parallel addit ion and multiplication results in an increase in delay and reso urce

utilization.

Table 2 FIR filter mantissa module implementation

FIR Filter Form δ
Power- delay product

(ns-mW)

Clock frequency

MHz

No. of

Slice LUTs

No. of

Slice Registers

No. of

Slices

Direct Form – online (OSCM) 11 2069.292 488.520 50 84 29

Direct Transposed Form – online (OMCM) 11 1982.799 513.875 27 30 19

Direct Form Using FPGA IP Core

(Distributed Memory)
34 2793.547 363.108 283 350 119

Direct Form Using FPGA IP Core

(Dedicated Multipliers with DSP48E1s)
34 2984.43 340.252

205

(DSP48E1s = 2)
350 101

Direct Form

Using Approximate RoBA multipliers [15]
34 2105.512 481.232 260 364 104

5.3. OMCM versus Digit- serial constant coefficient multipliers

The resource utilizat ion of the online multip le constant multip lication network is compared with the dig it-serial (LSDF)

MCM implementations of Hcub + ILP-DS algorithm [4], the Exact CSE algorithm [5] and the MINAS-DS algorithm [18] in

terms of the number of slice LUTs and registers for sets of varying numbers of constants (see Figs. 9-10). Sets of randomly

generated 12 bit constants were generated using the randi function in MATLAB.

The Exact CSE, Hcub and the MINAS-DS algorithms use the SD number representation which on an average requires 34%

fewer non-zero bits compared to the binary CS representation. However, the SD number representation requires the use of costly

online SD subtractors. On an average, the Exact CSE, Hcub and MINAS-DS algorithms require 68%, 64% and 63% more slice

LUTs respectively compared to the OMCM algorithm as can be seen from Fig. 9. Further, Fig. 10 shows that the Exact CSE,

Hcub and MINAS-DS algorithms require 42%, 35% and 34% more slice registers respectively than the OMCM algorithm.

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

227

Fig. 9 Resource utilization - slice LUTs Fig. 10 Resource utilization - slice registers

To summarize the results, the proposed online constant coefficient mult ipliers are compared in Table 2 with constant

coefficient mult ipliers implemented using Xilinx IP core based designs as well as approximate RoBA mult ipliers. Online

designs are shown to use fewer FPGA resources, reduce online delay and increase clock frequency as shown in Tab le 2. Online

constant coefficient multip liers have the added benefit of reduced interconnection complexity between modules. Online

multip le constant multip liers are also compared with existing serial arithmetic constant coefficient multip liers. The reduced

complexity of the proposed OMCM operators and the choice of a parameter set that select fundamentals suitable for online

arithmetic are shown to result in a reduction in resource requirement as observed from Figs. 9-10.

6. Conclusion

Online arithmetic reduces operator complexity and the interconnections in modules. The shift-and-add algorithm that is

commonly used for mult iplication by constants requires left shifts. A left shift in online arithmetic makes the system

implementation non-causal. A novel adaptation of the shift-and–add algorithm for serial MSDF data using right shifts rather

than left shifts is presented in this paper. The outputs obtained are scaled due to the use of right shifts and can be corrected by

adjusting the exponents of the FP outputs. The expected bit growth also has to be considered to normalize the output. The

MCM problem is NP-complete and therefore realistic constraints have to be imposed on the problem to obtain an optimal

solution in a reasonable time. Based on Theorems 3-6, a set of rules for online mult iple constant multip lications are proposed

that can be used to set constraints on the number of online full adders and online delay. Multip le constant multip liers show

improvement in key parameters such as power-delay product and clock frequency and require fewer resources than single

constant multip liers and bit-parallel implementations. The p roposed online multip le constant coefficient mult ipliers show

significant savings in resource utilization in comparison with digit -serial mult ipliers and approximate RoBA multip liers.

Future work will develop algorithms for synthesis of OMCM constants under various constraints .

References

[1] D. R. Bull and D. H. Horrocks, “Primit ive operator digital filters,” IEE Proceedings G - Circuits, Devices and Systems, vol.

138, no. 3, pp. 401-412, June 1991.

[2] A. G. Dempster and M. D. Macleod, “Constant integer multip licat ion using minimum adders,” IEE Proceedings - Circuits,

Devices and Systems, vol. 141, no. 5, pp. 407-413, October 1994.

[3] Y. Voronenko and M. Püschel, “Mult iplierless mult iple constant multip licat ion,” ACM Transactions on Algorithms, vol. 3,

no. 2, p. 11, May 2007.

[4] L. Aksoy, E. Costa, P. Flo res, and J. Monteiro, “Exact and approximate algorithms for the optimization of area and delay

in multiple constant mult iplications,” IEEE Transactions on Computer-Aided Design of Integrated Circu its and Systems ,

vol. 27, no. 6, pp. 1013-1026, June 2008.

[5] L. Aksoy, E. O. Güneş, and P. Flores, “Search algorithms for the mult iple constant multip licat ions problem: exact and

approximate,” Microprocessors and Microsystems, vol. 34, no. 5, pp. 151-162, August 2010.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

number of constants

a
ve

ra
g
e

 n
u
m

b
e
r

o
f

s
li
ce

 L
U

T
s

Exact CSE

Hcub

MINAS-DS

OMCM

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

number of constants

a
ve

ra
g
e

 n
u
m

b
e
r

o
f

s
li
ce

 r
e
g

is
te

rs

Exact CSE

Hcub

MINAS-DS

OMCM

International Journal of Engineering and Technology Innovation, vol. 7, no. 3, 2017, pp. 217 - 228

Copyright © TAETI

228

[6] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Finding the optimal tradeoff between area and delay in mult iple constant

multiplications,” Microprocessors and Microsystems, vol. 35, no. 8, pp. 729-741, November 2011.

[7] L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro , “Optimization of area in dig it-serial multiple constant

multip licat ions at gate-level,” Proc. IEEE Symp. Circuits and Systems (ISCAS 2011), IEEE Press, May 2011, pp.

2737-2740.

[8] L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro, “High-level algorithms for the optimization of gate-level area in

digit-serial multiple constant multiplications,” Integration, the VLSI Journal, vol. 45, no. 3, pp. 294-306, June 2012.

[9] K. Johansson, O. Gustafsson, A. Dempster, and L. Wanhammar, “Algorithm to reduce the number of shifts and additions

in multiplier blocks using serial arithmetic,” Proc. IEEE Mediterranean Electrotechnical Conference, IEEE press, May

2004, pp. 197-200.

[10] K. Johansson, O. Gustafsson, and L. Wanhammar, “Multiple constant multip licat ion for dig it-serial implementation of low

power FIR filters,” WSEAS Transactions on Circuits and Systems , vol. 5, no. 7, pp. 1001-1008, July 2006.

[11] W. Vanderbauwhede and K. Benkrid, High-performance computing using FPGAs, New York: Springer, 2013.

[12] M. Kumm, K. Liebisch, and P. Zipf, “Reduced complexity single and multip le constant multip licat ion in floating point

precision,” Proc. Conf. Field Programmable Logic and Applications (FPL 2012), IEEE press, August 2012, pp. 255-261.

[13] M. Faust and C. H. Chang, “Bit-parallel multip le constant multip lication using look-up tables on FPGA,” Proc. IEEE

Symp. Circuits and Systems (ISCAS 2011), IEEE press, May 2011, pp. 657-660.

[14] Q Wang, Y Li, B Shao, S Dey, and P Li, “Energy efficient parallel neuromorphic architectures with approximate

arithmetic on FPGA, “ Neurocomputing, vol. 221, pp. 146-158, January 2017.

[15] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBA multiplier: A rounding-based

approximate mult iplier for high-speed yet energy-efficient digital signal processing,” Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 25, no. 2, pp. 393-401, February 2017.

[16] G. B. Joseph and R. Devanathan, “Radix-2
h

online floating point multipliers,” Proc. IEEE Conf. Dallas Circuits and

Systems (DCAS 14), IEEE press, October 2014, pp. 1-4.

[17] J. Olivares, J. Hormigo, J. Villalba, I. Benavides, E. L. Zapata, “SAD computation based on online arithmet ic for motion

estimation,” Microprocessors and Microsystems, vol. 30, no. 5, pp. 250-258, August 2006.

[18] M. Faust and C. H. Chang, “Minimal logic depth adder tree optimizat ion for multip le constant mult iplication,” Proc. IEEE

Symp. Circuits and Systems (ISCAS 2010), IEEE press, May-June 2010, pp. 457-460.

