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Abstract  

In this study, a 19-layer convolutional neural network model is developed for accurate iris segmentation and is 

trained and validated using five publicly available iris image datasets. An integrodifferential operator is used to 

create labeled images for CASIA v1.0, CASIA v2.0, and PolyU Iris image datasets. The performance of the 

proposed model is evaluated based on accuracy, sensitivity, selectivity, precision, and F-score. The accuracy 

obtained for CASIA v1.0, CASIA v2.0, CASIA Iris Interval, IITD, and PolyU Iris are 0.82, 0.97, 0.9923, 0.9942, and 

0.98, respectively. The result shows that the proposed model can accurately predict iris and non-iris regions and thus 

can be an effective tool for iris segmentation. 
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1. Introduction 

Iris-based biometric recognition is one of the most efficient and extensively used automated individual identification 

techniques. In recent years, iris texture has played a crucial role for various security and defense purposes because irises are 

stable and unique structures. Since the iris pattern cannot be reproduced easily, the iris-based recognition technique surpasses 

most biometric recognition techniques [1]. In addition, with an iris-based biometric recognition system, it is not necessary to 

update the iris pattern at regular intervals since the iris pattern will not undergo degradation over time. Iris recognition involves 

the following processes: acquiring eye images, segmenting the iris parts from the eye images, extracting features, comparing 

the acquired features with the existing database, and matching the features. The effectiveness of the iris segmentation process 

determines the effectiveness of the overall iris-based biometric recognition system. 

As shown in Fig. 1, the iris lies between the pupil and the sclera [2]. If these regions are segmented along the iris, the 

performance of the recognition system will be affected. For effective identification, iris segmentation plays an essential role. 

However, by using traditional iris segmentation algorithms, iris portions could be lost. With the development of deep learning, 

iris segmentation has become a little accessible compared to conventional segmentation algorithms because the deep learning 

algorithms will be trained for segmenting the iris using labeled data. In standard segmentation algorithms, the detection of 

elliptical or circular edges has been used to segment the pupil and iris. 

The iris can be segmented more precisely when using the localization technique based on the circle equation [4] and 

Daugman’s integrodifferential operator [5], as compared to the canny edge detector and active contour. In addition, all the 

traditional methods make the segmentation process complicated and lengthy. For these reasons, researchers started to conduct iris 

segmentation by using deep learning algorithms. Convolutional neural network (CNN) is a widely used deep learning technique 

for image segmentation. The CNN architecture predicts the iris and non-iris pixels by adopting a down-sampling layer via a fully 

connected layer. CNN can accurately recognize the features and automatically detect the essential components in an image.  
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Fig. 1 Human eye [3]  

This study aims to develop a CNN-based iris segmentation framework for iris-based biometric recognition systems. The 

significant contributions of this work are shown as follows. 

(1)  The proposed framework is not database-specific. 

(2)  Semi-manual processes are employed for labeling the publicly available iris databases. 

The rest of this study is organized as follows. Section 2 reviews the studies related to iris segmentation. Section 3 

describes the proposed workflow in detail. Section 4 describes the experimental configuration of this study, such as the 

employed public iris image datasets, ground truth masks, and hyperparameters. Section 4 also explains the evaluation metrics, 

and section 5 details the experimental results, comparisons with the existing systems for iris segmentation, and discussion. 

Finally, the study is concluded in section 6. 

2. Related Works 

This section briefly explains the state-of-the-art iris segmentation process using deep learning algorithms. UniNet.V2 was 

developed to detect, segment, and extract iris features from raw eye images [6]. The architecture consists of a mask 

region-based CNN (MR-CNN), a normalization layer, and a FeatNet layer for feature extraction. Mask R-CNN was introduced 

to improve stability and accuracy in detecting and segmenting irises. Iris segmentation was performed by identifying the iris 

and non-iris pixel regions. RoI Align was employed in down-sampled feature maps to recover the accuracy at pixel-level 

segmentation. The datasets used were ND-IRIS-0405, CASIA v4.0 Distance, IITD, and WVU non-ideal iris databases. A fully 

CNN (FCNN) with the triplet loss was used to perform the task of iris recognition. 

Zhang et al. [7] proposed an improved U-Net which obtained better accuracy than the traditional method [7]. They 

combined the fully dilated convolution and the U-Net network (FD-UNet). The dilated convolution was combined with U-Net 

to acquire more information from the segmented image. U-Net consists of two paths, namely the contraction and expansion 

paths. The contraction path was responsible for pooling and feature extraction, whereas the expansion path was accountable for 

up-sampling. Every pooling block undergoes two unpadded convolution operations of 3 × 3 and a pool operation of 2 × 2. In 

the contraction path, the image size was reduced to half the original size, and the feature channels were doubled. In the 

expansion path, the images were resized to their original size, and the feature maps were reduced to half using the rectified 

linear unit (ReLU) activation function. In up-sampling, the output feature obtained from the contraction path was combined 

with the corresponding features obtained in the expansion path. The convolution operation with a 1 × 1 kernel was used to map 

the components to the appropriate class they belong to. The missing boundary problem was overcome by employing two 

dilated convolutions instead of unpadded convolution, but the final layer 1 × 1 convolution was retained. FD-UNet was trained 

and tested using CASIA Iris Interval (CASIA Interval), ND-IRIS-0405, and UBIRIS v2 datasets. 
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A dense FCNN, consisting of a CNN architecture combined with iris segmentation dense blocks, was proposed to 

improve the iris segmentation efficiency [8]. The thick blocks were used in both the encoder and decoder sections, and were 

trained and tested with CASIA Interval and IITD iris databases. Li et al. [9] developed an edge-based and learning-based 

algorithm to avoid misclassifying the pupil and limbus boundaries. A six-layer faster region-based CNN (R-CNN) and a 

Gaussian mixer model (GMM) were used for locating the eye and pupil boundaries, respectively. The limbus boundary was 

found by searching the maximum intensity pixels along the radius from the center of an eye image and using the edge selection 

methodology. Faster R-CNN consists of an input layer, four convolution layers with a ReLU, normalization, and a 

max-pooling layer at the second, third, and fourth layers. Faster R-CNN also consists of fully connected and output layers. A 

GMM based on the expectation-maximization algorithm was used to reduce the execution time and increase the system’s 

accuracy. The database used for training and testing faster R-CNN was CASIA Iris Thousand.  

A fully convolutional deep neural network (FCDNN) was developed to segment the iris from an eye image captured by a 

mobile camera [10]. Initially, FCDNN was trained using the NIR iris images from CASIA Thousand, Bath 800, UBIRIS v2, 

and MobBio datasets, later using visible images from the same publicly available databases. The data for training the network 

was increased to obtain better accuracy using data augmentation. The data augmentation includes changing contrast, applying 

blur, and shadowing randomly. A deep neural network based on the semi-parallel method (SPDNN) was used to generate the 

iris map from low-resolution iris images. This work combined SPDNN with FCDNN to obtain a network similar to U-Net 

without the pooling layer.  

ATTention-guided U-Net (ATT-UNet) was proposed to segment the iris more accurately [11]. ATT-UNet was built on 

the usual U-Net. This work introduced attention mechanisms into the network to study more distinct features present in the 

image to separate non-iris and iris regions. The contracting path of U-Net was used for extracting the feature map, and finally, 

the regression module was used for estimating the iris’ boundary box to serve as an attention mask. Feature maps were decoded 

in the expanded path, and an attention mask was added to the model at the final prediction stage. Skip function was employed 

to concatenate features from the contraction and expansion paths to force the model to obtain global and local information 

between the contracting and expanding paths. The potential area where the iris was most likely to be present was predicted by 

attention mask generation. The regression model was obtained by employing a pooling and fully connecting layer at the 

contracting path. The mean squared error function was used to find the network loss. Using the attention mask obtained, the 

network was guided to segment the iris at the final stage. Soft attention was integrated with the network to highlight the mistake 

performed in mask generation to a certain degree. The loss function in segmentation was calculated using the binary 

cross-entropy function. ATT-UNet was trained and tested using UBIRIS v4 and CASIA v4 Distance. 

Hofbauer et al. [12] developed a CNN-based iris segmentation model to further improve the segmentation accuracy [12]. 

The refinement of the CNN architecture was chosen to obtain better segmentation performance. Four RefineNet were 

employed and individually connected to one residual net output simultaneously with the former RefineNet block. All four 

RefineNet implemented were in a cascade arrangement. The pupil boundary was found quickly as they are entirely circular and 

free from the interference caused due to the presence of eyelids and eyelashes. After detecting the pupil boundary, the limbic 

boundary was found. This work showed that implementing a CNN-based noise mask in the traditional method improved the 

accuracy of iris segmentation when the iris images were obtained from a high-quality biometric camera. CNN was trained and 

tested using CASIA Interval, IITD, ND-IRIS-0405, and prot-1. 

An interactive U-Net with squeeze expand module (ISqEUNet) was employed to increase the storage efficiency by 

decreasing the number of parameters employed in the segmentation process [13]. ISqEUNet contained smaller datasets with 

few annotated images as well as the ISqEUNet-based segmented output for these iris images. The images that were not 

segmented correctly were refined manually. The interactive U-Net was trained and tested using CASIA Interval and IITD 
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datasets. The images segmented incorrectly were refined manually in the interactive mode by users. Fig. 2 shows the databases 

used in the reviewed articles. From Fig. 2, it can be seen that UBRIS v2, CASIA Interval, and IITD were commonly used 

databases. This study develops a unified 19-layer CNN architecture for iris segmentation, and trains the CNN model with the 

labels obtained from WaveLab or created using Daugman’s integrodifferential operator [5].  

 

Fig. 2 Databases used in the reviewed articles 

3. Methodology 

In this section, the proposed methodology for iris segmentation is explained in detail. Fig. 3 shows the overview of the 

proposed pipeline. As shown in Fig. 3, the images obtained from various publicly available iris databases are used as input 

images for the proposed CNN model to perform iris segmentation. A detailed description of the process involved in the 

proposed system is discussed below.  

The proposed architecture consists of 19 convolutional layers with variable filter sizes, activation functions, residual 

layers, skip functions, and batch normalization. The convolutional layers are employed for pixel-based classification to extract 

the iris region. Each convolution layer consists of a filter kernel for classifying the region of interest (ROI). The grayscale input 

image is filtered in the convolutional layer with varying kernels. For the ��� map of features with a ��� layer of convolution, 

the output ��
� is given by Eq. (1). 

 
Fig. 3 Overview of the proposed methodology 
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where �() represents the activation function, ∗ denotes the convolution, and W denotes the kernel filter size. The activation 

function used in the proposed work is ReLU in each convolutional layer to prevent the saturation of negative and positive 

inputs. The activation function of the input � is calculated based on Eq. (2).  
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Eq. (2) shows that the activation function is zero and linear for all negative and positive values, respectively. ReLU is a 

widely used activation function in CNN because of its minimum computational value since no complicated evaluation method is 

involved. Due to the minimal computational value, ReLU requires less execution time to train or execute. It has faster 

convergence because of the linearity property. Unlike sigmoid and tanh, ReLU does not suffer from vanishing gradient problems. 

ReLU is also sparsely activated, so better predictive power can be obtained. A pooling layer is used to reduce an image’s size by 

applying the pooling window. The pooling window performs down-sampling by moving over the entire image. The pooling layer 

is of two types, i.e., average and max pooling. In this work, the max-pooling layer is employed. In max-pooling, the highest value 

pixel from all pixels covered by the pooling window is taken. The stride of a network layer is used for reducing the dimensions of 

the feature map. The stride is the number of shifts in pixels over an image given as the input. It controls the shift of kernels while 

carrying out convolution. Zero-padding is employed to fit a filter that does not fit perfectly.  

The residual layer is employed to enhance the features by accumulating the previous layer features using skip connection 

to a learned residue as proposed by He et al. [15]. Residual layers are used for faster gradient propagation to decrease the 

execution time. The batch normalization technique is employed to normalize the weights of the network. In this way, the 

variation between the consecutive layers is reduced, resulting in a faster training process. The layers’ extracted features are 

transformed linearly before applying the activation function. After the network weights are updated, the updated weights are 

applied to the ReLU layer. The proposed network is based on a supervised learning algorithm. The predicted image is verified 

based on its label image. A soft-max classifier layer is employed to compare every pixel of the predicted image to its 

ground-truth image. The input of this layer is obtained from the convolution layer. The soft-max function � receives the input 

as q. m is the element of q, M is the number of classes to be classified, and p is the node on the output layer. This normalized 

function is given by Eq. (3). 
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Adam Optimizer is employed to reduce the loss while updating the network weights, similar to the work of Kingma et al. 

[16]. The optimizer improves the training rate for scarce data, deteriorates it for the mutual data, and revises rapidly for scarce 

data and slowly for mutual feature characteristics. The variation between the predicted and label pixels is considered a loss. 

The cross-entropy process is used to calculate the loss by the soft-max layer. Cross-entropy loss is one of the widely used 

functions for calculating the loss in deep learning. This loss function is employed to handle the binary classification problem 

used to compute whether a pixel belongs to a specific class or not [17]. The cross-entropy loss �� for the proposed network’s 

output is given by Eq. (4). 

ˆlogn n n
n
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In Eq. (4), �� represents the ��� component of the label, and ��� represents the ��� output of the soft-max classifier layer. Eq. (4) 

conveys that the cross-entropy gives the same weight to the loss of diverse pixels and does not account for the unbalanced pixel 

distributions. Fig. 4 shows the detailed architecture of the proposed network. 

 

Fig. 4 Network architecture proposed for iris segmentation 

4. Experiment 

4.1.   Dataset 

4.1.1.   CASIA v1.0 

CASIA v1.0 [18] consists of 756 iris images acquired from 108 subjects with 320 × 280 resolution. The iris images are 

captured using a close-up camera. Eight 850 nm near-infrared (NIR) illuminators are arranged in a circular form around the 

sensor for adequate and uniform illumination. 

4.1.2.   CASIA v2.0 

CASIA v2.0 [3] comprises 2400 images with 640 × 480 resolution. There are two subsets in CASIA v2.0. Each subset 

consists of 1200 images captured from sixty individuals using OKI IRISPASS-h and CASIA-IrisCamV2. All the images are 

captured in an indoor environment.  

4.1.3.   CASIA Interval 

CASIA Interval [19] is a subset of CASIA Iris v3. This dataset comprises 2639 images captured from 249 subjects using 

a close-up camera with 320 × 280 resolution. The camera consists of NIR LED arrays arranged in a ring format to capture the 

iris images clearly.  

4.1.4.   PolyU Iris 

PolyU Iris [20] consists of two subsets, namely the first and second sections. The first section comprises 12540 iris images 

obtained from 209 subjects with 640 × 480 resolution. In the second section, twelve subjects are involved, and their iris images 

are also available. NIR and visible range images are available in both the subsets.  
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4.1.5.   IITD 

The IITD dataset [14] consists of 2240 iris images from 224 subjects aged between fourteen and fifty-five. The images are 

with 320 × 240 resolution and are acquired using JIRIS, JPC1000, and a digital CMOS camera. Fig. 5 shows the sample images 

from the employed datasets.  

 

Fig. 5 Iris image samples from the datasets employed [3, 14, 18-20] 

4.2.   Training 

The ground truth image for training the proposed network is obtained from WaveLab for CASIA Interval and IITD 

datasets. For CASIA v1.0, CASIA v2.0, and PolyU Iris databases, the ground truth images are created using the 

integrodifferential operator proposed by Daugman [5] and manually checked for proper segmentation. Manual operations for 

removing the remaining non-iris region are incorporated using the image labeler app in MATLAB. The iris and pupil boundary 

is located based on Eq. (5). 

  0 00 0( ) ( , ,, , ( ) )
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�(�, �) is the input eye image. The operator looks for the maximum blurred partial derivative concerning an increase in 

the radius r of the normalized contour integral �(�, �) over the image coordinate  (�, �). The operator searches along the 

circular arc ds with the radius r and  (��, ��) as the center coordinate. ��(�) is the Gaussian smoothing function with the scale 

�. The whole operator acts as a circular edge detector. The path of the integral contour is defined based on searching the 

maximum derivative ���(�,��, �) of the contour integration through �, ��, ��. Fig. 6 shows some sample iris images with their 

ground truth for the dataset employed in the proposed work.  

This study uses K-fold cross-validation for training and validating the proposed framework. K-fold cross-validation is 

efficient and faster than most other cross-validation techniques as this type of validation repeats the train/test folds K times. 

Another advantage of the cross-validation technique is that it can reduce bias since the variation of the estimated results 

decreases as the K increases. In K-fold cross-validation, the datasets are divided into K sub-folds. To avoid the overlap between 

the training and testing sets, one sub-fold will be reserved as a test-fold while (K-1) folds will be used for training the network. 

The proposed work uses a five-fold cross-validation process. All datasets used are divided into five subsets containing an equal 

number of images. One is considered the testing set from the five subsets, while the remaining ones are used as the training data. 

The exact process is then carried out five times by considering each subset as the testing data exactly once. 

The maximum iterative step is kept as 10000, the learning rate is set as 0.001, and the batch size is 4. The weights of every 

convolutional layer present in the pipeline are initialized with a standard deviation of 0.01. The bias is set as 0 for every 

convolutional layer. The learning rate and the momentum of the optimizer are kept as 0.01 and 0.9, correspondingly. At last, 

the saved network in 10000 steps is used for prediction. The proposed network is trained from scratch and does not employ any 

pre-trained models, and the total number of learnable parameters is 4.68M. 
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Fig. 6 Iris image samples with their ground truth images for the datasets employed [3, 14, 18-20] 

4.3.   Evaluation 

The evaluation of the proposed work is based on its accuracy, sensitivity, specificity, precision, and F-score. The variables 

required for evaluation include true positive (tp), true negative (tn), false positive (fp), and false negative (fn). When an iris pixel 

is correctly segmented concerning its ground truth, tp is registered; otherwise, fn is registered. Similarly, correct segmentation 

of a non-iris pixel leads to tn, and incorrect segmentation leads to fp. The efficiency of the proposed pipeline is evaluated based 

on the equations given below. 

t tp n
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t t f fp n p n

+
=

+ + +  
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5. Experimental Results and Discussion 

This section discusses the result obtained using the proposed methodology for iris segmentation with CASIA v1.0, CASIA 

v2.0, CASIA Interval, IITD, and PolyU Iris databases. The entire iris segmentation, normalization, and enhancement processes 

are carried out in the MATLAB 2020a platform on a 5 GHz quad-core computer with NVIDIA GeForce GTX 1080ti graphics 

processing unit. The input of the proposed network is a gray image with 320 × 240 dimensions and a channel of 3. The network 

gets trained, as explained in section 4.2. The network’s output is a grayscale segmented map with values between 0 and 1, with the 

same number of channels and size as the input. The output binary mask obtained for some of the test images is shown in Fig. 7.   

The validation accuracy graph of the proposed model is shown in Fig. 8. The accuracy obtained for CASIA v1.0, CASIA 

v2.0, CASIA Interval, IITD, and PolyU Iris is 0.82, 0.97, 0.9923, 0.9942, and 0.98, respectively. From Fig. 8, it can be inferred 

that the accuracy obtained for CASIA v1.0 is the lowest validation accuracy as its number of images available for training and 

validating the network is fewer than that of other iris databases. In addition, it is also found that except for CASIA v1.0, all 

other databases converge rapidly. 
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Fig. 7 Result obtained for iris image databases using the proposed architecture [3, 14, 18-20] 

 

  
Fig. 8 Validation accuracy obtained for the employed  

datasets using the proposed architecture 

Fig. 9 Validation loss obtained for the employed datasets  

using the proposed architecture 

 

Table 1 Comparison of the proposed network and other CNN algorithms 

Dataset Reference Accuracy Sensitivity Specificity Precision F-score 

CASIA v1.0 Proposed 0.82 0.79 0.74 0.63 0.77 

CASIA v2.0 Proposed 0.97 0.92 0.99 0.99 0.97 

CASIA Interval 

Chen et al. [8] 0.9905 0.9828 - 0.9827 0.9828 

Jalilian et al. [21] 0.9609 - - - 0.9192 

Arsalan et al. [22] 0.9810 0.9710 - 0.9810 0.9758 

Uhl et al. [23] 0.74 - - - 0.8949 

Rathgeb et al. [24] - 0.9768 - 0.8289 0.8927 

Varkarakis et al. [25] 

(CASIA Thousand) 
0.995 0.9467 0.9986 0.9739 0.9594 

Hao et al. [26] - 0.9822 - 0.9828 0.9824 

Proposed 0.9923 0.9830 0.9964 0.9840 0.9832 

IITD 

Chen et al. [8] 0.9884 0.9806 - 0.9818 0.9812 

Jalilian et al. [21] 0.9461 - - - 0.8892 

Arsalan et al. [22] 0.9716 0.9800 - - 0.9756 

Rathgeb et al. [24] - 0.9660 - 0.7887 0.8628 

Hao et al. [26] - 0.9779 - 0.9796 0.9787 

Proposed 0.9942 0.9942 0.9804 0.9703 0.9805 

PolyU Iris Proposed 0.98 0.96 0.99 0.97 0.98 
 

Fig. 9 represents the validation loss of the network for the employed dataset. From Fig. 9, it can be seen that the number of 

data used for training the network affects the validation loss. Since the amount of data for training the network using CASIA 

v1.0 is less, its validation loss is high compared to other datasets. The validation loss obtained for CASIA v1.0, CASIA v2.0, 

CASIA Interval, IITD, and PolyU Iris is 0.095, 0.0625, 0.0495, 0.0758, and 0.0498, respectively. 
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The effectiveness of the proposed CNN architecture is verified by comparing the CNN network with other algorithms, 

and the results are tabulated in Table 1. From Table 1, it can be observed that the accuracy of the proposed architecture is high. 

The proposed network shows higher efficiency than traditional iris segmentation algorithms such as adaptive Hough transform 

and contrast-adjusted Hough transform proposed by Uhl et al. [23] and Rathgeb et al. [24], respectively, regardless of accuracy, 

sensitivity, precision, and F1-score. Compared to the work of Chen et al. [8], the proposed network shows lower F-score and 

precision for CASIA Interval and IITD. Similarly, compared to the U-net architecture developed by Hao et al. [26], the 

proposed system obtains relatively low precision for IITD. Table 1 shows that the proposed CNN algorithm is more efficient 

than most of the existing iris segmentation algorithms. 

6. Conclusions 

This study proposed a 19-layer CNN-based iris segmentation pipeline. The predicted output (i.e., the mask) was obtained 

via a fully connected layer. To analyze the effectiveness of the network in segmentation, five publicly available iris databases 

with their ground truth mask are employed. For CASIA Interval and IITD databases, the ground truth masks are obtained from 

WaveLab. The ground truth masks for the rest of the iris databases were created using an integrodifferential operator algorithm. 

Some manual operations were performed on the received images to remove the non-iris regions. The accuracy, sensitivity, 

selectivity, precision, and F-score were employed to analyze the proposed network’s performance. The obtained results were 

then compared with the existing traditional methods as well as the deep learning methods. Table 1 shows that the proposed 

network outperforms most of the existing algorithms. 

The possible limitation of this method could be that the proposed CNN architecture is less flexible, i.e., it can only be used 

to segment the iris for the employed datasets. In the future study, the authors plan to develop a fully automated and end-to-end 

architecture for iris segmentation as the present work used a semi-manual technique based on the integrodifferential operator 

for labeling images and was not end-to-end. The accuracy, execution time, and optimization of the proposed network were also 

to be improved for real-time applications.  
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