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Abstract 

This study investigates novel geopolymers by combining Reactive Ultra-fine Fly Ash (RUFA) with 4M sodium 

hydroxide as an alkali activator. Comparing with general fly ash geopolymers, RUFA geopolymer pastes are 

characterized in terms of compressive strength, microstructure, and crystalline phases. The RUFA geopolymer is 

successfully obtained as alumina-silicate bonding materials with the same properties as the general fly ash-based 

geopolymer. The high compressive strength of the RUFA-based geopolymer samples (13.33 MPa) can be attributed 

primarily to Ca-based alumino-silicate hydration products and Na-based alumino-silicate complexes. This research  

presents an innovative application for geopolymers using RUFA. In the follow-up study, the influence of synthesis 

and concentration of alkali activator can be considered in RUFA-based geopolymers.  
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1. Introduction 

1.1.   Background and motivation 

The explosion of the world’s population in the past few decades has created the problem of housing shortages. Most 

buildings are built by using cement, creating massive amounts of CO2 (the leading culprit of the greenhouse effect) [1-3]. 

Greenhouse gases retain the energy by absorbing infrared radiation and thereby cause the gradual temperature rise at the 

earth’s surface, which accelerates global warming. To mitigate the greenhouse effect, governments should focus on devising 

effective measures to reduce greenhouse gas emissions. Cutting down on cement use would not only reduce CO2 emissions and 

slow down the greenhouse effect, but also promote energy conservation. Portland cement is one of the primary materials used 

in construction. Approximately 3 billion tons of Portland cement is produced every year [4]. However, for every ton of 

Portland cement produced, 0.55 tons of CO2 is created via chemical reactions and 0.39 tons of CO is generated by combustion 

and fuel emissions during the production process, which adds up to approximately 0.94 tons of CO2 [5]. An investigation report 

in 2000 [6-7] revealed that an average of 0.87 kg of CO2 is emitted for every kilogram of cement produced and that the cement  
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manufacturing industry contributes to 7% of global CO2 emissions [8]. The report further forecasted that the global demand for 

Portland will double to 6 billion tons per year within the next 40 years [9]. Therefore, the use of suitable materials as an 

alternative to cement in construction materials is an important research issue. 

1.2.   Literature survey 

Geopolymer is one kind of low carbon emission green composites. It is formed through the process of geopolymerization 

after alkaline solution reacts with such industrial by-products or wastes. Geopolymer is an inorganic alumino-silicate 

compound and it is usually produced from conventional pulverized coal fly ash. An emerging technology for stabilizing the 

frame-like polymerization structure in geopolymer can help with energy saving and carbon reduction [10]. This new 

generation of green materials may also replace ordinary cement and concrete in the future. Geopolymer is composed of SiO4 

and AlO4 tetrahedrons sharing oxygen atoms to form a closed frame structure of Si-O-Al, which is similar to Zeolite. Its 

hardening mechanism is similar to that of conventional cement. It is the inorganic polymerization between the particles of the 

system colloid. The hardening time is about 1.5 to 2.0 hours at room temperature, which is one kind of early-strength material 

[10-11].  

The hardening mechanism of geopolymer is different from conventional cement in that the cement is hardened as a 

hydration bond, while the geopolymer is a chemical bond. At this stage, the development of geopolymer into a new generation 

of environmentally friendly materials has considerable real potential. Geopolymer should be multi-functional materials and 

have better properties than traditional cement-based materials, including rheological, mechanical, thermal properties, process 

properties, durability, and so on [12-13]. It has been already proven that some materials properties of geopolymer composites 

are comparable or even better than those of the traditional cementitious materials, which are another positive finding in 

addition to the environmental aspect. Albitar et al. [14] concluded that geopolymer concrete are more chemically stable and 

superior to conventional concrete in an acidic environment, and exhibit lower deterioration of mechanical properties under 

chemical attacks.  

An increasing burden on the environment caused by industrial activities (involving non-negligible contribution of cement 

production) creates a demand for seeking for reliable alternative non-cement construction materials possessing comparable 

properties with cementitious materials. There are various ways of preparation of promising non-cement materials which are 

based on partial replacement of cement by other eco-friendlier constituents. Non-cement materials produced by using various 

precursors and alkalis, or blending of materials, can react together and form a solid matrix of reasonable mechanical 

performance. The geopolymers made with waste materials, such as fly ash and ground granulated blast furnace slag, are 

attracting widespread attention as a green alternative to Portland cement [15-16]. These materials have also been widely 

adopted in the construction industry due to their excellent mechanical properties and durability [17-18]. Reactive Ultra-fine Fly 

Ash (RUFA) is an industrial by-product from thermal power plants heated to 1300°C, with the same chemical composition as 

conventional fly ash (heated from 900 to 1100°C) but smaller spherical particles ranging in size from 0.1 µm to 10 µm [19]. 

The large surface area provided by the superfine particles greatly enhances pozzolanic activity, sufficient for the partial 

replacement of Portland cement [19].  

1.3.   Purpose and organization 

RUFA has spherical particles of an amorphous structure and is a new industrial by-product from thermal power plants. 

The chemical composition of RUFA is similar to conventional pulverized coal fly ash and it is suitable for manufacturing 

geopolymeric binder which can occur under curing conditions at elevated temperatures between 50 to 80°C as well as 

considered a cleaner process due to much lower CO2 emission. In this study, we examine the feasibility of creating 

RUFA-based geopolymers using sodium hydroxide as an alkali activator. It also presents a comparison of geopolymers made 
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on the conventional fly ash and RUFA. Polymer specimens are characterized in terms of chemical composition, compressive 

strength, and microstructure. Fig. 1 shows the flow chart for the RUFA geopolymer research approach. The process consists of 

five steps:  

(1) To analyze the physical and chemical analysis of RUFA particles and traditional fly ash; 

(2) To formulate a suitable mix design of RUFA geopolymer; 

(3) To cast the specimens and conduct the testing preparation; 

(4) To use evaluation tests, including X-ray Diffraction (XRD) analysis, compressive strength test, Scanning Electron 

Microscopy (SEM) observations, Energy Dispersive Spectroscopy (EDS) analysis, and Thermogravimetric and 

Differential Thermal Analysis (TG-DTA); 

(5) To evaluate the feasibility of RUFA geopolymer. 

 

Fig. 1 Creative RUFA geopolymer research methodology 

2. Test Methods 

2.1.   Materials 

The RUFA used in this study is obtained from a power plant in Taiwan (TRIAXIS Corporation). The light gray RUFA 

comprises spherical particles ranging in size from 0.1 µm to 5.0 µm, most of which are amorphous phases, as indicated by a 

broad hump in XRD patterns at 2θ between 20° and 35° [19]. The specific surface area of RUFA is 3380 m2/kg and the specific 

gravity is 2.67, respectively. The SEM photo and EDS result of the spherical particles of RUFA are shown in Fig. 2 and Table 

1, respectively.  

The composition of the RUFA is as follows: silicon dioxide (49.11 %), aluminum oxide (28.07 %), and calcium oxide 

(8.84 %) by the results using X-ray fluorescence. The primary oxide content in RUFA is similar to that of general class F fly 

ash (SiO2+Al2O3+Fe2O3 ≥75 wt.%). At 28th days, the pozzolanic strength activity index of RUFA (107%) is higher than that of 

general fly ash (72-83%) [19]. Sodium hydroxide (NaOH) beads of 98 wt.% purity are mixed with deionized water at a 

concentration of 4.0 M for use as an alkaline activator.  
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Fig. 2 SEM image of RUFA particles (5,000x) 

Table 1 EDS results of RUFA particles 

Element Weight % Atomic % 
C 13.38 20.81 
O 53.56 62.51 
Ca 27.23 12.69 
Si 2.93 1.95 

Mg 1.07 0.82 
Al 1.45 1.00 
S 0.38 0.22 

Total 100 100 
 

2.2.   Mix design, specimens, and test methods 

The composition of the RUFA-based geopolymer pastes is RUFA and sodium hydroxide. RUFA geopolymer specimens 

are prepared by mixing RUFA with 4.0 M NaOH solution (160g of NaOH powders are added in 1000ml deionized water) at a 

constant liquid/binder ratio of 0.30 for 5 min in paste mixing process. The fresh pastes are immediately poured into cubic 

molds (50×50×50 mm) and shaken on a vibration table for 2 min to remove entrained air, and then held at 50°C for 24 h using 

the oven. After initial curing, the specimens are removed from the molds to continue curing at room temperature until testing.  

Compressive strength tests are conducted at curing ages of 7th, 14th, and 28th days, in accordance with ASTM C109 

standards. The compressive strengths in this study are averaged from five specimens. Following compression testing, the 

specimens are ground into powders for subsequent analysis via SEM, EDS, XRD and thermal analysis. SEM and EDS 

examinations are performed at 7th and 28th days, in accordance with ASTM C1723 standards. TG-DTA is conducted at a curing 

age of 28th days at temperatures ranging from 20°C to 1000°C under a heating rate was 10°C/min. XRD analysis is scanning at 

2θ from range for 10° to 65° at the age of 28th days in accordance with ASTM C1365. 

3. Results and Discussion 

3.1.   Feasibility of RUFA and traditional fly ash geopolymer in paste mixture 

The liquid/binder ratio of traditional fly ash-based geopolymer mixed with the sodium hydroxide as alkaline activator is 

between 0.4 and 0.6. For a lower liquid/binder ratio of 0.3, a mixed activator of sodium hydroxide and sodium silicate is 

suitable as an alkali activator, but its workability will be considerably reduced. The liquid/binder ratio of traditional fly 

ash-based geopolymer is too low to make it mix into geopolymer pastes. At a liquid/binder ratio of 0.30 in RUFA geopolymer, 

the geopolymer pastes can be evenly mixed and the mix is very viscous when the mold is lifted away from the paste as shown 

in Fig. 3(a). As shown in Fig. 3(b), the geopolymer pastes are immediately dropped at the table 25 times in 15 sec in accordance 

with the standard of ASTM C1437. RUFA geopolymer pastes are performed better fluidity as the flowability is between 90 to 
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100%. The spherical RUFA particles have good water retention and cohesion as well as the increased lubricant effect. It is 

mentioned that the fluidity of RUFA geopolymer is improved [19]. When RUFA reacts with alkali activator forming 

geopolymers, its finer surface gets reactivated reaction and amorphous reaction products. Higher pozzolanic strength activity 

index and finer particles of RUFA [19] benefit the RUFA geopolymer pastes to be evenly mixed. This is verified that it is 

feasible for RUFA to mix NaOH as the geopolymer pastes. 

  
(a) Lift the mold away from the paste (b) Immediately drop the table 25 times in 15 sec 

Fig. 3 Appearance of RUFA geopolymer in paste mixing process 

3.2.   Compressive strength and XRD patterns 

As shown in Fig. 4, the compressive strength increases from 6.17 MPa at 7th days and 10.07 MPa at 14th days to 13.33 

MPa at 28th days. Note that the strength at 28th days is close to that of geopolymer made using traditional fly ash with 4M 

NaOH as activator (15 MPa) [20-21]. The increase in strength is proportional to the quantity of alumino-silicates provided 

from the RUFA. RUFA contains large quantities of Al (28%) and Si (49%), which react with NaOH in geopolymer (general fly 

ash contains the quantities of Al (21%) and Si (48%)). We also infer trace quantities of calcium silicate hydrates (C-S-H) and 

sodium alumino silicate (N-A-S). As shown in Fig. 5, OH− ions from the alkaline solution catalyze the reaction process, which 

promotes the dissolution of Si4+ and Al3+ ions from the RUFA. XRD peaks indicative of Tobermorite [CaSiO(OH)2-4H2O], 

Pezzottaite (CsAl2Si6O18), and Hedenbergite (CaFeSi2O5) reveal the formation of sodium alumino-silicate hydrate (N-A-S-H) 

and/or C-S-H gels. The formation of zeolite phases of sodium alumino-silicate and silica-rich can be attributed to the high 

solubility of silica and sodium in the alkaline solution under heat curing conditions [22]. We observe little difference between 

the diffractograms of the raw RUFA and RUFA-based geopolymers. This leads us to conclude that the geopolymers have a 

geopolymerisation form an amorphous to granular semi-crystalline structure, which is consistence with the previous study 

[23]. 

7 14 28
Curing Time (days)

0

2

4

6

8

10

12

14

16

C
om

pr
es

si
ve

 S
tr

en
gt

h 
(M

Pa
)

w/b=0.30

 
Fig. 4 Histogram showing compressive strength of specimens as a function of time 
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Fig. 5 XRD patterns of raw RUFA and RUFA-based geopolymer at 28th days 

3.3.   SEM and EDS analysis 

Hitachi S-4100 field emission electron microscope, which has a maximum magnification rate of 100,000, is used for SEM. 

This instrument uses an electron gun that shoots a beam of electrons. When the electron beam hits the surface of cement-based 

materials, it produces signals that are transmitted to a cathode ray tube via a signal amplifier and then displayed on a monitor 

screen, which allows the observation of microscopic crystal phases on the surface of the RUFA geopolymer. By adjusting the 

magnification rate and moving around the specimen, pictures of the desired microscopic crystal phases can be taken.  

Fig. 6 illustrates the microscopic properties of the proposed RUFA-based geopolymer, as follows: (a) SEM image of raw 

RUFA; (b) SEM photo of paste at 7th days; (c) SEM photo of paste at 28th days. The paste consisted primarily of 

aluminosilicate gel or geopolymer paste with unreacted RUFA particles. The quantity of geopolymerisation at 28th days is far 

higher than at 7th days, which may account for the continual increase in compressive strength over that period. The reaction of 

RUFA with NaOH solution leads gradually to the formation of C-S-H, C-A-S-H, and N-A-S-H gels, which modifies the 

microstructure of the paste. RUFA geopolymer pastes are presented with multiple unreacted particles. It clearly shows that the 

inhomogeneous glass-like pastes of the amorphous aluminosilicate gel and the pastes are full of loosely structured RUFA 

grains of different sizes. This can be expected that if the NaOH content increases, the degree of reaction taking place in a 

geopolymer forming paste increases. It indicates that it needs more alkali activator with a higher Molar concentration of NaOH 

to enhance the polymerization process.  

 
(a) SEM image of raw RUFA (10,000x) 

Fig. 6 Microscopic properties of RUFA-based geopolymer 
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(b) SEM image and EDS results of paste at 7th days (5,000x) (c) SEM image and EDS results of paste at 28th days (5,000x) 

Fig. 6 Microscopic properties of RUFA-based geopolymer (continued) 

The elements analyzed by EDS mainly include Si, Al, Na, Ca and O as shown in Tables 2 and 3. The EDS results from 7th 

to 28th days reveal the slight gradual decrease in the Na content (from 4.46 % to 4.35 %) as well as gradual increases in the 

Si/Al ratio (from 2.82 to 3.23) and Ca/Si ratio (from 0.27 to 0.31). The gradual increase in compressive strength can be 

attributed to the formation of Si-O-Si bonds, which are stronger than Si-O-Al bonds [24-25] and consistent with the XRD 

results. The previous study [26] reported that the dissolution speed of silicate bonds was faster than that of aluminum bonds; 

however, the geopolymerization speed of aluminum bonds was faster than that of silicate bonds. It also confirmed that the 

decrease of the Si/Al ratio may be an indication of the process of geopolymerization [24, 26]. It also showed that gel mostly 

consists of the phases containing Na-Si-Al bonds and the formation of an alumino-silicate-activated gel by polymerization 

throughout the surface of the RUFA particles as shown in Figs. 6(b) and 6(c).  

Table 2 EDS analysis of RUFA pastes at the age of 7th days 

Element Weight % Atomic % 
O 57.83 71.52 
Fe 2.68 0.95 
Na 4.46 3.84 
Al 6.83 5.01 
Si 19.25 13.56 
Ca 5.26 2.60 
Mg 2.14 1.75 
K 1.54 0.78 

Total 100 100 

Table 3 EDS analysis of RUFA pastes at the age of 28th days 

Element Weight % Atomic % 
O 56.69 70.67 
Fe 2.88 1.03 
Na 4.35 3.77 
Al 7.19 5.32 
Si 19.13 13.59 
Ca 5.93 2.95 
Mg 2.32 1.90 
K 1.52 0.77 

Total 100 100 
 

3.4.   TG-DTA results 

In this investigation, Thermogravimetry (TG) analysis is studied in terms of the weight-loss percentage as an index to 

define the compositions or formations. The Derivative Thermogravimetry (DTG) curves in Fig. 7 reveals an obvious decrease 

in mass (3.3 wt.%) as the temperature of the specimens is increased to 200°C. The mass decreases by a further 2.3 wt.% as the 
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temperature is increased from 200°C to 650°C, which indicates the analyzed bonded water of the Ca(OH)2 phase. A small drop 

between 200°C to 400°C has found in the DTG curve, which is corresponded to dehydration of C-A-S-H and C-S-H pastes 

[27-28]. The combination of NaOH and Ca(OH)2 activates the compressive strength development of the RUFA geopolymer. 

The TG curve remains steady after 650°C due to the swelling of the high silicate secondary phases [29]. The DTA curves 

reveal the transformation of amorphous aluminum phosphate phase into crystal phases (e.g. tridymite-like molecular structure) 

at approximately 870 °C. Note that the same phenomenon is observed in geopolymer based on general/traditional fly ash [30]. 

The DTA curve also reveals that the reaction is endothermic between 300°C and 1200°C, due to the sintering of high silicate 

secondary phases and extreme densification of the geopolymer pastes [29]. In addition, the loss in weight between 100°C and 

700°C from the DTG curve could be due to structurally bonded water in the N-A-S-H gel, which is consistent with the results 

of the SEM and EDS analysis. It is also an indirect measure of the geopolymerization reaction [31]. It is also revealed that 

N-A-S-H and C-A-S-H gels prevail in high silicon and aluminum systems in RUFA geopolymer. The compressive strengths at 

the early stage (7th to 28th days) indicate a very promising performance to be an innovative application in green cementless 

composites. 

  
Fig. 7 DTG, DTA, and TG curves at 28th days 

4. Conclusions 

This study reported on a RUFA-based geopolymer created by using 4-M NaOH solution as an activator. The high 

compressive strength of the proposed geopolymer (13.33 MPa at 28th days) was attributed to the formation of hydration 

products (calcium- and sodium-based aluminosilicate hydration products). EDS results revealed gradual increases in the Si/Al 

ratio and Ca/Si ratio over time. Nonetheless, the microstructure presented aluminosilicate gel and unreacted RUFA particles at 

28th days. The concentration of the NaOH solution was shown to have a profound effect on strength development and the 

densification of the geopolymer in future research.  
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