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Abstract 

In this work, a theoretical approach is proposed for estimating the minimum and maximum reinforcement ratios 

for hybrid glass fiber reinforced polymer (GFRP)/steel-reinforced concrete beams to prevent sudden and brittle 

failure as well as the compression failure of concrete before the tension failure of reinforcements. Equilibrium 

equations were used to develop a method for determining the minimum hybrid GFRP/steel reinforcement ratio. A 

method for determining the maximum hybrid GFRP/steel reinforcement ratio was also developed based on the 

equilibrium of forces of the balanced failure mode. For estimating the load-carrying capacity of concrete beams 

reinforced with hybrid GFRP/steel, less than the minimum and more than the maximum reinforcement ratio is 

recommended. Comparisons between the proposed expressions, experimental data, and available test results in the 

literature shows good agreement between the theoretical and experimental data, with a maximum discrepancy of 7%.  
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1. Introduction 

Since the 1980s, fiber reinforced polymer (FRP) reinforcement has been used in modern construction [1-3] to replace 

conventional steel bars in reinforced concrete (RC) structures in specific environments [2-4]. Glass fiber reinforced polymer 

(GFRP) is one of the FRPs with high tensile strength and low elastic modulus. Thus, a concrete beam reinforced with GFRP 

exhibits a higher deflection and wider crack width than that reinforced with steel bars [5-8]. Many researchers have suggested 

adding longitudinal steel bars to GFRP RC beams to improve their flexural performance; hence, hybrid FRP/steel RC beams 

were developed. Experimental studies have shown that the ductility of hybrid GFRP/steel RC beams is significantly enhanced 

compared with that of pure GFRP RC beams. Moreover, steel reinforcement increases the flexural stiffness of GFRP RC 

beams, and hybrid GFRP RC beams exhibit lower deflection, smaller crack width, and higher load-carrying capacity compared 

with the concrete beams reinforced with GFRP bars [9-15]. Depending on the hybrid reinforcement ratios, six failure modes, 

including two balanced failure modes, have been identified for hybrid GFRP/steel RC beams [15]. Based on the classification 

of failure modes, researchers have proposed formulas to determine the load-carrying capacity of hybrid GFRP/steel RC beams 

[12, 14-16]. According to many researchers, for hybrid GFRP/steel RC beams, the preferred failure mode is concrete crushing 

after the yielding of steel [15-18]. To the best of our knowledge, previous studies have focused on the classification of the 

failure modes of hybrid GFRP/steel RC beams, and proposed analytical equations to separate these failure modes according to 

their reinforcement ratios. There are no studies on limits on the minimum and maximum reinforcement ratios of concrete 

beams reinforced with hybrid GFRP/steel bars.  
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For conventional RC, the minimum and maximum reinforcement ratios are set by various design standards. According to 

SP 63.13330.2018 [19], the minimum reinforcement ratio for RC beams (µs,min) should be greater than 0.1% to ensure that the 

beam can still carry a load after the appearance of the first crack. This standard also limits the maximum reinforcement ratio for 

steel RC beams (µs,max) to prevent concrete crushing in the compression zone as follows: 
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where ξR is the relative height limit of the compression zone. 

ACI 318–19 [20] sets the minimum area of steel reinforcement in beams as follows: 
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where fc’ is the compressive strength of concrete, fy is the yield strength of the steel bar, bw is the width of a rectangular section 

or T-section, and d is the effective depth of the beam. 

According to ACI 318–19 [20-21], the maximum reinforcement ratio for steel RC concrete beams is determined as 

follows: 

1
max

0.85
( )c s cu

y s cu y

f E

f E f
=

+

′β ε
ρ

ε
 (3) 

where β1 = 0.85, Es is the elastic modulus of the steel bar, and εcu is the ultimate compressive strain in concrete. 

For a FRP RC concrete beam, SP 295.1325800.2017 [22] sets the minimum FRP reinforcement ratio as 
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Similarly, ACI 440.1R-15 [23] recommends the minimum area of FRP reinforcement as  
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where ffu is the tensile strength of the FRP bar. 

FRP reinforcement bars have a higher tensile strength and lower elastic modulus than steel bars. Therefore, to hinder the 

development of crack widths and deflections, FRP RC beams are often designed as over-reinforced, and many design standards 

do set limits on the maximum FRP reinforcement ratio. 

There are some approaches to develop formulas for determining the limiting reinforcement ratios for RC beams. The most 

popular methods are the fracture mechanics method and equilibrium equations method, which equate the cracking moment Mcr 

to the flexural strength Mu [24-25]. The latter method is used in existing standards and design codes.  

In this work, a theoretical approach based on the equilibrium equations method for the minimum and maximum hybrid 

GFRP/steel reinforcement ratios in beams subjected to flexure, associated with minimum and maximum strength at ultimate 

limit state, is presented. The analytical formulas for determining the load-carrying capacity of hybrid GFRP/steel RC beams 

with reinforcement lower than the minimum reinforcement ratio and higher than the maximum reinforcement ratio, are 

introduced. Comparisons were made between the proposed expressions and test results.  
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2. Minimum Reinforcement Ratio for Hybrid GFRP/Steel RC Beam 

2.1.   Cracking moment of a plain concrete beam 

SP 63.13330.2018 [19] introduced a simple formula to determine the cracking moment of a plain concrete beam, under 

the assumption that the concrete in the tension and compression zones behaves elastically. Accordingly, the cracking moment 

of a plain concrete beam with a rectangular cross-section b × h is equal to the section modulus W time tensile strength of 

concrete Rbt (6). In fact, prior to concrete cracking, the concrete in the tension zone behaves inelastically. Therefore, the 

theoretical cracking moment according to Eq. (6) is smaller than the actual cracking moment.  

2

, 6crc b bt bt

bh
M R W R= =  (6) 

To accurately estimate the cracking moment of concrete beams, it is necessary to consider the nonlinear behavior of 

concrete in the tension zone. This section introduces an analytical method for calculating the cracking moment of a plain 

concrete beam, which considers the inelastic behavior of concrete in the tension zone. To determine the cracking moment, the 

bilinear simplified stress–strain relationship of concrete introduced in SP 63.13330.2018 [19] was used, as shown in Fig. 1. In 

a plain concrete beam, the first normal crack occurs when the tensile strain and stress at the outermost tension face reach their 

ultimate values, that is, εbt = εbtu = εbt2 and σbt = Rbt ( Fig. 1). The stress–strain distribution at the normal cross-section just before 

concrete cracking is shown in Fig. 2. Before cracking, assuming that the concrete in compression behaves elastically, a 

triangular stress profile can be adopted. For concrete in tension, considering the plastic behavior of concrete, the trapezoidal 

shape of the stress block with a peak tensile strength of Rbt according to the stress–strain curve of concrete (Fig. 1) was used 

[19]. 

 
Fig. 1 Bilinear stress–strain curve of concrete [19] 

   
(a) Cross-section (b) Strain distribution (c) Stress distribution 

Fig. 2 Distribution of strain and stress at the normal cross-section at the moment before cracking for a plain concrete beam 

Based on the stress distribution at the normal cross-section in Fig. 2(c), the cracking moment is determined by taking the 

moment about the axis passing through the neutral surface as follows: 
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where x is the height of the compression zone, which was calculated by considering the equilibrium of the cross-section, σb is 

the compressive stress in concrete at the outermost face before concrete tension zone cracking, which can be determined as 

follows: 
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where Eb,red = Rb/εb1red, Rb is the prism compressive strength of concrete, and εb1red = 0.0015 and εbtu = εbt2 = 0.00015 (Fig. 1) 

[19]. 

The equilibrium of forces according to Fig. 2(c) is 
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By setting r = Rb/Rbt and ξ = x/h as the relative compression height, substituting these variables into Eq. (9), and then solving 

this equation, the relative height of the compression zone is obtained as follows: 
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Substituting Eq. (8) into Eq. (7), the formula for determining the cracking moment of a plain concrete beam is  
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2.2.   Load-carrying capacity of a hybrid GFRP/steel under RC beam 

 
Fig. 3 Schematic stress–strain diagrams of steel and GFRP [26-27] 

   
(a) Cross-section (b) Strain distribution (c) Stress distribution 

Fig. 4 Distribution of strain and equivalent stress at the normal cross-section upon failure for an under-reinforced hybrid 
GFRP/steel RC beam 

In a hybrid GFRP/steel under RC beam, the failure of the normal cross-section occurs in the following sequence: first, the 

steel bars yield; then, the GFRP bars rupture, which crushes the concrete in the compression zone [15]. It should be noted that 

the rupture strain of FRP bar εfu is higher than the yield strain of steel bar εsy, and is much lower than the ultimate strain of the 
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steel bar (Fig. 3). Therefore, upon the rupture of the FRP bar, the steel bar still works in the yield stage. The distribution of 

strain and equivalent stress at the normal cross-section of the beam is shown in Fig. 4. 

The height of the concrete compression zone x can be obtained from the equilibrium of the internal forces: 
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b
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σ
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where Rg and Ag are the tensile strength and total area of GFRP bars; and σsy and As are the yield strength and total area of steel 

bars, respectively. 

The moment capacity of the normal cross-section Mu can be determined by taking the moment about the axis passing 

through the centroid of the equivalent concrete compressive stress block as follows: 
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where h0g and h0s are the distances from the outermost compression face to the centroids of the GFRP and steel bars, 

respectively (Fig. 4). 

2.3.   Minimum hybrid GFRP/steel reinforcement ratio 

If the failure of a hybrid GFRP/steel RC beam is controlled by the yielding of steel and rupturing of FRP, then a minimum 

amount of hybrid GFRP/steel reinforcement should be provided to prevent failure upon concrete cracking [24-28]: 

,u crc bM M=φ  (14) 

where ϕ is the strength reduction factor of the beam, ϕ ≤ 1.  

The following equation can be expressed by the combination of Eqs. (11), (13), and (14): 
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Setting µg = Ag/(bh0g) as the GFRP reinforcement ratio, µs=As/(bh0s) as the steel reinforcement ratio, and αs = σsy/Rb, αg = Rg/Rb, 

then Eq. (15) can be simplified as follows:  
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Assuming that h0g = h0s and r =Rb/Rbt, we simplify Eq. (16) and obtain the following equation: 
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The following hybrid reinforcement ratio can be set: 

sg s s g g= +µ α µ α µ  (18) 

Combining Eqs. (17) and (18): 
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The minimum hybrid GFRP/steel reinforcement ratio for the concrete beam can be obtained by solving Eq. (19) as follows:  

2 3 2

,min 2
0

2 611(1 )
1 1

30(1 ) 1350sg

s

h r

rh

 −
= − − + 

− 

ξ ξ
µ

ξφ
 (20) 

The load-carrying capacity of concrete reinforced with a hybrid GFRP/steel reinforcement ratio µsg below the minimum 

requirement µsg,min is recommended to obtain the equal cracking moment of the corresponding plain concrete beam, that is, by 

Eq. (11).  

3. Maximum Hybrid GFRP/Steel Reinforcement Ratio 

The hybrid GFRP/steel reinforcement ratio for a concrete beam should be limited so that concrete crushing in the 

compression zone does not occur until the yielding of steel. To determine the maximum hybrid GFRP/steel reinforcement ratio, 

the balanced failure mode, in which the yielding of steel and concrete crushing occur simultaneously, is used. In this case, the 

strain and stress in concrete at the outermost face reach their ultimate values, that is, εb = εbu = 3.5 × 10–3 and σb = Rb. The strain 

and stress in the steel bars also reached εs = εsy = σsy/Es and σs= σsy at the yield point. However, the tensile strain and stress in 

GFRP bars have not reached their ultimate values. The distribution of strain and stress at the normal cross-section of the beam 

is shown in Fig. 5. 

   
(a) Cross-section (b) Strain distribution (c) Stress distribution 

Fig. 5 Distribution of strain and stress at the normal cross-section for balanced failure mode of the hybrid GFRP/steel RC beam 

From Fig. 5(b), the height of the concrete compression zone x0 is determined according to the strain compatibility as 

follows: 
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where x is the height of the equivalent rectangular concrete compressive stress block, x0 is the neutral axis depth, and ω = x/x0 

= 0.85 [23]. 

The force equilibrium condition is as follows: 
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where σg is the stress in the GFRP bars, which is determined by considering the linear behavior of the GFRP bar until failure 

and the strain compatibility (Fig. 5): 
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Substituting Eqs. (21) and (23) into Eq. (22), and setting α = h0s/h0g, the force equilibrium condition can be rewritten as  

2

( )

( )

g sybu bu b bu
s g

s sy sysy bu

E R

E

+ −
+ =

+

ε ε αε ωε
µ µ

σ ε εα ε
 (24) 

Denoting the left side of Eq. (24) as the nominal hybrid reinforcement ratio converted by the elastic modulus µnom,E, and the 

right side as the maximum hybrid GFRP/steel reinforcement ratio µsg,max, the following equations can be expressed: 
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The hybrid GFRP/steel reinforcement ratio for the concrete beam should therefore be regulated so that concrete crushing 

in the compression zone does not occur until the yielding of steel: 
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The moment capacity of the beam can be obtained by taking the moment about the axis passing through the centroid of the 

tensile GFRP bars (Fig. 5): 

0
0 0

0 0

1
( )

2
( )

s bu
s gb bu

sybu

u s sy g s

sybu

h
R b h h

M A h h

−
+

= − −
+

ω ε
ω ε

ε ε
σ

ε ε
 

(28) 

From Eq. (27), the maximum reinforcement ratio for the hybrid concrete beam depends on the compressive strength of 

concrete, the yield strength of steel bars, the ultimate compressive strain in concrete, and the tensile strain of the steel bars at 

the yield point. 

4. Validation of Theoretical Equations through the Experiment Results 

To verify the proposed analytical equations for determining the minimum and maximum hybrid GFRP/steel 

reinforcement ratios, two hybrid GFRP/steel RC beams with dimensions of 150 mm × 250 mm × 2700 mm (b × h × l) were 

fabricated and tested. The beam specimens were tested in a four-point bending machine, with a testing span (l0) of 2400 mm, of 

which the pure bending length was 400 mm. The hybrid GFRP/steel reinforcement in the first beam (denoted as B1) was 

regulated according to Eqs. (18) and (20) such that µsg < µsg,min. The second beam (denoted as B2) was designed in line with the 

conditions of µsg,E > µsg,max according to Eq. (27). In the hybrid GFRP/steel RC beams, the GFRP and steel bars were arranged 

in two layers. The GFRP bars were located closer to the surface with a cover thickness (Cg) of 20 mm, while the steel rebars 

were located deeper with a cover thickness (Cs) of 50 mm. For beam B1, one GFRP bar with a diameter of 5 mm and a plain 

round steel bar with a diameter of 6 mm were used as tensile reinforcements; one plain round steel bar with a diameter of 6 mm 

was used as the compressive reinforcement. Single-legged stirrups from plain round steel bars with a diameter of 6 mm and 

spacings of 100 mm and 200 mm in shear span and midspan, respectively, were used. For beam B2, three GFRP bars with a 

diameter of 20 mm and three ribbed steel bars with a diameter of 20 mm were used as tensile reinforcements, and two plain 

round steel bars with diameter of 6 mm were used as compressive reinforcements. Double-legged stirrups from plain round 

steel bars with a diameter of 6 mm and spacings of 100 mm and 200 mm in shear span and midspan, respectively, were used. 

Details of the testing beams and the experimental scheme are shown in Fig. 6. 
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(a) Cross-sections of testing beams (b) Beam design and loading scheme 

Fig. 6 Details of the experimental hybrid GFRP/steel RC beams (mm) 

The concrete mixture proportion was designed to achieve the expected compressive strength of 40 MPa in 28 days. 

Ordinary Portland cement, coarse aggregates with a maximum size of 20 mm, and river sand were used in this study. The 

details on the proportions of the concrete mixture are listed in Table 1. According to the tensile test, the actual yield σsy and 

tensile strengths σsu of the ribbed steel bars were 410 MPa and 570 MPa, respectively. The corresponding values for the plain 

round steel bar are 309 MPa and 410 MPa, respectively. The tensile strength Rg and elastic modulus Eg of the GFRP bar 

provided by the manufacturer were 970 MPa and 44300 MPa, respectively. The average cubic compressive strength Rm of each 

concrete beam was evaluated by testing five cubic specimens (150 mm × 150 mm × 150 mm) after 28 days of curing. The 

material properties and detailed dimensions of the beams are listed in Table 2. 

Table 1 Mixture proportion of concrete (for 1 m3) 
OPC, kg Gravel, kg Sand, kg Water, lit 

350 1130 650 195 

To verify the applicability of the proposed formula (13) for determining the load-carrying capacity of hybrid GFRP/steel 

under RC beams, the experimental data from tested beams in the literature were collected, as shown in Tables 2 and 3. 

Table 2 The properties of the experimental beam 

References 
Beam 

ID 

b×h, 

mm 

Cg, 

mm 

Cs, 

mm 

h0g, 

mm 

h0s, 

mm 

Reinfor- 

cement 

Ag, 

cm2 

As, 

cm2 

µg, 

% 

µs, 

% 

Rm, 

MPa 

Rb, 

MPa 

Rbt, 

MPa 

Eb, 

GPa 

σsy, 

MPa 

σsu, 

MPa 

Es, 

GPa 

Rg, 

MPa 

Eg, 

GPa 

This study 
B1 150×250 20 50 227 197 1G5-1S6 0.13 0.28 0.038 0.096 38.1 30.5 2.3 32.1 309 358 200 970 44.3 
B2 150×250 20 60 220 180 3G20-3S20 7.79 9.42 2.36 3.49 42.7 34.2 2.4 33.7 410 570 200 970 44.3 

Lau and Pam 
[29] 

G03MD1 280×380 - - 351 351 - 2.84 9.82 0.3 1.03 48 38.4 2.58 35.2 336 470 200 588 39.5 

Tan [30] 
A2 175×350 - - 325 325 2G10-2S10 0.25 3.0 0.04 0.53 36.4 29.2 2.24 31.6 324 405 200 1776 52 
A3 200×400 - - 375 375 2G10-2S10 0.25 1.5 0.03 0.2 35.3 28.2 2.20 31.2 324 405 200 1776 52 

Notes: The prism compressive strength Rb, tensile strength Rbt, and elastic modulus of concrete Eb were determined according 
to the empirical equations as follows: Rb=0.8Rm; Rbt=5Rm/(45+Rm), MPa; Eb=55000 Rm/(27+Rm), MPa. 

Table 3 The comparison in results between the experiment and theory 

References Beam ID 

Experimental Theoretical 
Mu,t/ 

Mu,e 
Mcrc,e, 

kNm 

Mu,e, 

kNm 
Failure mode 

µsg 
(18) 

µsg,min  
(20) 

µsg,E 
(25) 

µsg,max  

(26) 
Case study Mu,t, kNm 

This study 
B1 5.70 5.85 SY, RG 2.18 2.8 0.11 5.82 µsg<µsg,min 5.7 (11) 0.97 
B2 7.10 68.10 CC 109.1 3.24 4.51 4.44 µsg,E>µsg,max 69.3 (28) 1.02 

Lau and Pam[29]  G03MD1 - 147.7 SY, RG, CC 13.6 2.03 - - µsg>µsg,min 157.7 (13) 1.07 

Tan [30]  
A2 - 43.5 SY, RG, CC 8.6 2.05 - - µsg>µsg,min 44.2 (13) 1.02 
A3 - 35.3 SY, RG, CC 4.4 1.56 - - µsg>µsg,min 34.2 (13) 0.97 

Notes: SY – steel yielding, RG – rupture of GFRP, CC – concrete crushing, the number in brackets () shows the sequence 
number of equations. 

All beams were tested up to failure under a monotonic load in the four-point bending test, as shown in Figs. 6 and 7 after 

28 days of curing. The maximum midspan deflection of the beam was measured using a linear variable differential transformer. 

Two indicators, I1 and I2, installed at two supports were used to eliminate the displacements of the supports. Two strain gauges, 

S1 and S2, were attached to record the strains in the steel bars and GFRP bars, respectively. The test was performed by means 

of displacement control at 1.8–2.2 mm/min, and the loading was paused at intervals of 10–15 s to record data from the dual 

indicators. The load value was measured by a load cell. The data from indicators were collected by the naked eye; all other data 

were automatically recorded by an acquisition system (STS-Wifi, USA). 
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Fig. 7 Bending test for the hybrid GFRP/steel RC beam 

Fig. 8 presents the relationship between the load and midspan deflection of the tested beams. The relationship between the 

moment and strains in materials at midspan is shown in Fig. 9. During the testing of beam B1, the first crack appeared at one of 

the loading points, and then at other loading points and at midspan. After the crack appeared at midspan, the stiffness of the 

beam significantly decreased, as shown by the jump in the load–deflection and moment–strain diagrams in Fig. 8(a) and Fig. 

9(a), respectively. Consequently, the midspan deflection and strains in the GFRP and steel bars developed rapidly, leading to 

the yielding of steel and rupturing of the GFRP bar with negligible load gain. After the rupture of the GFRP bar, the concrete in 

the compression zone was suddenly crushed (Fig. 10(a)) while the steel was still yielding; and the test was stopped 

immediately to protect the instruments. It can be seen from Fig. 8(a) and Fig. 9(a) that the maximum load on beam B1 at failure 

is almost equal to the cracking load. Fig. 10(a) shows that there are only two minor cracks at the loading points and one major 

crack at midspan at the moment of failure. 

  
(a) Load versus deflection graph of beam B1 (b) Load versus deflection graph of beam B2 

Fig. 8 Relationships between load and midspan deflections of tested beams B1 and B2 

  
(a) Beam B1 (b) Beam B2 

Fig. 9 Relationships between bending moments and strains in steel and GFRP bars of tested beams B1 and B2 

 
(a) Beam B1 

 
(b) Beam B2 

Fig. 10 Crack patterns and failure modes of tested beams 
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Owing to the high hybrid reinforcement ratio, after the appearance of the first crack, the deflection and strains in the 

GFRP and steel bars of beam B2 developed almost linearly until failure, as shown in Fig. 8(b) and Fig. 9(b). Failure of beam B2 

occurred by the concrete crushing in the compression zone without the yielding of steel bars and rupturing of GFRP bars (Fig. 

10(b)). At the point of maximum load, the strain in steel bar εs and GFRP bars εg (εs = 1.6 × 10–3 and εg = 1.85 × 10–3) were lower 

than the yield strain of steel (εsy = σsy/E s =2.05 × 10–3) and ultimate strain of GFRP bars (εgu = Rg/Eg = 21.9 × 10–3) (Fig. 9(b)), 

respectively.  

To compare the experimental and theoretical results, the minimum and maximum reinforcement ratios as well as the 

moment capacity of the tested hybrid GFRP/steel RC beams were calculated using the analytical equations proposed in 

Sections 2 and 3. The material properties used in the calculations are listed in Table 2. The strength reduction factor of the 

beam (ϕ) used in the calculation is equal to 1. A comparison of the experimental and theoretical results, presented in Table 3, 

showed good agreement. 

5. Conclusions 

In this work, an analytical formula for determining the minimum hybrid GFRP/steel reinforcement for a concrete beam to 

prevent the GFRP rupture failure upon concrete cracking is proposed by equating the cracking moment of a plain concrete 

beam and the load-carrying capacity of a hybrid GFRP/steel under RC beam. The formula for limiting the maximum hybrid 

GFRP/steel reinforcement for concrete beam was also introduced based on the equilibrium of forces in the balanced failure 

mode of a hybrid GFRP/steel RC beam, in which concrete crushing and yielding of steel occurred simulatensouly. The 

recommendations for determining the load-carrying capacities of concrete beams with GFRP/steel reinforcement less than the 

minimum required amount, or more than the maximum amount, are presented. Accordingly, the load-carrying capacity for the 

first case was assumed to be equal to the cracking moment of the plain concrete beam, whereas the load-carrying capacity for 

the latest case was determined as balanced failure. 

The equations proposed in this study were validated by the results of experiments conducted by the authors and the 

available experimental results in the literature. A comparison of theoretical and experimental results showed a deviation of less 

than 7%.  

It should be noted that the above conclusions are based on the theoretical approach and limited experimental data. Further 

research on this topic through experimental, numerical, and parametric studies on various types of FRP reinforcements and 

concrete will be conducted to verify the accuracy of the proposed theory. 
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