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Abstract 

A multilayered barrier structure stacked with organosilicon and silicon oxide (SiOx) films consecutively 

prepared using plasma-enhanced chemical vapor deposition (PECVD) was developed to encapsulate flexible plastic 

substrate. The evolution on the residual internal stress, structural quality of the organosilicon/SiOx multilayered 

structure as well as its adhesion to the substrate were found to correlate closely with the thickness of the inset 

organosilicon layer. Due to the significant discrepancy in the thermal expansion coefficient between the substrate 

and SiOx film, the thickness of the organosilicon layer deposited onto the substrate and SiOx film thus was crucial to 

optimize the barrier property of the organosilicon/SiOx structure. The organosilicon/SiOx barrier structure possessed 

a lowest residual compressive stress and quality adhesion to the substrate was achieved from engineering the 

organosilicon layer thickness in the multilayered structure. The relaxation of the residual internal stress in the barrier 

structure led to a dense SiOx film as a consequence of the enhancement in the Si-O-Si networks and thereby resulted 

in the reduction of the water vapor permeation. Accordingly, a water vapor transmission rate (WVTR) below 1 × 10-2 

g/m2/day being potential for the application on the flexible optoelectronic device packaging was achievable from the 

3-pairs organosilicon/SiOx multilayered structure deposited onto the polyethylene terephthalate (PET) substrate. 
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1. Introduction 

Recently, one of the most exciting areas in the flat panel display industry is the emergence of flexible displays. To enable 

a flexible flat panel display, flexible plastic substrates must be applied to replace conventional glass substrates. However, the 

limitations of plastic materials in optoelectronic device applications are their permeability of oxygen and moisture [1]. High 

performance gas barrier coating is therefore indispensable on the surface of plastic substrates. The silicon-based inorganic thin 

films deposited by plasma-enhanced chemical vapor deposition (PECVD) have been widely used as gas barrier films [2-6]. 

Although the inorganic materials such as silicon oxide (SiOx) or silicon nitride (SiNx) have been shown to have good barrier 

performance, a technological challenge is the large internal stress resided in the barrier structure while deposited onto the 

flexible plastic substrate, which can adversely affect the coating/substrate interface and therefore result in the crack or ablation 
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of a thin film [7]. Accordingly, several researches attempt to control the residual internal stress in the thin film materials at an 

elevated temperature [8-11]. For instant, Morin et al. reported that high deposition temperature (ca. 1000 °C) was capable to 

effectively relax the intrinsic stress in SiNx thin films [9]. Cianci et al. used lower temperature (ca. 500°C) post-deposition 

thermal treatment to reduce the compressive stress of PECVD-deposited SiNx films [10]. However, the heat treatment 

methodology to adjust the residual internal stress of a coating structure is not suitable for low heat-resistant plastic substrates.  

Currently, an organic/inorganic multilayered structure consisting of hard inorganic films and soft organic films is 

comprehensively developed to realize an effective barrier structure prepared onto the plastic substrate [12-16]. In such a 

multilayered structure, the inorganic layer acts as diffusion barriers to water/oxygen permeation and the organic layer 

decouples defects in the inorganic layer. Therefore, ultra-high barrier properties is expected to be achieved by using a stacked 

organic/inorganic structure. However, since the residual internal stress is general a combination of each coating layer [17-18], 

the increase in the organic/inorganic multilayered structure prepared at a low temperature therefore will lead to the 

accumulation of the residual internal stress, resulting in the failure of the multilayered structure coated on the flexible plastic 

substrate. Accordingly, a method to engineer pairs of the low-temperature deposited organic/inorganic multilayered structure 

is demanded to optimize the coating reliability and barrier property.  

In terms of the barrier property, although some researches had demonstrated that the large internal stress resided in the 

coating structure while deposited onto the flexible plastic substrate was the main factor to limit the resulting water vapor 

transmission rate (WVTR) [19-21], a systematic study on the relationship between the residual internal stress, adhesion 

behavior, and barrier property to water vapor permeation of an organic/inorganic multilayered barrier structure coated onto the 

flexible plastic substrate was rarely discussed.  

In this study, with the aim to engineer the internal stress resided in the organic/inorganic barrier structure deposited onto 

the flexible plastic substrate and investigate its adhesion and barrier property, an organosilicon/SiOx multilayered barrier 

structure consecutively deposited onto the PET substrate using the same silicon-based monomer in one PECVD chamber was 

prepared by altering the organosilicon layer thickness. The residual internal stress, adhesion, and WVTR as a function of the 

organosilicon layer thickness in the multilayered barrier structure were measured and investigated. The evolution of these 

coating properties resulted in the change in the chemical bond nature and surface morphology were also conducted and 

discussed.  

2. Experimental 

Liquid tetramethylsilane (TMS; Si(CH3)4) monomer with a high vapor pressure at room temperature (~ 7.1  104 Pa), 

which has the advantages of deposition security, nontoxicity, and the cost benefit on the fabrication equipments over other 

precursors, such as SiH4, TEOS, and HMDSO, was used as the main silicon precursor to consecutively deposit the 

organosilicon/SiOx multilayered gas barrier structure onto the (180±10%) μm-thick polyethylene terephthalate (PET) and 

silicon substrates using a parallel plate capacitatively coupled radio-frequency (13.56 MHz) discharge PECVD system 

(hereafter referred to as TMS-PECVD). The organosilicon layer and inorganic SiOx film were respectively synthesized from 

TMS monomer and TMS-oxygen gas mixture. To engineer the residual internal stress in the organosilicon/SiOx multilayered 

structures, the thickness of the inset organosilicon layer was varied and the thickness of the SiOx film was controlled at 300 nm 
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which performed a lowest WVTR of 0.34 g/m2/day while directly deposited onto the PET substrate. The pressure, rf power, 

and substrate temperature to prepare these barrier structures were controlled at 13 Pa, 70 W, and 120oC, respectively. The flow 

rate of the TMS monomer to prepare organosilicon layer was 60 sccm and the gas flow rate of the TMS-O2 gas mixture 

(TMS/O2) to synthesize SiOx film was 60/120 sccm. 

Film thickness was measured by using a surface profile system (Dektak 6M, Veeco). The chemical bonding states of 

these barrier structures were examined using a Fourier transform infrared (FTIR) spectrometry (FT/IR-4100, JASCO). The 

surface morphologies of the barrier structures were observed by a field emission scanning electron microscopy (FE-SEM; 

JSM-7500F, JEOL). The adhesion behavior between the barrier structure and the PET substrate was evaluated by the ASTM 

(American Society for Testing and Materials) D3359 standard tape-peeling test [22]. The internal stress, f
, resided in the 

barrier structure with a thickness, fd
, was measured by the beam bending method using a thin film stress measurement 

instrument (FLX-2320, Tencor), and derived from the Stoney formula expressed as [23]: 
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where sE , s , and sd  are Young’s modulus, Poisson ratio, and thickness of the silicon substrate, respectively. 0R  and 

fR
 are the radii of the sample curvature before and after the barrier structure deposition. The water vapor permeation of the 

bare and coated PET substrates was measured using a WVTR measurement system (PERMATRAN-W 3/61, MOCON Inc.) at 

a temperature of 40°C with 95% relative humidity (RH). 

3. Results and discussions 

 

Fig. 1 Tape-peeling tests observed by an optical microscope for the (a) SiOx gas barrier layer and multilayered structures with 
an organosilicon layer of (b) 15, (c) 30, and (d) 60 nm, respectively, deposited onto the PET substrate. 

Fig. 1(a)-(d) show the tape-peeling tests observed by an optical microscope for the gas barrier structures with and 

without an organosilicon layer of 15, 30, and 60 nm, respectively. The 300-nm SiOx film directly deposited onto the PET 

substrate, as shown in Fig. 1(a), was almost completely peeled off due to the significant difference in the material properties 

and the poor contact between the inorganic barrier film and plastic substrate, as documented elsewhere [24]. By insetting the 
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organosilicon layer, none of the cross-cut area for the organosilicon/SiOx multilayered structure was peeled off the PET 

substrate (as shown in Fig. 1(b), (c), and (d)). According to the ASTM D3359 standard tape-peeling test, the adhesion levels of 

these barrier structures were all evaluated as rank 5B (no peel-off; none of the squares were detached).  

 

Fig. 2 Residual internal stress and WVTR of the multilayered barrier structures as a function of the organosilicon layer 
thickness. 

The residual internal stress and WVTR of these barrier structures coated onto the substrate as a function of the 

organosilicon layer thickness are shown in Fig. 2. It was clearly seen that the SiOx film directly deposited on the silicon 

substrate, which was almost completely peeled off the PET substrate after tape-peeling test, had a large residual compressive 

stress of -392 MPa. When the organosilicon layer inset between the SiOx film and the substrate, the residual compressive stress 

in the gas barrier structure was effectively reduced, revealing that the organosilicon layer facilitated to buffer the stress resided 

in the SiOx film. In addition, although the organosilicon/SiOx structures were all well adherent to the PET substrate as observed 

from their tape-peeling tests, the internal stress residing in the barrier structures showed slight variations. A lowest 

compressive stress (-108 MPa) was achieved from the gas barrier structure with an organosilicon layer thickness of 30 nm, and 

it was gradually increased by increasing the organosilicon layer thickness in the multilayered structure. The gas barrier 

structure to the water vapor permeation was found to be closely correlated with the residual internal stress evolution. The lower 

the compressive stress resided in the gas barrier structure, the better the WVTR is obtained, indicating that the SiOx barrier 

property could be further optimized by controlling the residual stress in the multilayered structure with an adequate thickness 

of the organosilicon layer. The main chemical bonds in these barrier structures deposited onto the silicon substrates were 

measured to further investigate the structural evolutions of the SiOx film affected by insetting the organosilicon layer.  

 

Fig. 3 FTIR spectra of the multilayered barrier structures as a function of the organosilicon layer thickness (the relative 
intensity ratio (ISi-O-Si/IOH) is shown in inset figure). 
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Fig. 3 shows the FTIR spectra of the single SiOx film and the organosilicon/SiOx multilayered structures with an 

organosilicon layer thickness of 15, 30, 60, and 90 nm, respectively. For the FTIR spectrum of the 300 nm-thick SiOx film 

directly deposited onto the substrate, the absorbance peaks located at approximately 1058, 795, and 447 cm-1 emerged from the 

Si-O-Si stretching, bending, and rocking modes, where the broad peak at around 3200–3700 cm-1 and the weak peak at 925 

cm-1 were identified as the hydroxyl (-OH) and silanol (Si-OH) chemical bonds, respectively [25-26]. The appearance of the 

OH groups was related to both the porous structure in the SiOx films and surface-adsorbed H2O, and also was demonstrated as 

the hydrophilic group [27-28]. Clearly, the bond types and peak positions of the multilayered barrier structure showed no 

apparent difference from the single SiOx film except for the relative intensity ratio of the Si-O-Si stretching mode to hydroxyl 

bond (ISi-O-Si/IOH), indicating that the insetting thin organosilicon layer only led to the change in the porous distribution of the 

consecutively deposited SiOx film. The FTIR spectrum of the SiOx film deposited onto a 30 nm-thick organosilicon layer 

exhibited the most intense Si-O-Si signal than other barrier structures, as shown in the inset figure, implying the achievement 

of a good SiOx structural quality and film densification, which also resulted in the lowest WVTR value and residual internal 

stress, as shown in Fig. 2. By contrast, the decreased relative intensity (ISi-O-Si/IOH) emerged from the multilayered gas barrier 

structure with an organosilicon layer thickness reaching 60 nm demonstrated the inferior SiOx film quality, consistent with the 

degradation of the barrier performance to vapor permeation.  

The organosilicon layer plasma-polymerized from TMS monomer which was abundant in the C-H chemical bonds was 

suggested to be responsible for the increase in the SiOx film quality. Since the organosilicon layer surface featured as the 

hydrophobic C-H chemical bonds corresponded to a low surface energy (~ 12 J/m2) [20], the inert surface was thus beneficial 

to lower the adsorption of the ambient contaminants. Especially for the water vapor resided in the vacuum chamber and/or 

synthesized from plasma deposition that discharged OH free radicals and caused the deposited SiOx film with terminated 

Si-OH defects. Accordingly, the surface energy of the organosilicon layer lower than that of the bare PET substrate surface (~ 

26 J/m2) was more effective in attaining a dense and finer structure in the subsequently deposited SiOx film due to the increase 

in the density of the nucleation sites in the region of initial growth, consistent with the earlier reports that discussed a thin film 

deposited on the surface modification layer [29-31]. 

 

Fig. 4 Micrographs of the tape-peeling test results for the 2-pairs multilayered barrier structures with the second organosilicon 
layer thickness of (a) 15, (b) 30, (c) 60, and 90 nm respectively, deposited onto the PET substrate. 

After we optimized the residual internal stress of the SiOx film deposited onto the substrate by insetting a 30 nm-thick 

organosilicon layer, which also have the best barrier property for water vapor permeation, an attempt to stack the 
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organosilicon/SiOx multilayered structure encapsulate the PET substrate to further reduce the resulting WVTR was carried out. 

Fig. 4(b) shows the optical microscopy of the tape-peeling test results for the barrier structure stacked from a 2-pairs 

organosilicon (30 nm)/SiOx (300 nm) multilayered barrier structure coated on the PET substrate. Evidently, such 2-pairs 

multilayered barrier structure exhibited poor adhesion to the PET substrate, implying that the thickness of the second 

organosilicon layer should be further designed to stack a quality pairs of the multilayered barrier structures.  

Fig. 4(a)-(d) illustrate the micrographs of the tape-peeling test results for the 2-pairs multilayered barrier structures with 

the second organosilicon layer thickness of 15, 30, 60, and 90 nm, respectively. It was found that the 2-pairs barrier structure 

with the second organosilicon layer thickness of 15 and 30 nm exhibited poor adhesion to the PET substrate (ranked as 2-3B 

according to ASTM D3359), whereas the barrier structures stacked with the second organosilicon layer thickness of 60 and 

100 nm, respectively, adhered well to the PET substrate (ranked as 5B).  

Similar to the well correlation between the adhesion and residual internal stress of the 1-pair organosilicon/SiOx barrier 

structures deposited onto the substrates, the adhesion of these 2-pairs barrier structures constructed from different thickness of 

the second organosilicon layer were also linked to the evolution of their residual internal stress. In theory, for a multilayered 

structure of n films having thickness t1, t2, t3, … tn each of which develops a stress S1, S2, S3, …Sn, the average residual internal 

stress S can be evaluated as the following equation [32]: 
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As referred from the residual internal stress of the single SiOx (-392 MP) film and organosilicon (30 nm)/SiOx (300 nm) 

multilayered structure (-108 MPa) deposited onto the substrates, the residual internal stress of the 30 nm-thick organosilicon 

layer deposited onto the substrate was calculated as a tensile stress of 2732 MPa. According to Eq. (2), a lowest residual 

internal stress was also expected to be obtained from the 2-pairs organosilicon/SiOx multilayered structure with each 

organosilicon layer thickness of 30 nm. However, due to the surface and material properties of the film such as the surface 

roughness, surface energy, and thermal expansion coefficient are quite different from that of the substrate, giving rise to 

different nucleation condition for the subsequently deposited film, it was hardly possible to acquire the average stress of the 

multilayered structure from the stress found in the initial multilayered structure by using Eq. (2) [32-33].  

Accordingly, the optimal thickness of the organosilicon layer in the 1-pair organosilicon/SiOx multilayered structure that 

performed a lowest residual internal stress might not be the critical thickness of the second organosilicon layer in the 2-pairs 

barrier structures since the surface and material properties for the second-organosilicon layer deposition were significantly 

different from that of the first layer deposited onto the substrate.  

Fig. 5 shows the residual internal stress of the 2-pairs organosilicon/SiOx multilayered structures as a function of the 

second organosilicon layer thickness. The residual internal stress of these 2-pairs multilayered structures was decreased with 

increasing the thickness of the second organosilicon layer, and a lowest compressive stress of 217 MPa was achieved from the 

structure with a second organosilicon layer of 60 nm which also exhibited the quality adhesion (ranked 5B) to the substrate.  

For the second organosilicon layer thickness reached 100 nm, although the adhesion between the barrier structure and 

the substrate was still ranked 5B, the compressive stress resided in the 2-pairs organosilicon/SiOx structure was again increased 

to 239 MPa. The WVTR of these 2-pairs barrier structures also was found to be well correlated with the evolution of the 

residual internal stress. The small the residual internal compressive stress, the better the resulting WVTR for the 2-pairs barrier 

structure coated onto the PET substrate is. A lowest WVTR of 0.08 g/m2/day was achievable from the 2-pairs 
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organosilicon/SiOx barrier structure with the second organosilicon layer thickness of 60 nm, whereas a WVTR of about 0.19 

g/m2/day was measured from the 2-pairs barrier structure having the same organosilicon layer thickness of 30 nm. The 

associated FTIR spectra of these 2-pairs barrier structures as a function of the second organosilicon layer thickness are 

illustrated in Fig. 6. All these barrier structures were constructed from the Si-O-Si networks and featured of the porous-related 

OH groups. The Si-O-Si stretching peak position emerged from the 2-pairs barrier structures shifted towards a higher 

wavenumber of 1074 cm-1 as compared to that of the 1-pair barrier structures (~ 1064 cm-1) shown in Fig. 3. 

 

Fig. 5 Residual internal stress and WVTR of the 2-pairs multilayered barrier structures as a function of the second 
organosilicon layer thickness. 

Such peak shift had been demonstrated as the change in the Si-O-Si bond angle accompanied by a more SiO2-like 

character of the structure [34-35]. In addition, a largest relative intensity ratio (ISi-O-Si/IOH) also was obtained from the 2-pairs 

barrier structure with the second organosilicon layer of 60 nm, as shown in the inset figure, indicating the densification of the 

Si-O-Si network and also resulting in the improvement on the barrier property to water vapor permeation. In terms of the 

internal stress resided in the coating structure, the residual internal stress of a coating system is a combination of the intrinsic 

stress and thermal stress. The intrinsic stress is related to the internal structure and element composition, whereas the thermal 

stress arises from the thermal expansion mismatch between the coating and the substrate.  

Since reports had pointed out that the compressive stress relaxation in the coating was due to the hydrogenated bond 

dissociation [33, 36], the evolution of the organosilicon/SiOx multilayered structure on the residual internal stress shown in Fig. 

2 and Fig. 5, thus were deeply correlated with the relative intensity ratio of the Si-O-Si stretching mode to hydroxyl bond and 

also led to the improvement in the barrier property due to the increase in the crosslinked Si-O-Si network. In addition, due to 

the significant difference in the thermal stress induced from the organosilicon layer deposited onto the silicon substrate and the 

SiOx film which has the thermal expansion coefficient of the 0.4  10-6 K-1 and 2.3  10-6 K-1, respectively, the second 

organosilicon layer thickness required to buffer the compressive stress of the SiOx barrier film thus was different from that of 

the first organosilicon layer thickness (ie. a thickness of 60 nm that was doubly thicker than that of the first organosilicon layer 

of 30 nm). Accordingly, the thickness of the 2nd, 3rd, 4th, and nth organosilicon layer while deposited onto the SiOx layer to 

buffer the structure residual compressive stress was designed as 60 nm. 

As the thickness of the organosilicon layer deposited onto the substrate and silicon film to release the residual internal 

stress in the organosilicon/SiOx multilayered structure which corresponded to the excellent adhesion and lowest WVTR had 

been optimized, the preparation for pairs of the organosilicon/SiOx multilayered barrier structures suitable for flexible 

optoelectronic packaging was carried out. 
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Fig. 6 Residual internal stress and WVTR of the 2-pairs multilayered barrier structures as a function of the second 
organosilicon layer thickness. 

 

Fig. 7 Surface morphologies of the (a) single SiOx, (b) 1-pair, and (c) 3-pairs organosilicon/SiOx multilayered barrier 
structures (the inset figures in Fig. 7(a) and (b) are low magnification photographs and the inset figure in Fig. 7(c) is a 
cross-sectional micrograph of the 3-pairs barrier structure). 

Figure 7 (c) shows the surface morphology of the 3-pairs barrier organosilicon/SiOx multilayered barrier structure 

observed by FE-SEM. The thickness of the 1st, 2nd, and 3rd organosilicon layer (30, 60, and 60 nm, respectively) also can be 

seen in the cross-sectional micrograph inset in Fig. 7(c). In addition, the surface morphologies of the single SiOx film and 

1-pairs organosilicon/SiOx structure with the organosilicon layer of 30 nm are given in Fig. 7(a) and (b), respectively. As can 

be seen in Fig. 7(a), the SiOx barrier film directly deposited onto the substrate performs a surface morphology with 

well-defined boundaries. Such boundaries were indicative of the macro- or micro-sized defects in the single SiOx barrier that 

were demonstrated as additive penetrated paths of gases into the film, thereby limiting the barrier behavior of the single SiOx 

film [37-39]. The inset figure observed at low magnification also shows the surface defects of white protrusions. By contrast, 

the surface morphology of the SiOx films deposited onto a 30 nm-thick organosilicon layer, as shown in Fig. 7(b), showed a 

dense feature with fine size distribution.  

The improvement in the Si-O-Si networks and the release of residual internal stress led to the decrease of the protrusions 

as observed in the inset figure. In agreement with the report which demonstrated that the defects in the inorganic layer were 

prone to be decoupled by the presented organic layer [40], the surface morphology of the 3-pairs barrier structure thus was free 

from the white protrusions. In addition, the organosilicon layer and SiOx film shown in the inset figure were well defined 

without apparent pinholes and cracks, thereby facilitating the enhancement in the barrier performance. The barrier parameters 

relate to the barrier improvement factor (BIF) and effective permeability of the single SiOx, 1-pair, 2-pairs, and 3-pairs 

organosilicon/SiOx multilayered barrier structures deposited on the PET substrate as well as the PET substrate is summarized 

in Table 1 (the thickness of the 1st, 2nd, and 3rd organosilicon layer thickness was 30, 60, and 60 nm, respectively). The effective 

permeability, Pc, for the coating structure with the effect of the PET substrate eliminated was derived from the following 

equation using Ideal Laminate Theory (ILT) [41]: 
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where Π is the transmission rate, P is permeability, d is thickness, and s, c and T are the substrate, coating and the 

composite structure (s + c), respectively. In addition, BIF is defined as the ratio of WVTR of the substrate (Πs) to the coated 

substrate (ΠT). In terms of the barrier performance, the 1-pair barrier structure with a 30 nm-thick organosilicon film showed a 

significant reduction in the effective permeability (~ 0.077 μm-g/m2/day) as compared to the single 300 nm-thick SiOx film 

deposited directly onto the PET substrate (~ 0.112 μm-g/m2/day), implying that the barrier property of the SiOx film itself was 

further improved by insetting such organosilicon layer. By coating a 2-pairs barrier structure on the PET substrate, the WVTR 

was further reduced to 0.08 g/m2/day, corresponding to the effective permeability and BIF of 0.056 μm-g/m2/day and 47.5, 

respectively. When the multilayered barrier structure coated onto the PET substrate reached three pairs, the resulting WVTR 

was sharply decreased to a value below the MOCON detection limit (< 1 × 10-2 g/m2/day), indicating that the designed pairs 

organosilicon/SiOx barrier structure is a promising candidate for packaging the flexible optoelectronic devices. 

4. Conclusions 

In this work, we had systematic investigated and discussed on the barrier performance of the stacked organosilicon/SiOx 

multilayered structure consecutively deposited onto the PET substrate by PECVD using TMS monomer and TMS–oxygen gas 

mixture, respectively, as a function of the organosilicon layer thickness. The large residual compressive stress (~ 392 MPa) of 

the SiOx film directly deposited onto the substrate was effectively released by insetting organosilicon layer plasma 

polymerized from TMS monomer, resulting in the apparent improvements on the adhesion and structural densification of the 

upper SiOx film. The densest Si-O-Si networks in the SiOx film deposited onto a 30 nm-thick organosilicon layer assessed from 

the intensity ratio (ISi-O-Si/IOH) in the related FTIR spectra, that also possessed a lowest residual compressive stress of 108 MPa, 

thus resulted in a lower WVTR (~ 0.22 g/m2/day) than that of the SiOx film directly coated onto the PET substrate (~ 0.34 

g/m2/day). However, due to the internal residual stress especially for the thermal stress induced from the organosilicon layer 

deposited onto the substrate and SiOx was quite different originating from the discrepancy in the thermal expansion coefficient 

of the substrate and SiOx film, the 2-pairs organosilicon/SiOx structure with the same organosilicon layer thickness of 30 nm 

would not lead to the lowest residual internal stress and best barrier performance (WVTR ~ 0.19 g/m2/day).  

The thickness of the second organosilicon layer required for the multilayered structure possessed the optimal SiOx 

structural quality and quality adhesion of 5B was 60 nm, a value doubly thicker than that of the first organosilicon layer, 

benefiting in improving the degree of WVTR of 0.08 g/m2/day while deposited onto the PET substrate. Accordingly, by 

stacking the organosilicon/SiOx multilayered barrier structure with the organosilicon layer thickness deposited onto the 

substrate and SiOx film of 30 and 60 nm, respectively, a WVTR below the commercially-used MOCON instrument detection 

limit (~ 1 × 10-2 g/m2/day) was achievable from the 3-pairs organosilicon/SiOx multilayered structure. Such stress-controlled 

organosilicon/SiOx multilayered barrier structure by simple optimizing the thickness of the organosilicon layer is a promising 

barrier structure for the application on the flexible optoelectronic device packaging. 
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