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Abstract 

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting 

appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a 

comprehensive review of various plant disease detection methods based on the images used and processing algorithms 

applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for 

processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of 

datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study 

discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate 

plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine 

learning algorithms while visible range images are more widely used compared to spectral images.  
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1. Introduction 

Agriculture is one of the dominant economic sectors for developing countries as it provides main livelihood sources for 

rural population. In some developing countries, agriculture accounts for more than 25% of gross domestic product (GDP) [1]. 

The demand of a constantly rising population can be met by an increase in the yield. However, the losses due to crop diseases 

and pests significantly influence the contribution made by agricultural products. Additionally, dynamic weather conditions 

also spread diseases rapidly, thus aggravating the problem of food security. Therefore, the responsibility of controlling crop 

losses in the initial stages is important, not only for the growing economy and food supplement for animals and humans, but 

also to maintain the ecosystem balance. In response to these challenges, there is increased attention for adapting precision 

agriculture (PA) practices to achieve a sustained increase in efficiency and yields.  

Various methods are being used for early plant disease detection. The traditional method of diagnosis by an agronomist is 

based on a visible inspection of the affected plants. However, this method is labor-intensive, costly, and less accurate. Also, 

many producers from rural extensions do not have access to this technical advice, resulting in a high risk of yield losses due to 

crop diseases. The laboratory based tests have limitations due to their complex methods and time requirements. Because of the 

drawbacks in laboratory based methods, non-invasive methods have gained attention during the last few decades. A lot of work 

is being done in this area and the aim is to develop a mechanism that is automated, fast, and accurate to subdue the constraints 

of traditional methods. One of the most popular methods to meet the above-mentioned requirements is the use of various image 

processing techniques. Numerous cameras with highly sensitive sensors have been developed in recent years and are being 
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used to obtain the information from crops. The types of imaging systems involve visible light, spectral, thermal, fluorescence 

imaging, etc. The images captured by suitable imaging tools are processed using a variety of image processing approaches, and 

are then utilized to train/test machine learning algorithms. All the earlier work used classical machine learning techniques to 

identify diseases. However, the automated systems using classical machine learning algorithms faced limitations in terms of 

small datasets and hand crafted feature extraction methods, leading to limited performance and limited crop and disease scope. 

With the revolution in areas like computer vision and graphics processing unit (GPU), deep learning is considered to be a 

capable tool to enhance automated techniques to achieve higher performance, wide crop and disease range, and real-time 

disease identification. In recent years, researchers are working on the development of deep learning architectures for automatic 

feature extraction and disease classification. This study does a thorough review of several classical machine learning and deep 

learning architectures using RGB and spectral imaging techniques (i.e., hyperspectral and multispectral techniques) for plant 

disease recognition. It also discusses the merits and limitations of each method, and further describes the challenges that need 

to be addressed for the fast, accurate, and real-time plant disease detection. The various techniques for plant disease detection 

discussed in this study are presented in Fig. 1. 

The arrangement of the rest of the study is as follows. Section 2 reviews the related work done towards the use of image 

processing algorithms for pest and disease identification. Section 3 deals with the discussion about the merits and limitations of 

the methods, and also takes note of the challenges to be addressed for a robust crop disease diagnosis system. Finally, section 4 

presents the conclusions. 

 
Fig. 1 Various techniques discussed for plant disease detection 

2. Related Work 

To detect plant diseases in early stages, researchers have been working on numerous techniques for many decades by 

using invasive and non-invasive methods at various stages, and have found that the techniques are successful at different levels. 

However, recent developments in agricultural technology demand an automated non-invasive method for plant disease 

diagnosis. Due to the improved potential of numerous cameras with highly sensitive sensors to capture crop details, various 

image processing methods are used in the automatic plant disease recognition task to have a system that is accurate and takes 

less effort and time. The symptoms of a disease can appear on any part of the plant, e.g., leaf, root, fruit, flower, and stem. Most 

of the work in literature has been done majorly on leaf images although there are methods that take into account images of 

stems [2], fruits [3], and also the entire plant [4]. 

This section provides a thorough review of traditional machine learning and deep learning algorithms for disease 

detection. Section 2.1. reviews the classical machine learning techniques based on RGB and spectral images used in crop 

disease detection, while section 2.2. focuses on the review of the work regarding deep learning architectures applied on visible 

light images and spectral images. 
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2.1.   Traditional machine learning for plant disease detection 

Machine learning methods are utilized to find important fundamental patterns within complex data. Early work in the area 

of disease detection used traditional machine learning methods for the classification of images. The generic steps used for plant 

disease recognition and classification with traditional machine learning algorithms are shown in Fig. 2. 

The first step is to create a database which may involve capturing the images using a suitable imaging system or using a 

publicly available dataset. Image preprocessing is a vital start required to enhance image characteristics and to reduce the time 

required for processing in further steps. Some of the popular pre-processing steps involve image resizing, noise removal, 

contrast enhancement, conversion of color space, etc. Image segmentation is done to get the target region from the entire image. 

Few popularly used segmentation techniques are thresholding, K-means clustering, etc. After segmentation is done, relevant 

features such as shape, size, texture, and color are extracted from the segmented images. With the help of these extracted 

feature vectors, the machine learning algorithms are trained to label the images into given categories. Numerous classifiers, 

e.g., support vector machine (SVM), naive Bayes, artificial neural network (ANN), etc., are used for classifying images. The 

use of test data is done on the trained model to categorize the new data into one of the distinct classes. The potential of the 

model is assessed using various evaluation metrics such as accuracy, precision, F1-score, and area under curve (AUC). 

 
Fig. 2 General steps in traditional machine learning  

2.1.1.   Traditional machine learning with RGB images 

Considerable work has been done in this area, with each disease detection system recommending a distinct way for 

classification, segmentation, etc. Ali et al. [5] presented a method for the identification and classification of citrus diseases 

based upon visual symptoms. The distance between colors was used for segmenting the infected area in images. Based on the 

color histogram and texture features, citrus greening, anthracnose, downy, and healthy citrus leaves were labeled. Local binary 

pattern (LBP) and color features were used and the method was tested on various classifiers like SVM, K-nearest neighbor 

(KNN), boosted tree, and bagged tree. The authors applied disease level along with image level classification and reported 

good discrimination with color features for disease level classification. The overall accuracy of 99% and sensitivity of 99.7% 

were reported. The experiment with the combination of color and texture features gave an under-performance compared to 

individual features. The database consisted of only 199 images (including 100 images for healthy citrus and 33 images each for 

three citrus diseases). Islam et al. [6] proposed classifying potato diseases using images taken from plant village dataset [7]. 

The authors segmented the images by generating the masks based on La*b* color model. Using 10 texture and color features 

and multiclass SVM, the work reported an accuracy of 95%. However, the study used only 300 images for experimentation 

while plant village dataset has a large number of potato leaf images. In these studies [5-6], the performance would have been 

improved with a larger dataset.  

Zhang et al. [8] presented a technique for detecting citrus canker based upon global features and zone-based local features 

from field captured leaf images. The authors utilized an improved AdaBoost algorithm for segmenting the lesions from the 

background, and then combined the color and the distribution of the local texture for generating a canker lesion descriptor. A 

two-step hierarchical structure to identify citrus canker lesions was developed that obtained the classification accuracy similar 

to human experts.  
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Sharif et al. [3] proposed an algorithm for the detection of lesions on citrus fruits and leaves using three different datasets. 

The use of an optimized weighted segmentation technique was done on the pre-processed images. A codebook was generated 

from the color, texture, and geometric features, and the best features were selected using a hybrid feature selection technique. 

The classification was done using a multiclass SVM that got an average accuracy of 92.435%. Hassanien et al. [9] used an 

enhanced moth-flame approach based upon rough sets to detect the diseases (i.e., powdery mildew and early blight) in tomato 

leaves. A feature selection technique was presented and the SVM algorithm was used to classify the diseased tomato leaves. 

The study compared the performance of the proposed moth flame optimization technique with particle swarm optimization 

(PSO) and genetic algorithm (GA). The proposed feature selection method showed an improvement of 6% in the classification 

accuracy. These studies [3, 9] demonstrated that with correct feature selection, the classifier performance can be enhanced. 

Singh et al. [10] proposed image segmentation techniques based on GA for automatic leaf disease detection and 

classification for five different classes: bacterial disease on rose, bacterial disease on bean leaves, lemon leaves with sunburn, 

early scorch on banana leaf, and beans with fungal disease. A color co-occurrence matrix was utilized to get four texture 

features. The classification was done with the minimum distance criterion (MDC) and SVM. The authors reported a 

classification accuracy of 86.54%, 93.63%, and 95.71% for MDC with K-means, MDC with the proposed GA, and SVM with 

the proposed GA, respectively. This study shows that the learning algorithms can be used for lesion segmentation.   

The identification of multiple plant diseases in uncontrolled conditions using digital image processing was proposed in 

the work of Barbedo et al. [11]. They used a dataset of 12 plant species with 82 different disorders. Background removal was 

done using the guided active contour (GAC) method. Symptom segmentation used a binary mask and two ratios to indicate the 

variation of each pixel from green. The color transformation was used to get different characteristics suitable for the 

identification of symptoms. The training was done using color histograms to capture the general behavior of the disease, and 

pairwise classification was done using a reference histogram. A confusion matrix was used to show the results. The study also 

discussed challenges, e.g., the correspondence between diseases and the difference in the conditions of image captured that 

were responsible for the error rate. Omrani et al. [12] detected three different apple diseases (Alternaria, black spot, and leaf 

miner pest) using image processing methods. The images were captured in a laboratory condition and segmented using 

K-means clustering. Wavelet and gray level co-occurrence matrix were used to get textural features and color features 

extracted using La*b* color space. The authors used SVM with a radial basis function (RBF), a polynomial function (poly), 

and ANN classifiers to identify diseases in apple leaves. The algorithm was tested on the images taken with proper lighting 

conditions and black background. 

Phadikar et al. [13] used Fermi energy based segmentation methods to classify four rice diseases: leaf brown spot, leaf 

blast, sheath rot, and bacterial blight. Color, shape, and position of the infection were used as features and the rough set theory 

was utilized for selecting prominent features. A rule based classifier was used for classifying the rice diseases to get 92.29% 

accuracy. The authors also compared their proposed method with the existing feature selection and classification techniques 

and with the benchmark UCI dataset, and attained an accuracy of 80.39% and 94.21% respectively. The classifier complexity 

can be reduced by selecting principle features to lessen the information loss. However, the compromise between feature 

dimension and loss of information is always crucial.  

Barbedo [2] presented a survey on different methods for detecting and classifying plant diseases along with measuring 

severity. The author used digital images of leaves and stems in a visible spectrum. Barbedo [14] presented a technique to 

identify and quantify leaf disease symptoms automatically using image processing techniques. The author used simple 

morphological operations and a* channel in La*b* space for detecting diseases, and achieved an overall classification accuracy 

of 96%. However, the algorithm required the image to be captured under white or black background. 
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Camargo et al. [15] described a method to detect visual symptoms on plant leaves. After the color transformation of RGB 

images, segmentation was done using intensity distribution in the histogram and local maxima for thresholding. The automatic 

segmentation method was compared with a manual segmentation method to test the accuracy of the algorithm. The authors 

extend their work by using the identified target regions [16]. Relevant features were extracted from the target regions and were 

classified using SVM. The authors reported that texture features can give the best discrimination when the images do not have 

clear color and shape. These studies demonstrated the importance of using appropriate hand crafted features for improving the 

classifier performance. 

Johannes et al. [17] proposed a method based upon recognition of a candidate hot-spot and statistical reasoning for 

identifying three wheat diseases (i.e., Septoria, rust, and tan spot) in real field conditions. The study reported two alternatives 

for segmentation: i) using manually generated masks; ii) using simple linear iterative clustering (SLIC) and visual features. 

The disease candidate regions were extracted and analyzed using local descriptors. The study reported an AUC greater than 0.8 

using a meta classifier. The authors reported the algorithm to work on different crops and diseases, and deployed it on a 

smartphone application. The authors used color constancy algorithm to handle the illumination changes that occur in field 

conditions, proving that color constancy can be used to normalize the illumination variations. 

Table 1 gives a summary of the distinct research work done using classical machine learning algorithms on RGB images. 

It summarizes the crops used, various pre-processing and segmentation methods applied, relevant extracted features along with 

the classifiers, and the performance metric used in the studies. 

Table 1 Comparative study of classical machine learning algorithm on RGB images 

Ref. Crop 
Dataset  

(no. of images) 

Plant part 

used  

Pre-processing 

method 
Segmentation method Extracted features Classifier Evaluation metric 

[3] Citrus 

Own-580, 

citrus disease image 

gallery-1000, and 

combined-5632 

Fruits 

and 

leaves 

Hybrid contrast 

stretching 

technique 

Enhanced weighted 

segmentation 

Color, textural, and 

geometric features 
Multiclass SVM 

Average accuracy = 

92.435% 

[5] Citrus 199 Leaves 

Image 

enhancement 

and color 

transformation 

Color difference based 

algorithm 

Color histogram, 

LBP 

KNN, SVM, boosted tree, and 

bagged tree 

Sensitivity = 99.7% 

Accuracy = 99% 

AUC = 1.0 

[6] Potato 300 Leaves - 
Masks based on La*b* 

color space 
Color and texture SVM Accuracy = 95% 

[9] Tomato 200 Leaves 

Noise removal 

and image 

resizing 

Gaussian mixture based 

background/foreground 

segmentation 

Textural patterns 

with moth flame 

optimization based 

rough set 

SVM 

Accuracy = 91.5 

Precision = 91.5 

Recall = 91.5% 

[10] 

Rose, 

bean, 

lemon,  

and 

banana 

25 images for  

each class 
Leaves 

Clipping, 

image 

smoothing, and 

contrast 

enhancement 

GA 

Color co-occurrence 

matrix: local 

homogeneity, 

contrast, energy, and 

entropy 

1) MDC + K-means clustering 

2) MDC + proposed GA  

3) SVM + proposed GA  

Accuracy: 

1) 86.54% 

2) 93.63%   

3) 95.71% 

[11] 
12 

species 
1,335 Leaves 

Background 

removal using 

GAC 

Symptom segmentation 

- binary mask and 2 

ratios indicating 

deviation from green 

Color histogram Pairwise classification 
Individual accuracy 

range: 40% to 76% 

[12] Apple 320 Leaves 

Background 

removal, 

petiole 

removal, and 

unwanted noise 

removal 

K-means clustering Color and texture 

1) SVM (RBF) 

2) SVM (poly) 

3) ANN 

RMSE (testing): 

1) 0.20 

2) 0.42 

3) 0.53 
 

R
2 
(testing): 

1) 0.963 

2) 0.854 

3) 0.823 

[13] Rice 500 Leaves Not specified 
Fermi energy based 

region detection 

Color, shape, and 

position 
Rule based classifier 

Classification 

accuracy = 92.29% 

[17] Wheat 3,637 Leaves 
Color 

constancy 

SLIC and manual 

generated masks 

Visual features and 

use of statistical 

inference model 

Meta classifier AUC > 0.8 

 

Based on the stated, it is apparent that many variable factors, e.g., the option of pre-processing techniques, the 

segmentation methods to be used, the choice of features to be extracted, and the classifier to be used, highly affect the 

performance of the algorithm. This decision has to be done on a trial and error basis as the performance can vary with the 

slightest change in one of these factors while using hand crafted features and shallow classifiers. The hand crafted technique is 

also limited to the number of training samples and the crop and disease range. 
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2.1.2.   Classical machine learning with spectral images 

Various imaging techniques that can capture and utilize information beyond a visible range, e.g., hyperspectral, 

multispectral, thermal, fluorescence imaging, etc., have significantly contributed to the advancement of various plant disease 

detection aspects [18]. Hyperspectral and multispectral imaging are the most popular imaging technologies that can provide the 

spatial as well as spectral information of plants which is very useful for evaluation. This study focuses on the work done using 

hyperspectral and multispectral imaging techniques. The hyperspectral method obtains spectral information from a broader 

spectral range with narrow wavebands, while the multispectral technique acquires spectral information in comparatively broad 

wavebands. Abundant spectral details in spectral images help in possible disease detection even before visible disease 

symptoms appear. 

Tian et al. [19] used hyperspectral imaging technology for detecting cucumber downy mildew. They adopted an image 

fusion technology followed by image enhancement, binarization, corrosion, etc. to get an accuracy of 90%. Bauriegel et al. [20] 

and Barbedo et al. [21] studied the detection of fusarium head blight in wheat. Bauriegel et al. [20] analyzed the wheat using 

hyperspectral images for early detection of fusarium under semi-practical conditions. The authors used principle component 

analysis (PCA) to identify four spectral ranges that helped in the classification, and reported that stage 75 is the optimal stage 

for disease detection during the development period scaled by Biologische Bundesanstalt, Bundessortenamt, und Chemische 

Industrie (BBCH). Spectral angle mapper (SAM) was used to analyze the measure of the disease. However, the study reported 

SAM to be a time-consuming method so that the study obtained a head blight index for fast identification. Barbedo et al. [21] 

used hyperspectral imaging for the identification of fusarium head blight in wheat kernels. The output of the algorithm was an 

index indicating the probability of the kernel being infected. The algorithm achieved a classification accuracy of more than 

91%, and was also able to estimate mycotoxin deoxynivalenol concentration in the kernels. The use of a hyperspectral imaging 

process to detect the most usual defects on orange peels was done in the work of Li et al. [22]. The study evaluated the 

hyperspectral images using PCA, band ratio, and a simple thresholding method to get 93.7% accuracy. However, the study 

used a small size of only 270 samples for experimentation. 

Huang et al. [23] used hyperspectral reflectance to detect the rice leaf folder. A linear regression model was built to study 

the reflectance captured from rice leaves and the affected canopy at the booting stage. The study established the susceptibility 

of red, green, and near infrared range to identify rice leaf folder. The model was able to detect a leaf roll rate and infection scale 

based on spectral indices. It was analyzed using root mean square error (RMSE), and the authors suggested the use of 

hyperspectral reflectance for detecting rice leaf folder. However, the study was limited to few factors such as crop species, 

growing stage, species of pests, etc. Zhang et al. [24] studied spectral reflectance from winter wheat to detect powdery mildew. 

The authors studied hyperspectral reflectance to diagnose powdery mildew of winter wheat. The study analyzed the reflectance 

from normal and infected leaves in laboratory conditions, and found remarkable spectral changes in the visible and near 

infrared range. The authors developed multivariate linear regression (MLR) and partial least square regression (PLSR), and 

also used Fisher’s linear discriminant analysis (FLDA) for classifying normal, slight damage, and heavy damage. The work 

reported that PLSR gave better results compared to MLR for disease severity, and FLDA gave successful results for 

discrimination analysis of heavily damaged leaves.  

Identification of Cercospora leaf spot, leaf rust, and powdery mildew in sugar beet was done in the work of Rumpf et al. 

[25] and Mahlein et al. [26]. Rumpf et al. [25] used SVM to recognize and classify sugar beet diseases before the symptoms 

became visible using hyperspectral reflectance. The work classified healthy and diseased leaves with a 97% accuracy and 

attained more than 86% accuracy for multiclass classification. Mahlein et al. [26] built particular disease spectral indices for 

the identification of sugar beet diseases using hyperspectral signatures. The work used RELIEF-F algorithm to extract the most 

suitable wavelength and normalized wavelength difference. The method achieved an accuracy of 89% for healthy sugar beet, 

256 



International Journal of Engineering and Technology Innovation, vol. 11, no. 4, 2021, pp. 251-264 

 

92% for leaf spot, 95% for powdery mildew, and 87% for rust. Shi et al. [27] proposed a kernel discriminant algorithm based 

on spectral vegetation indices to recognize and classify pests and diseases in winter wheat. The work used independent t-tests 

and correlation analysis to remove redundancy in spectral vegetation indices, and used a Gaussian kernel function for 

discriminant analysis. The algorithm achieved a leaf level overall accuracy of 82.9% (slight), 89.2% (moderate), and 87.9% 

(severe) while canopy level accuracy between healthy and damaged leaves was greater than 87%. 

Along with hyperspectral imaging, multispectral imaging techniques have also contributed to early plant pathogen 

detection systems. Cui et al. [28] used multispectral images for detecting soybean rust. The authors used a 

hue-saturation-intensity (HSI) color model based threshold setting approach for separating the infected region. Two disease 

diagnostic parameters were extracted for computing rust severity. The study of the center of the leaflet color spread in polar 

coordinates was also done for automatic rust detection. Aleixos et al. [29] used a multispectral camera to capture visible and 

near infrared images for citrus defects. The algorithm was implemented using a board based on two digital signal processors 

(DSPs) to reduce the processing time. The system was also able to classify lemons and mandarins. Dammer et al. [30] 

compared multispectral and RGB systems to detect winter wheat head blight. The authors found that the multispectral system 

was better compared to the RGB system, and that in the RGB system, the calibration for the values of R, G, and B in the gray 

scale channel and modification in thresholds was required for every variety while the multispectral approach required a single 

calibration before measurements. In the work of Oberti et al. [31], grapevine leaves were imaged using multispectral imaging 

with five different view angles to investigate the use of sensing computations carried out at an angle for improving the 

identification sensitivity of powdery mildew. Detection sensitivity was evaluated using an algorithm that combined two 

spectral indices. The authors reported that the sensitivity increased with view angle in the range of 0 degrees to 75 degrees with 

the peak at 60 degrees.  

Based on the above-mentioned literature, it is clear that multispectral or hyperspectral range images can give an added 

advantage for pre-symptomatic disease detection. However, due to the limitations such as the cost of these devices being too 

high, the requirement of specific sensors and calibration, controlled environment usage, selecting appropriate spectral band, 

etc., their usage is bounded. 

Table 2 gives an overview of the work done on plant disease identification using spectral imaging techniques and 

traditional machine learning algorithms. It compiles the information about the targeted crop and disease, the imaging 

technology utilized, the index and model adapted, and the evaluation metrics used. 

Table 2 Comparative study of classical machine learning algorithm on RGB images 

Ref. Crop Disease 
Imaging 

technology 
Index Model Evaluation metric 

[20] Wheat Head blight 
Hyperspectral 

imaging 

PCA to identify four 

spectral ranges 

1) SAM  

2) Head blight index 

Accuracy: 

1) 91% 

2) 84% 

[21] Wheat Fusarium head blight 
Hyperspectral 

imaging 
Fusarium index Morphological operations Accuracy > 91% 

[22] Orange 8 common defects 
Hyperspectral 

imaging 

Band ratio and spectral 

features 
PCA, band ratio, and thresholding Accuracy = 93.7% 

[23] Rice 

Rice leaf folder 

(Cnaphalocrocis 

medinalis ) 

Hyperspectral 

reflectance 

Spectral indices: 38-leaf 

level and 29-canopy level 
Linear regression 

RMSE: 0.059-leaf roll rate and 

0.22-infestation scale 

[24] 
Winter 

wheat 
Powdery mildew 

Hyperspectral 

reflectance 
32 spectral features 

1) MLR 

2) PLSR 

3) FLDA 

PLSR-(RMSE) = 0.23  

R2 = 0.8       

FLDA-accuracy = 90% 

[25] Sugar beet 

Cercospora leaf spot, 

leaf rust, and powdery 

mildew 

Hyperspectral 

reflectance 

Spectral vegetation 

indices 

SVM:  

1) Binary classification  

2) Multiclass classification 

Accuracy: 

1) 97% 

2) 86% 

[27] 
Winter 

wheat 

Yellow rust, aphid, 

and powdery mildew 

Hyperspectral 

reflectance 

Spectral vegetation 

indices 
Kernel discriminant analysis 

Leaf level overall accuracy of 

occurrence: 82.9% (slight), 89.2% 

(moderate), and 87.9% (severe) - 

accuracy at canopy level > 87% 

[28] Soybean Soybean rust 
Multispectral 

imaging 

Ratio of infected area 

(RIA) and rust color 

index (RCI) 

Threshold setting and analyzing 

the centroid of leaf color 

distribution 

Increased parameter values with 

intensity levels 

[31] Grapevine Powdery mildew 
Multispectral 

imaging 
Spectral indices 

Decision region separated by 

quadratic function 
Detection sensitivity = 73% at 60° 
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2.2.   Deep learning for plant disease detection 

With recent improvements in areas like artificial intelligence, processor technologies, image processing, and their 

supporting software, a vital development has been made by deep learning in computer vision technology. It is currently an 

exceptionally potent research area, and has been applied to many sectors for supervised and unsupervised pattern recognition 

and classification. In the agriculture sector, it also has been applied to various food production challenges [32]. The potential of 

deep learning can be leveraged for plant disease diagnosis. One of the famous architectures of deep learning is convolutional 

neural network (CNN) due to its potential to extract features from the data while training the model. Fig. 3 shows the basic 

blocks for plant disease detection using deep learning. Deep learning has been proven its potential as feature extractor and 

classifier in many computer vision tasks thus eliminating the need of feature engineering. 

For efficient feature extraction, deep learning architectures need large datasets for their training. However, in the plant 

disease recognition domain, large and disparate datasets are hardly available. To overcome part of these complexities, the 

notion of transfer learning is being utilized. Transfer learning is a method of utilizing an existing trained model on a huge 

dataset for a new related task [33-34]. 

 
Fig. 3 Classification steps in deep learning  

2.2.1.   Deep learning with RGB images 

Numerous plant disease detection techniques based on deep learning algorithms applying to visible band images have 

been developed in recent years. Jiang et al. [35] used single-shot multibox detector (SSD) for apple disease detection. The 

authors proposed an improved deep CNN (DCNN) model based upon SSD and an integrated rainbow concatenation method 

with the improved VGGNet. The model gave 78.80% mean average precision (mAP) and 23.13 frame per second (FPS) 

recognition speed. The work also reported that the model was able to recognize more than one disease on the same affected 

image. Selvaraj et al. [4] proposed using DCNN for the recognition of visible banana infections and pest signs on various parts 

of banana plants. The authors proposed 6 models (each for different parts of banana plants) and 18 classes, and used transfer 

learning in the study. ResNet50, InceptionV2, and MobileNetV1models were used for classification. The use of a SSD model 

with MobileNetV1 was made for fast object detection. These studies demonstrate that the potential of SSD can be utilized for 

real-time applications including plant disease detection. 

Barbedo et al. [36] used a pre-trained network, namely GoogLeNet, for plant disease detection using lesions and spots on 

leaves. The work involved segmenting original images into individual lesions and spots considering 5 different signs and 

symptoms such as scattered small, scattered large, isolated, widespread, and powdery. The work reported an improved 

accuracy using lesions and spots compared to the original images. The authors have made the database public. This study gave 

an advantage of detecting multiple diseases on the same leaf.  

Geetharamani et al. [37] used DCNN to identify 39 classes for 13 different plant leaves taken from plant village dataset. 

The authors reported an increase in the model performance from 91.43% to 97.87% by using data augmentation. They trained 

their model using various epochs, batch sizes, and dropouts. This work proves that data augmentation helps in increasing 

recognition performance. 
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Coulibaly et al. [33] proposed using transfer learning with visual geometry group-16 (VGG16) to identify mildew disease 

in millet crops. The model gave a good performance with 95% accuracy, 90.5% precision,  94.5% recall, and 91.75% F1-score 

even with a small dataset. Too et al. [38] focused on fine-tuning the well-known CNNs. They evaluated the performance of six 

different deep architectures by utilizing a dataset for healthy and diseased images of 38 classes. The study proposed that 

DenseNets gave a better performance concerning the accuracy achieved, parameters required, and time for computation. 

Mohanty et al. [34] used a dataset of infected and healthy leaves, and trained a DCNN to identify plant varieties and diseases 

for 14 crop types and 26 diseases. The authors analyzed the performance of two popular architectures AlexNet and GoogleNet 

for the dataset, and reported that the performance of GoogleNet was better than AlexNet. These studies demonstrated that in 

cases where there is a lack of large publicly available datasets for plant disease detection, transfer learning can give good 

performance compared to the models developed from scratch. 

Picon et al. [39] extended the work done by Johannes et al. [17], and used DCNN for crop disease classification in the wild. 

The algorithm used deep residual neural network (ResNet) with advancements in augmentation strategies and tile cropping for 

disease classification of three wheat diseases for images acquired in real conditions. It gave an improved average balanced 

accuracy of 0.84 (ResNet) as compared to 0.78 (classical approach), and gave a balanced accuracy of 0.87 for improvements in 

confidence estimation, superpixel segmentation, and artificial background training. The model also achieved a balanced 

accuracy of 0.96 on the pilot test. The work demonstrated that the recognition performance for field conditions can be 

enhanced by adding random images in the background of training images.  

Hu et al. [40] proposed the use of a low shot learning technique for the detection of diseases in tea leaves. SVM was used 

for segmenting the disease spots using color and texture features, and a combination of VGG16 and conditional deep 

convolutional generative adversarial networks (C-DCGAN) was used to classify tea leaf diseases with an average 

classification accuracy of 90%. 

Ferentinos [41] trained multiple CNN architectures (VGG, Overfeat, AlexNet, GoogLeNet, and AlexNetOWTBn) for 

plant disease identification using leaf images. The dataset contained 87,848 laboratory and real field condition images. The 

authors reported that the VGG model gave the highest success rate of 99.53%. However, the authors reported a huge fall in the 

recognition accuracy when the model trained for laboratory condition images was tested for field condition images and vice 

versa. This study demonstrated that the model should be trained on large datasets having high variability so that it can 

generalize effectively on new images, especially the images with field conditions.  

Ghazi et al. [42] assessed various factors influencing the performance of DCNN for plant identification using the 

LifeCLEF 2015 database. They evaluated three deep learning models (GoogLeNet, AlexNet, and VGGNet) by fine-tuning 

them, and also fused different classifiers to improve the performance. The proposed model gave a validation accuracy of 80% 

and 0.752 inverse rank score for the test data. The study also discussed a detailed performance analysis based on essential 

factors such as batch size, data augmentation, etc., which influence the refining of deep learning models. The study 

demonstrated that the fusion of different classifiers helps in enhancing classifier performance. It also indicated the impact of 

data augmentation and hyperparameters on the recognition rate. 

Lu et al. [43] proposed a DCNN method for rice disease identification. They used images of leaves and stems for their 

work. The study utilized a tenfold cross validation strategy and achieved an accuracy of 95.48%. The authors used stochastic 

pooling that gave better classification accuracy. Lee et al. [44] proposed useful discriminating features from leaf images to be 

used for plant identification by CNN. They utilized a deconvolutional network (DN) method to quantify the features that most 

effectively characterize the leaves. The study reported that the structure of the veins is an essential feature for recognition 

specifically when the shape feature is not sufficient. The work indicated that a combination of local and global features can 

raise the identification capability. Table 3 outlines the work done in plant disease recognition with deep learning architectures 

for processing RGB images. It highlights the crops used, various CNN models, and the evaluation metrics used for the work.  
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Table 3 Comparative study of deep learning algorithm on RGB images 

Ref. Crop Model/architecture Dataset/images used Evaluation metric 

[4] Banana 
CNN (ResNet50, InceptionV2, and 

MobileNetV1) 
30,952 Accuracy: 70% to 99% 

[33] Millet CNN (VGG16) 124 

Accuracy = 95% 

Precision = 90.50% 

Recall = 94.50% 

F1-score = 91.75% 

[34] 
14 plant 

species 
CNN (AlexNet and GoogleNet) 54,306 Accuracy = 99.35% 

[35] Apple CNN (GoogleNet inception module) 26,377 mAP = 78.80%  

[36] 14 crops GoogLeNet 46,409 Accuracy > 75% 

[37] 13 crops CNN 
Without augmentation = 55,448 

With augmentation = 61,486 
Accuracy = 96.46% 

[38] 14 plants 
CNN (VGG16, InceptionV4, 

ResNet50/101/152, and DenseNet121) 
54,306 Best accuracy = 99.75% (for DenseNet) 

[39] Wheat CNN (ResNet) 8,178 
Balanced accuracy > 0.96 (improvement 

from 0.78 to 0.87 for exhaustive testing) 

[40] Tea C-DCGAN and VGG16 120 Average accuracy = 90% 

[41] 25 plants 
CNN (AlexNet, AlexNetOWTBn, 

GoogLeNet, Overfeat, and VGG) 
87,848 Best accuracy = 99.53% (for VGG) 

[43] Rice DCNN 500 Accuracy = 95.48% 
 

Based on the above-mentioned study, it can be stated that data augmentation and transfer learning can be used in cases of 

unavailability of large datasets for improving the classifier performance. A single CNN can be used for a range of plant 

diseases across various plant species. The variations in hyperparameters can affect the classification accuracy, and the fusion of 

classifiers can be used for improving the recognition rate. 

2.2.2.   Deep learning with spectral images 

Deep learning is normally applied to RGB images. However, one of the active research areas in plant disease detection is 

applying deep learning to multispectral and hyperspectral data. Among various imaging techniques, hyperspectral imaging is the 

most worked technique in the area of deep learning architectures [45]. However, various challenges, such as the size of the data, the 

increase in computational time due to multidimensional data, the noise in specific bands, the requirement of sufficient training/testing 

labeled data, and the possibility of high error, need to be addressed while applying hyperspectral data for deep learning. 

Nagasubramanian et al. [46] used 3D DCNN to extend its applicability to hyperspectral data. The work integrated the 3D 

DCNN model with saliency map-based visualization that used the hyperspectral data for the detection of charcoal rot in 

soybean crops. Using hyperspectral stem images, the model achieved 95.73% classification accuracy and 0.87 F1-score. The 

wavelengths in the near infrared region (NIR) were used by the model for classification. The authors reported the limitation of 

a small dataset (111 hyperspectral stem images with 64-healthy and 47-infected) used in the work. Polder et al. [47] reported a 

method using modified fully CNN on hyperspectral images for recognition of potato virus Y (PVY) infected potato plant 

diseases. The study trained the network for real field tests on two rows and validated on two other rows. The precision and 

recall exceeded 0.78 and 0.88 respectively compared to traditional disease evaluation. 

Paoletti et al. [48] and Chen et al. [49] used the Indian pine dataset to get spectral and spatial information of hyperspectral 

images for classification using CNN architecture. Wang et al. [50] proposed an integrated method using hyperspectral imaging 

that included segmenting the plant, spectrum classification, and classification of image for early recognition of tomato spotted 

wilt virus based upon generative adversarial nets (GANs). The method was able to detect infected plants before symptoms 

appeared, and could categorize the pixels as background pixels, infected plant pixels, and healthy plant pixels without selection 

of hyperspectral bands. The authors reported 96.25% accuracy at the plant level. A comprehensive review of deep learning 

with hyperspectral imaging for multidisciplinary outlook is given in the work of Signoroni et al. [45]. Zhang et al. [51] 

proposed automated yellow rust disease recognition based upon DCNN and hyperspectral unmanned aerial vehicle (UAV) 
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images by utilizing spatial and spectral details. The work proposed Inception-ResNet layers for getting features and reported an 

overall accuracy of 0.85. Jin et al. [52] applied deep neural network (DNN) to hyperspectral images for classifying healthy 

heads and fusarium head blight. The spectra of hyperspectral image pixels were preprocessed to remove the interference 

occurring due to time intervals and surroundings. The generalization of the model was improved by a hybrid neural network 

(convolutional layer and bidirectional recurrent layer) that gave an F1-score of 0.75 and an accuracy of 0.743. 

Although a great amount of work utilizing hyperspectral images with deep learning architectures is being done in the area 

of crop and pest detection, there is still room for improvements in situations like various illumination conditions, images 

captured with real field background, etc. [53]. 

3. Discussion 

Numerous plant disease detection methods are being utilized in order to get early disease detection to control the losses 

caused by crop pests and diseases. Automated techniques using machine learning algorithms are the most popular techniques 

for this purpose. These techniques involve analyzing the images captured using various imaging techniques to perform 

classification. Numerous imaging techniques have been reported in literature, each with its benefits and limitations. Among the 

numerous available imaging techniques, RGB imaging is the most famous and simple way of capturing images. With the 

advancements in digital cameras and sensors, this method is being highly accepted. However, a few diseases do not have any 

corresponding visible signs, or have the signs appearing only when it is too late to take measures. For such cases, normally, the 

symptoms can only be recognized in the sections of the electromagnetic range beyond the visible scope of humans. A general 

method in such cases is to utilize a multispectral image, a hyperspectral image, a thermal image, etc. These images have the 

advantage of pre-symptomatic disease detection. Literature reports that chlorophyll fluorescence and thermography are mainly 

able to recognize early stress in plants, but they lack detection of specific diseases [18], whereas multispectral and 

hyperspectral images are found to be superior for specific disease detection. Certainly, a lot of positive research has been 

carried out using these imaging techniques. Nevertheless, these imaging devices are too costly. They need significant sensors 

and peculiar devices, and the selection of a proper spectral band is a very important step that can affect the prediction results 

and the computing time. 

While there are a number of imaging technologies that can be used to identify crop pests and diseases, the proper use of 

algorithms that analyze these images to classify them also plays a major role in the entire process. Although all the early studies 

in the domain of pest and disease identification were done using classical machine learning algorithms, these algorithms face 

limitations in terms of the small datasets and the requirement of feature engineering for hand crafted feature extraction leading 

to limited performance and limited crop and disease scope. Rapid improvements in the computational execution of GPUs, 

availability of larger datasets, and growth in the assisting software libraries gave rise to an expeditious spurt to 

experimentations based upon deep learning architectures. The potential of deep learning lies in its ability to handle high 

dimensional data, its ability to extract relevant features from the data, and its high performance [54-56]. 

Even if the current work is able to get good classification accuracy for plant disease detection, few challenges still need to 

be addressed in this area. One of the major challenges for using CNN models in crop disease detection is very few publicly 

available datasets. Plant village dataset [7] and plant disease symptoms (PDDB) dataset [11, 36, 57] are the only two known 

publicly available datasets. It has been noted that researchers capture images for creating their datasets without making them 

publicly available. Availability of a large number of datasets for use will allow comparing the results with the work of other 

researchers and allow testing the proposed method with the images not included in their database. To overcome the problem of 

sufficient dataset, techniques like data augmentation, GAN [50], and transfer learning techniques have been confirmed to 

enhance the model performance. Barbedo et al. [36] suggested the use of individual lesions and spots as another way of 

augmenting data to get a large dataset. Another important aspect to be considered is that most of the work done is on the images 
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captured in controlled surroundings. The images captured in the real field environment will affect the performance of the 

model, and hence the focus should be given on analyzing the images captured in natural conditions, with special attention 

given to complex background removal. Also, the CNN architectures built from scratch need large storage requirements and 

high computational time. Having a compact deep learning model in a mobile or embedded system is an essential need. Models 

like MobileNet, SqueezeNet, and ShuffleNet [58] that need less storage and training time are being used for smartphone 

deployment for such applications. A compact CNN architecture would be beneficial for mobile applications for real-time plant 

disease detection and would be beneficial to farmers. 

4. Conclusions 

This study presents an extensive review of the current work done in plant disease detection using various imaging 

techniques in combination with conventional machine learning and deep learning architectures. The study reports that in recent 

years, CNN models have superseded traditional machine learning models for crop disease detection as they give significantly 

higher accuracy levels and a broad range of detection in terms of plant species and diseases. However, they need large 

databases for training the model to achieve high accuracy and precision. The study also discusses the lack of publicly available 

datasets, the lack of images captured in natural conditions, and the limitations resulting from these. 

The use of various imaging techniques, for getting the maximum possible information to achieve early disease detection, 

is also discussed in the study. Among the numerous imaging techniques, RGB imaging is the most popular method. However, 

it lacks pre-symptomatic disease detection. The use of hyperspectral and multispectral images can be used to achieve this 

pre-symptomatic disease detection. However, there are issues to be addressed, such as challenges of processing high 

dimensional data, huge amounts of computational time required, noises in the spectral band, perfect band selections, etc.  

With continuous advancements in technologies of imaging sensors, GPUs, and computer vision, it can be expected that in 

the near future, smartphones with built-in sophisticated sensors and compact deep learning architecture will be utilized for the 

real-time, rapid, accurate, and early disease detection, for a huge variety of plants and diseases to control economical and 

agricultural losses. 
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