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Abstract

Monitoring the growth of ginger seed relies on hareaperts due to the lack of salient features ffacéve
recognition. In this study, a region-based convohal neural network (R-CNN) hybrid detector-cléissimodel is
developed to address the natural variations inggisgrouts, enabling automatic recognition inte¢hgrowth stages.
Out of 1,746 images containing 2,277 sprout insgtanthe model predictions revealed significant asioih between
growth stages, aligning with the human perceptiodadta annotation, as indicated by Cohen’s Kappeesc The
developed hybrid detector-classifier model achieae®5.50% mean average precision (mAP) at O.5sietéions
over union (loU), tested with 402 images contaird. sprout instances, with an inference time 888.seconds
per image. The results confirm the potential offifibrid model as an alternative to current manparations. This

study serves as a practical case, for extensiooth&y applications within plant phenotyping comiities.

Keywords: ginger seed germination, growth monitoring, desgpiing, instance segmentation

1. Introduction

Ginger, Zingiber officinale Rosc., has been recegdias an important spice in the Asia and Africgore It is a staple in
everyday cuisine and is available in various formsluding powder, liquid extract, and oil. Besidesculinary uses, the
abundance of gingerol and other bioactive compoundsinger highlights its unique medicinal valug.[The growing
attention toward ginger has turned it into a comityodith high international demand. In 2019, coiggrsuch as India,
Nigeria, China, and Nepal collectively produced entiran 4.09 million metric tons of ginger, accongtfor approximately
3.78 billion international dollars’ worth of commibd[2]. Despite the rising demand, ginger prodoistin some countries is
not yet self-sustaining. For instance, ginger vegrted to have one of the highest import dependetims among crops in
Malaysia, reaching 81.5% in the year 2020 [3].

In ginger production, the life of a young planfpi®pagated through seed cuttings from the rhizofrreaiure ginger,
usually referred to as “sett” or “bud”. In traditial methods, after being cut from a rhizome, a@irsged iduried directly in
its growing medium. The survival of a ginger seddlanly be examined at harvest after about 8 msmttthe planting period
[4]. To better utilize resources, the common practn ginger production is to cultivate seedlingsf ginger seeds before
planting, ensuring secure ginger germination [3¢. B illustrates ginger propagation via a seedfounh a mature ginger
rhizome. After being split from its mother rhizontiee buds on the seed gradually emerge and devEleminger seed is then

harvested and planted in a nurturing medium toioaatits growth and produce new mature rhizomes.
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Fig. 1 Ginger propagation via seed from mature gjinnbizome

In any case, the germination of ginger seeds isi@rto ensure the efficient production of the umggleund plant. The
condition of ginger seed sprouting has been shavgighificantly contribute to the vigor of gingdapts and final yield, as
demonstrated by Ai et al. [6]. Inspecting the gfiowtatus of ginger seed is therefore a cornersimmggnger plantation.
However, categorizing ginger seed growth statahadlenging, as it requires not only long hoursvofk but also the expertise
of a trained eye. The categorization is difficolipin down with simple rules due to the irregulaages and sizes. Meanwhile,
the inspection process involving human expertsdacaceability. To date, there is no universal dtad for ginger seed
germination growth that can be used as a refer@arcmspection. On top of possible slip-throughsidy judgment, the
time-consuming manual inspection is sub-optimaldoge-scale production. In the long run, the gitvaand quality of ginger
production will inevitably be constrained by theadable manpower. Therefore, it is imperative todduce an automated and

intelligent solution, such as deep learning (Db, fapid and traceable inspection of ginger seedt.

Despite the use of DL methods in agriculture-relapplications has been reported to be on thesinee 2016, the work
to exploit the potential of DL methods in analyzplgnt growth traits is still lacking in generalnapared to other applications
in agriculture such as species classificationsstoetection, and yield estimation [7]. Specificairowth monitoring studies
constitute only 14.08% of the 71 studies as repdsteYang and Xu [8]. Therefore, it is not surprgsthat the study related to
ginger plant monitoring is nearly non-existencepitesthe recent interest in the crop. In a studwautomate ginger shoot
orientation recognition on a mobile platform, Faatgal. [9] demonstrated a successful applicatiothefDL method for
analyzing shoot orientation in the seed-sowing @secNonetheless, there has not been a study gergjermination growth
monitoring to date. There is still a lack of inugation to obtain an effective object detector @atfire extractor that can be
applied to recognize growth stages of ginger sékdrefore, this work aims to address the reseaaphby demonstrating the

use of DL networks to detect, localize, and idgngihger sprouts of different growth stages in wiotensional (2D) images.
The contributions of this work are as follows:

(1) This paper presents the first work to demotstitze novel application of a DL network for gingeed monitoring to three
growth stages.

(2) The results in this paper reveal the potewfigthe DL network to make decisions that surpagsdmperception in growth
stage classification at much higher speed. Thibkliggts the applicability of the DL network for gjar seed monitoring

applications.

(3) Lastly, this work contributes as a practicaseatudy that utilizes a two-stage strategy in Dadeling, presenting a

reference to other applications in plant phenoty@nd computer vision communities.

The following section of this paper provides anlioet of details regarding materials, steps in asitjon, and the
preparation of the dataset. Subsequently, the papeduces a two-stage DL approach concept, fakbly the presentation
of the results from the model training work to sétbe best models for application. The performanfdbe selected DL model
in the ginger seed germination task is then asdems@ discussed in subsequent sections. Finaélypdper concludes with a

summary and suggestions for future development.
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2. Materials and Methods

This section outlines the data preparation in tuelys which includes the equipment used, data caiegy and an
overview of the date set collected. Next, the stpaemployed in this study is also explained, fottd by the details on model

training. Lastly, the categories of the detectiesutt, as well as the performance metrics usedlaoedetailed in this section.

2.1. Data preparation

In this work, a 1.3 megapixel (MP) color digitalncara (HIKROBOT MV-CE013-50GC) was used with a 6 hems
(OPTART MK-0614) to capture images of a ginger semahple at 1280 pixels x 960 pixels resolution. iFhaging system
consisted of a 350 mm wide rotating table withféude non-reflective white surface, a direct illumaiion source positioned
360 mm above the table, and a camera mountedadtligie angle to the table, 30° from the imaging4mntal plane. Images
of the specimen were captured at every 45° rotdatiallow imaging of all sprouts that might emeegeny part of the seed.

The imaging system used in this work is shown o Bi

| 205 mm

Lightings

360 mm

Camera with
<« ring lighting

by

\ /
'\4\ Rotating table

350 mm wide

(a) Imaging system (b) Example of the captured giirsged image

Fig. 2 Imaging system and resultant image in thoskw

Raw mature ginger rhizomes of the species Zingdfficinale Rosc. were obtained from a local ging&ntation in
Penang, Malaysia. The ginger specimens were prépatewing industrial practice in the local gingglantation. The gingers
were cleaned with water to remove debris, etc. filmgir skin. After drying at room temperature, tlieger rhizomes were cut
into seed pieces weighing from 20 g to 50 g. Tinggi seeds were then allowed to germinate in @&dlasea laboratory under
a controlled environment with air at 26 °C and 7@¥ative humidity. To promote growth, the gingettsavere illuminated
daily from 7 a.m. to 7 p.m. using white light-enmigg diode (LED) lighting (TMS LITE HORTI HBL3-1904) with a color
temperature of 5,300 K. In this study, 480 gingexdssamples underwent daily image acquisition fod&ys.

Throughout the acquisition period, only 282 gingeed samples were found to have survived and deratets
development. Besides, the collected images weterddl to remove those without visible seed spraumtghe end, the
dataset used in this study consists of 2,277 gisged sprout instances in 1,746 randomly seleateges from the 282
ginger seed samples. The labeling of the colledtddset was done by a field expert with a backgtonginger plantations.
Regarding Ai et al. [6], ginger seed sprouts wextegorized into three classes: Stage 1 (S1), 24§2), and Stage 3 (S3),
based on visual appearance, following the exisiirystrial practices. The regions of ginger seew s in the images
were manually identified and represented in polygoordinates by the expert. The growth stagesrafayi seed sprouts are

illustrated in Fig. 3.
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Fig. 4 Selected images of ginger sprouts with dffé difficulty annotations

For each identified region of sprout, additiondldks were included besides its growth stage. Theteded a Boolean
value indicating whether the working sample posfficdlty in labeling and its corresponding causdtributed to either

“confusion”, “occlusion”, “view”, or “lighting” bythe expert. Due to the continuous nature of thetpjaowth, it may be

challenging for the labeler to identify the suldifferences between two consecutive growth stagemfusion”). Besides,
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difficulty in labeling arises when the ginger sespalout is blocked by other parts of itself (“océtus) when it is imaged at a
perpendicular angle (“view”), or under insufficiedfumination (“lighting”). Several selected exarspl of “easy” and
“difficult” ginger sprout instances are shown irgF4. The images in Fig. 4 are scaled to the saight) maintaining their

original aspect ratio.

Before further processing of the dataset, the iaggirocess in this work was repeated three tinyethé field expert.
Cohen'’s Kappa statistic [10] was computed in thislg to assess the reliability of the expert’s dations. The measure has a
value ranging from -1 to +1, where -1 indicates ptate disagreement, and +1 indicates perfect agreeis shown in Table
1, a strong agreement (Kappa scores at 0.87) vees\adad for the growth stage class labels for tted 89277 object instances.
Despite the Kappa score of 0.57 indicating thafidld expert wavered to decide whether a sampdasy or difficult, firmer
decisions (Kappa scores at 0.79) were made on eeghesed the difficulties for the 750 (32.94%) sampiarked “difficult”
based on the majority of the annotations. It isamably challenging for the expert to classify sgealwth stages.

Table 1 Cohen’s Kappa scores for annotations cesdatharacteristics

Annotation typ Sample siz|Kappa score (Cohen 19¢

Class (-class 2271 0.867¢
Difficulty (Easy/Difficult) 2271 0.573(
Difficulty causes (4 cause 75C 0.787:

The annotated dataset was then split into sets0@bltraining images, 269 validation images, an?l #48ting images (a
ratio of 8:2:3). The split was carried out throwgfhatification based on the possible seveh«(2) cases of the presence of
object instances classes in the image. This was ttoansure that each training, validation, antinigset shares approximate
similar object instance distribution across imafggsthe multi-class detection task. Table 2 corgainformation about the

dataset splits, including the number of imagestaechumber of object instances.

Table 2 Dataset characteristics

. No. of instance by difficulty and cat
_ . _ No. of instance by class —

Dataset splitNo. of imagesNo. of instance Easy Difficult
S1 Sz Sé y Confusiot| View | Occlusiot | Lighting| Total
Training 107¢ 137¢ 564 68¢ 124 | 911 24~ 20€ 12 2 46E
Validatior 26¢ 34C 141 17¢ 28 | 22¢ 58 5C 6 0 111
Testing 40z 561 267 251 47 | 387 94 73 6 1 174
Total 174¢ 2271 96¢ | 110¢ | 20C |15237 394 32¢ 24 3 75C

In general, there was a considerably lower numbebfect instances with S3 class labels in thes#dga This can be
attributed to a lower occurrence of a ginger seedelbping into a later stage within the limited ad@bllection period.
Nonetheless, the random splitting, using the afergioned stratification, resulted in approximatsiyilar distributions of

classes and difficulties for the three trainindjdation, and testing datasets.

Besides, it is evident from Table 2 that the difftg in data annotation was mainly attributed te tauses of “confusion”
and “view”, which respectively accounted for 52.53¥d 43.87% of “difficult” examples in the wholetdset used. This
result reflects the substantial amount of confusiomlved in the human expert’'s decisions during tfassification task,

besides the limitation caused by imaging settings.

2.2. Two-stage detector-classifier approach

In object detection or instance segmentation taBKs,algorithms are commonly categorized into tw@dy of
architectures, namely, one-stage detectors susimgle shot detectors (SSD) [11] and you only loake (YOLO) [12], and
two-stage detectors, which are commonly represebyed region-based convolutional neural networkQIRN) [13]. In

general, R-CNN detectors are found to be more premntithan one-stage detectors in plant phenotytaged research [14].
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This choice can also be attributed to the fact pieit growth occurs eventually over time. Theref@rchitectures based on
the R-CNN family, with reported better detectioc@acy, are preferred, since there is no pressegd for real-time detection
[15]. Several studies have shown the advantagasrfiti-stage network that benefits from the conodpask specialization.
Separating a complex task into simpler tasks fifedint networks was reported to allow for moreithdity in models [16-17].
Compared to the knowledge necessary for fine-gdagiager seed sprout classification, the detecéind localization of
ginger seed sprouts in an image require relatilexlg expertise. Therefore, in this study, the rulidtss ginger seed growth

stage recognition task will be carried out in a{stage approach. The concept of the two-stage appiis illustrated in Fig. 5.

Two-stage detector-classifier approach

: Detector Binary detection output

Input image r
r Mask R-CNN / . "‘"\‘F‘_‘»
. (Binary) a S

ROI predictio

Multi-class detection output

Classifier

Classifier

Croppmg from detected mstances / (3-class)

‘II A

Bounding cropping
Fig. 5 Illustration of the proposed two-stage deteclassifier approach for multi-class instancgnsentation

Firstly, Mask R-CNN [18] networks were developed darained using transfer learning with differentkiaones for the
detection of ginger sprouts regardless of theimgnostages. Then, using the extracted image pataHes of state-of-the-art
networks with different capacities was trained aodhpared for classification. The optimal Mask R-Cldhd classifier
selected were then stacked for the ultimate mildgscinstance segmentation task. As shown in Fithesdetected sprout
instances in images by the binary-class detectorbea extracted based on their detected boundingshaxd fed to a
multi-class classifier for further classification growth stages. Lastly, the applicability of thgbhid model obtained was

assessed using the testing dataset.

2.3. Model training

For binary-class Mask R-CNN training, several daigmentation techniques were applied to the datdbet 1,075
images of the training set, consisting of 1,37&obijnstances, were further enlarged five timewimber to 5,375 images and
26,328 object instances using a combination oflgesel augmentation techniques and mosaic augrtientfl9]. Firstly,
each image in the training set was altered fouesimsing at least one of the pixel-level techniguetuding adjustments to
image brightness, hue, saturation, gamma cont@eissian noise, blur, rotation, and flipping. Tteeameters for these
pixel-level augmentation techniques were seledeshsure that the alterations appeared reasoresied on expert feedback.
Then, mosaic augmentation was also carried oubtimthe original and pixel-level augmented imag@asject instances from

four randomly selected images were chosen eachttirsienulate the training images while maintainihg object scale.

For classifier training, image patches were exé@dtom the instance segmentation training anddattn datasets
based on the annotated bounding boxes, paddedawfitte-pixel border. This extraction step was aggldirectly to the
validation dataset; however, the step was donehentraining dataset after pixel-level augmentatioh before mosaic
augmentation. As a result, 6,880 and 340 imagehpatwere extracted from the training and validatiatasets, respectively,

using the cropping method. Fig. 6 summarizes thecafentioned dataset preparation steps.
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Fig. 6 Dataset preparation summary

2.4. Training details

In this study, all models were trained using a nraelequipped with an Intel i7-10700 CPU (16MB cach®0 GHz)
CPU, 32 GB DDR4 RAM modules, and an NVIDIA QuadroX000 GPU with 8 GB GDDR6 RAM. In the first parftthe
experiment, the training of binary-class Mask R-CiN&k carried out in two steps using the trainingsiet, as illustrated in

Fig. 7.

Transfer learning setup for Mask R-CNN

COCO
COCO ¥ weights
¥ weights f llj?”_
- | RPN |
= ... ] Z _Z Z "> | T v, €coCo
y | ROI | @ weights

1T ‘JL[LiDlilil - Weights are

I , not loaded to
I

coco ||  LIToT_—a
weights

¢ . / |
-] w7 m .
_____ LT e cocon ) il w e
' Input image | 4 weights F-----=C"-—,

___________

: FPN !

| feature maps |
! Ol Tout e d=Outputlayers gzglayerswith . Layerswith |
3 @Input . .’ (trainable) 7 u’tra'mable weights |

(a) lllustration of transfer learning for Mask R-GIN

Fig. 7 lllustration of transfer learning and finging steps for Mask R-CNN training in this work
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Fine-tuning setup for Mask R-CNN
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(b) llustration of fine-tuning for Mask R-CNN
Fig. 7 lllustration of transfer learning and finging steps for Mask R-CNN training in this worlotinued)

As shown in Fig. 7(a), during the transfer learnstgp, common objects in context (COCO) pre-trawedyhts were
loaded for all layers in the network, except fa tutput layers. During transfer learning in thizrky the weights for the layers
up to the feature pyramid network (FPN) were haldstant, while the weights in later parts of themoek, including the

region proposal network (RPN), mask head, and ifieiskead were made trainable.

Then, in the second fine-tuning step, the modaliokt was subsequently fine-tuned with weight upslat all layers, as
depicted in Fig. 7(b). In this step, the model veasled with the weights obtained from the previtvaasfer learning step for

all layers, including the output layers. The weggiiom all layers were set to be trainable in the-tuning step.

In both steps, the training dataset was used, lamakarly stopping of 10 epochs was applied to avweltfitting the
models. All the Mask R-CNN models were trained gsirstochastic gradient descent (SGD) optimizédr wivatch size of one
image. The image was padded and resized to 1024pix1024 pixels for Mask R-CNN input. The MasiCRIN was trained
with two backbones (ResNet-50 and ResNet-101).Hijperparameters used in this study are depict@alihe 3.

Table 3 Binary-class Mask R-CNN hyperparametergiioger seed sprout detection training

- Hyperparamete .
No.| Backbone| Training mode Learning rat| Weight deca Weights Trained epochs
1 ResNet-10 Transfer learnin| 1 x 10* 1x10* cocc 22
2 Fine-tuning 1x10% 1x10° |[No. 1 last epoc 12
3 ResNet-50 Transfer learnin| 1 x 10* 1x10* cocc 17
4 Fine-tuning 1x10° 1x10® |No. 3 last epoc 15

In the second part of the study, the classificatiaming dataset was used to train image classifieparately. A total of
six state-of-the-art architectures with differempacities and complexities, indicated by their tilagrpoint operations
(FLOPs), were selected for training as multi-clelsssifiers in this study. These include Densel26%, [EfficientNet [21],
InceptionResNet [22], NASNet [23], ResNet, and Xa@p[24] which range from 4.29 G to 23.84 G FLORs,shown in

Table 4.
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Table 4 Hyperparameters for ginger seed sprousifileegtion training

No. Model name FLOPS In_put i”?age Training mode B"?‘tCh Hyperparam_en Trained
size (pixel) size | L2 deca Weights epochs
Transfer learni 1x 105 ImageN 10¢
1| DenseNet20l | 4.29 G 224 x 224 raF?:eiL;‘iirgn'n 16 . o Nolrﬁg:t eepoc e
. Transfer learnin | 16 | 1x 10° ImageN 39€
2 | EfficientNetB7 | 5.20 G| 224 x 224 raF?seiLr?iirgn'n =t . s No.nz]allg:t eepoc =
. Transfer learni 1x 105 ImageN 441
3 | InceptionResNetvZ 13.17 G| 299 x 299 ri?seizriign'n 16 z 3 No_rgallg; eepoc -
| ot | 2o o< Tt Lo e
5| ResNetl52v2 | 10.91 G 224 x 224 Tr?:r:ietrulne.i:;mn 16 1 . 182 Nof”;"’llg;N:poc ig’“
6| xeepton | 8366|209 x 200 TECEIEANN 16 | 1N T IR

Similar to the previous part, the models were &dithrough transfer learning and fine-tuning stépstrated in Fig. 8.
In the transfer learning step, ImageNet weightsseaded to the classifiers, excluding the outayefs. All the layers before
the output layers had frozen weights during tranisf@rning. Then, the weights obtained in the ti@ngarning step served as
the initialization for fine-tuning, which involvedeight updates in all layers. As shown in TableAdam optimizer and
dropout regularization with a rate of 0.5 was agblio all classifiers, with a 10-epoch early stoggsetting. A learning rate of
1 x 10° was selected to reduce oscillation in optimizatibhe L2 regularization parameter increased from0° during
transfer learning to 1 x ffor fine-tuning, introducing a higher level of tdgrization during fine-tuning with a large number
of layers. The batch size was set at the maximuen ewumber manageable by the GPU unit used in thidysTo
accommodate the training of the selected Imageistgined architectures listed in Table 4, the peappatches were resized

to the network’s default input sizes.

Transfer learning setup for classifiers Fine-tuning setup for classifiers
Weights from
g ImageNet weights ¥ transfer learning step
“ fisl 7 /s
[ [
Weights are not loaded Weights from
to output layers transfer learning step
A ——
P ! Input image |
:Inputimage: el

) = Output layers ) Layers with Layers with
@ Input image .' (trainable) frozen weights ’ trainable weights
Fig. 8 lllustration of transfer learning and fineing steps for classifiers training in this work

2.5. Performance evaluation

In instance segmentation, performance is evalubssd on a threshold of loU to gauge the overlapdsn the
predicted examples and the label examples. Irstbidy, the loU value was determined based on ttek mi@edictions. A true

positive (TP) prediction in instance segmentati®rotained when the prediction exhibits sufficiemerlap with labeled
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examples (i.e., greater or equal to an loU threbblalss) and has the same class label. In the ef/dnplicated predictions on
the same labeled example, only the prediction thighhighest confidence score is considered asRh@ifedictions that do not

meet the TP criterion are considered false posit{i#®).

An FP prediction can be further categorized inteesal types based on localization, classificatienfgrmance, and
duplication (DUP) in prediction. An FP predictiontfvat least 0.1 IoU for any labeled object in thrage is regarded as a
localization (LOC) error, while an FP predictiortivan loU value lower than 0.1 is considered aalgled background (BG)
object [25]. Nevertheless, an FP prediction is alsobuted to model confusion when an incorreasslprediction is made.

Finally, when a labeled object instance is not dett by the model, the example is considered a fadgative (FN).

o TR(Y

Precision( 3 = TR0+ FP(3 (1)
__ TR

Recall( ¥ = TR0+ FNC3 2)

Average precision AP = : Precisipfi ) x Regéll) (3

Mean average precisign meﬁ% I" AF 4)

The relationship between TP, FP, and FN, and aequegrision (AP) for a class i at the loU threstafld, is listed in Eq.
(1) to (4). The primary indicator used for the d#itm performance is the mAP at 0.5 mask-based ti@dpted as mARo
The computation of mAR, facilitates the evaluation of the detection alaifitof the proposed model in sprout localization as
well as the growth stages classification simultarsgo The integration of the area under the intkeal precision-recall curve

for mAPys0in this study was calculated using all pointsegslained in Knausgard et al. [26].

2TP
Flscore=——— )
2TP + FP+ FN
1 =
Average AL score = =~ B scor (6)
n |

In the three-class classification, the followindesiwere followed to assess the performance oflHssifiers. For every
class, a TP is accounted for when a predictionddarin the class correctly. If a prediction is meala class incorrectly, it is
considered an FP to the class. Similarly, whenxamgle of a class is wrongly predicted as anotlesscit is considered a FN
to the class. Then, the F1 score of a class waslleséd using Eq. (5). The average F1 score aelbstasses, used as the

indicator for classification performance, is givargq. (6).

3. Results and Discussion

In the early parts of this section, the resulthefMask R-CNN models and classification modelpaesented separately.
Then, the multi-class detection results of the lylmnodel, which is the combination of the best msdmlected in the

aforementioned parts, are analyzed and discusgadilstration using selected examples.

3.1. Sprout detection using Mask R-CNN

The performances of the Mask R-CNN models using O@@e trained ResNet-101 and ResNet-50 backborees ar
depicted in Table 5 at their best mAkepochs. From Table 5, the binary-class detectiorgidask R-CNN recorded the best
performance at the Tlepoch and 12 epoch with ResNet-101 and ResNet-50 backbonegcésply. The Mask R-CNN
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architecture managed to achieve an outstandingpeaice of 96.17% mARoin binary detection, identifying the presence
of ginger seed sprouts in the image regardlesseif growth stage. Therefore, Mask R-CNN with RetsBi&backbone was

selected for the binary-class detection task duts superior mARso measure on the validation set.

Table 5 Validation performances of the binary-cldlssk R-CNN models

Selected Validation performanc
electe Py
No.| Backb By difficult
© ackbone epoch | Average IoU | MAPsso | APeasyo50 | APpificutt0.50 y ey caus
APConfusion,O.S APView,O.S(
1 |ResNe-101 11 0.705( 0.942¢ 0.943: 0.973( 0.945! 1.000(
2 | ResNe-5C 12 0.729¢ 0.961" 0.965!: 0.982( 0.963¢ 1.000(

3.2. Multi-class classification of growth stages

Table 6 depicts the performances of the classifimied in this study. In particular, the bestseléier was the
ResNet152V2 model, which attained an average 89 viiitation F1 score. Although ResNet152V2 has endjight 0.01%

advantage over InceptionResNetv2, which comes @mdebest using the same cropping method, ResNé2LE2favored

due to its lower number of FLOPs.

Table 6 Validation performance of the classifieesrted in this study

Selected Validation performance
No. Model name FLOPs epoch | F1 score (S1) F1 score (S2) F1 score (S3) Avg. F1 score
1 DenseNet201 429G 201 0.8935 0.8896 0.8889 0.8906
2 EfficientNetB7 5.20G 417 0.9053 0.8974 0.8519 0.8848
3 | InceptionResNetV | 13.17 C 481 0.886¢ 0.885¢ 0.912: 0.894¢
4 NASNetLarge 2384 G| 262 0.8729 0.8709 0.8929 0.8789
5 ResNet152V 10.91 C 271 0.888: 0.884: 0.912: 0.894¢
6 Xception 8.36 G 362 0.8850 0.8802 0.8814 0.8822

Fig. 9 illustrates the losses as well as validaE@rscores computed during the two-step traininthefoest-performing
Resnetl52V2. In general, the losses of the traimedels exhibited large spikes when transitionimgrfthe transfer learning
setting to the fine-tuning setting. This phenomenan be attributed to the significantly lower numbglayers being trained
in the transfer learning stage, with only the fast layers included in training at this point. Whte models were trained with
the fine-tuning setting, a large increment in lds® to regularization was introduced. Nevertheldss, transition is also
accompanied by improvement in classification, dected by the increments in the F1 score usingvelElation set. The

learning that continued in the fine-tuning stageeftected by the convergence of losses in theftfiméng stage.

ResNet152V2
3-class classification
Bounding cropping
14 4 | — Loss - training
— — - Loss - validation L 1.0
12 F1-score - validation
Transfer learning 0.9
10 | i
)
0.8 g
84 —
2 29
A L07 &
6 5}
Z
4] - 0.6
2 0.5
§
0o . : : : ; . 0.4
0 50 100 150 200 250 300 350 400
Epoch

Fig. 9 Loses and validation F1 score for k-performing Resnet152V2 in the classification
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Due to its superior classification performanceatdr computation cost, the ResNet152V?2 boundingpirgg model was
selected to be employed as the classifier fordloestage approach. An examination of the predistimmthe validation set by
the selected ResNet152V2 model using gradient-vieibtlass activation mapping (Grad-CAM) [27] reeekthat the model
has been sufficiently trained. Several selectedngkas of the Grad-CAM results are depicted in Bi@. The top row of
images in Fig. 10 consists of the original imagehjle the middle row and bottom row consist of tt@responding
Grad-CAM overlay images using ResNet152V2 modéhaffirst epoch and the selected fine-tuned epadpectively. The
“difficult” examples among the selection are depittvith blue borders in Fig. 10. Comparing thesiltation for the model at
the first training epoch and its selected fine-tlistate in Fig. 10, the gradient patterns shiftednfdispersing patterns to
appearing concentrated at certain salient partgngfer sprouts. In general, predictions of S1 vassociated with the whole
region of the emerging sprout, while the regionsifsf were revealed to be important in S2 and $8iptions.

Validation: ResNet152V2
Grad-CAM (normalized) overlay

=== Grad-CAM
1 heatmap value

S2

B

S2: TP

First epoch

Transfer learning

Fined

tuned Best F1-
score epoch

S2: FP
S2: FP

Fig. 10 Validation examples with Grad-CAM overlgfResNet152V?2)

3.3. Hybrid mode(Binary-class detector + Multi-class classifjer

Table 7 depicts the testing performance of therpictass Mask R-CNN and the hybrid model usingtésting dataset,
which consists of 402 images with 561 sprout insan The binary-class Mask R-CNN managed to dsfmout instances
regardless of growth stages at a rpAdfof 93.10%. Coupling the Mask R-CNN with the sedeicbounding cropping
ResNet152V2 classifier increases the model comiylexs reflected by the higher number of FLOP<2& B9 G compared to
the simpler binary-class Mask R-CNN at 309.28 Gweieer, the hybrid model achieved detection at aelomAR) 5o of
85.50%. Besides, the hybrid model marked the nuldi$s detection at an average inference time o0f838&s per image,

which is an additional 94.08 ms compared to thatyitlass Mask R-CNN. The increment in inferenoeeti however, is

insignificant.

Table 7 Average precision by class of the binaasglMask R-CNN vs the hybrid model in testing
Average precisic

Detection Model FLOPs Avg._ inference Avg. IoU By clas:
type time/image (ms AP1050| AP2,050| AP3050| MAPos0
1 | (s2 | (s3
Binary-clas: | Mask F-CNN (ResNe50) |309.28 (| 288.7¢ 0.773: - - = [ 0.931C
Multi-class | MaSKR-CNN (ResNet-50)+204 19 o 35297 0.7733 | 0.765830.8444| 0.9552| 0.8550
ResNet152V
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Table 8 shows the AR, score by example difficulties for both models. mrdable 8, the binary-class Mask R-CNN
achieved 92.76% and 95.40% Ak for “easy” and “difficult” examples, respectivelynterestingly, when the similar
binary-class Mask R-CNN was applied as a part@htybrid model for multi-class detection, the measuropped to 89.66%
and 75.86% respectively. The comparable or evehenié\R 5o score achieved for “difficult” examples in binaggtection
indicates that the Mask R-CNN architecture has meddo perform binary detection regardless of huméaurition on the
examples. In contrast, the larger number of mistakade by the hybrid model on the “difficult” exdemthan the “easy”
examples may also indicate a substantial levegod@ment with human confusion in distinguishingpspigrowth stages. In
particular, the ARsoobserved for the “difficult” examples due to “casfon” was marked at only 71.28%. This result fle
the different nature of the task to detect thegmes of the ginger seed sprout and the task todudassify them into different

growth stages.

Table 8 Average precision by difficulty and attribéd causes of the binary-class Mask R-CNN vs thitiymodel in testing

Average precisic
Detection Model By difficulty _
type APEasy,0.59 APDbificult,0.50 By difficulty caus
o w APConfusion,O.S APView,O.S(
Binary-clas: Mask F-CNN (ResNe-50) 0.927¢ 0.954( 0.968: 0.945:
Multi-clas: | Mask F-CNN (ResNe-50) + ResNet152V | 0.896¢ 0.758¢ 0.712¢ 0.835¢

Fig. 11 illustrates the confusion matrix of the tiralass detection normalized with the number dieled examples in
each class. It is noticeable that the confusioorsnvere concentrated between the two earlier 81S2mgrowth stages, while
only a few errors were made for the S3 examplescifipally, from Fig. 11, 96% of the S3 examplestie testing dataset were
correctly detected compared to 83% and 86% fon8l1S2 respectively. Nonetheless, the results icdinéusion matrix show
that the classification mistakes by the model vmeainly due to confusion between two consecutivevifistages. In contrast,
there was no confusion between the S1 and S3 filldisg is in line with the observations obtainegd\Wang et al. [28]. The
authors have attributed the phenomenon to the hidifculty in distinguishing the two growth stagehat share higher
similarities compared to earlier growth stagesther words, this result also clearly reflectsgbguential relationship in plant
growth.

Mask R-CNN + ResNet152V2

Instance segmentation normalized confusion matrix at IoU=0.50
Testing 1

Stage 1

Stage 2 1

Actual class

Stage 3 -

Staée 2 Stage 3
Predicted class

Fig. 11 Normalized confusion matrix: Mask R-CNN edRlet152V?2 (testing)

Sta'ge 1

Besides, the predictions made by the two-stageithybodel during testing were analyzed and depiatetable 9. The
results show that the two-stage model generallyeaed more accurate detection in classes S2 antthé8in class S1.
According to Table 9, it is evident that the majpiif the FP errors occurred in S1 examples. Ouhef267 positive S1
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predictions made by the model, only 219 were ptedicThis ratio is lower compared to S2 (215 TRs2@3 predicted
positives) and S3 (45 TPs for 49 predicted posiivexamples. In general, the FP errors made byybed model were

mainly due to confusion and localization errorse@fically, confusion errors accounted for 60.4286,78%, and 75% of the
FP errors for each S1, S2, and S3 example, resphcti

Table 9 Multi-class detection results of the hybriddel in testing

Detection results of object instan
Object|No. of predicted FF
class positive TP |Localization Duplication| Confusion] Background FN
(LOC) (DUP) | (CON) (BG)
S1 267 21¢ 15 0 29 4 4
SZ 23¢ 21t 4 0 14 0 18
S& 49 45 1 0 3 0 1

Another noteworthy observation from Table 9 is ttigt majority of the FN predictions made by theriymodel are
from the class S1, which was made up of 18 out%®bflthe FN predictions of the model. The investma of the FN
predictions revealed model weakness in the detectiemall objects in the images. As shown in E®). it can be observed
that FN detection tends to occur for object instenwith smaller box areas. The misses in detetienconcentrated for

examples with less than 500 pixels of box aredHertwo-stage model. Nonetheless, this result atdicthat FN predictions
can be reduced using a higher-resolution camera.
Histogram of object instance box area and aspect ratio

Detection result in testing
Mask R-CNN + ResNet152V2

g All(561) g All (561)
Detected [TP/FP] (542) Detected [TP/FP] (542)
Bl Missed [FN] (19) Bl Missed [FN] (19)
_ 200 1
200 =
1504 7777
] S
g g
™ 100 7 ™ 100-
18355885588
501 501
0 - 7 1 . : T 0-
0 2000 4000 6000 8000 10000 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Object box area (px) Object box aspect ratio

Fig. 12 Object instance box characteristics: MagRNRN + ResNet152V2 (testing)

Finally, Fig. 13, Fig. 14, and Fig. 15 each shomaradomly selected example of the detections indbiéng dataset. Fig.
13(a), Fig. 14(a), and Fig. 15(a) present the atiuots by the experts for Examples A, B, and CJevhig. 13(b), Fig. 14(b),
and Fig. 15(b) depict the examples with predictimipels corresponding to Examples A, B and C uslrgghtybrid model
alongside confidence scores. Despite discreparméseen the segmented masks and the expert-labedslls in these
examples, the predicted masks by the hybrid manlgbem to the general shape of the sprouts, asatefll by the loU scores,
which average more than 77%. Regarding example Rign13, it is notable that the hybrid model stéférom confusion

errors, where predictions are sufficiently detearad localized but not correctly categorized.
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($1)

10 20 30

Pred-0
loU=0.7986
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[ [l sprout: Stage 1 [7] Sprout: Stage 2 [l Sprout: Stage 3]

(a) Expert annotations in Example A

(b) Model petidns in Example A

Fig. 13 Annotated Example A in the testing dataset corresponding predictions using the hybrid rhode

‘I Il Sprout: Stage 1 [ Sprout: Stage 2 [Ji] Sprout: Stage 3 ’

|- Sprout: Stage 1 [] Sprout: Stage 2 [Jll Sprout: Stage 3:‘

(a) Expert annotations in Example B

(b) Model pectdns in Example B

Fig. 14 Annotated Example B in the testing dataselt corresponding predictions using the hybrid rhode
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Pred-3
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(a) Expert annotations in Example C

(b) Model peadis in Example C

Fig. 1£ Annotated Example C ithetesting dataset and correspondinedictions using the hybrid mot
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As indicated by the 0.87 Kappa score in Table awitig a clear boundary between the growth stagegngfer seed
sprouts has proven to be a daunting task for huniargarticular, the examples marked with “confusidifficulty by the
expert in the testing dataset were revealed tdéetlprit in model performance. Nonetheless, igid detector-classifier
model managed to mark a detection performance &086 mAR o in order of milliseconds per image. Furthermohe t
examination of the model predictions revealed thatmodel decisions were in line with the humanegtg confusion in
growth stages classification. These results higiilige potential of the hybrid model as a rapiéralative to replace human

inspection for ginger seed germination monitoring.

4. Conclusions

As the first work concerning the recognition of gth stages in ginger seed during germination, higly has
successfully applied DL models to automate thegeitmn of three growth stages from images. Thiskxaso demonstrates
the effectiveness of a two-stage strategy emploMagk R-CNN models for instance segmentation tdsksiture efforts, the
incorporation of DL techniques, such as label shiogt, may be considered to mitigate the impact whan errors in
annotation on model performance. At the same titme,results indicate that the exploration to berfefim the existing
sequential relationship between object classedddmeila worthwhile subject in the future of gingeed monitoring. Another
prospective research direction involves utiliziagporal information in a series of images. Thei@rpsequential relationship

between plant growth stages, as demonstrated byeBanal. [29], may be exploited for classificatio
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