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Abstract 

This paper presents a novel idea of designing the Fractional-Order PID (FOPID) type static synchronous 

series compensator (SSSC). A power system stabilizer(PSS) is installed to enhance the system transient stability  

by damping the oscillat ions. Also the superiority of the proposed method is verified by comparing with  

conventional PI, PI-PD and PID controllers. The determination of the controller parameters  has been considered 

as an optimizat ion problem using Moth Fly Optimization (MFO). It is shown that MFO is more effective as well 

as giving robust response than Differential Evolution (DE) optimizat ion. The superiority of the controller is tested 

on Single-Machine Infinite-Bus (SMIB) power system at various operating conditions and fault locations . 

 

Keywords: moth fly optimization, fractional order controller, pid controller, power system, transient stability  

1. Introduction 

Recently, the using of MFO optimization technique is based on the motion of a moth in a transverse orientation for 

navigation. It keeps a fixed angle with respect to the moon or the flame. The superiority of the Moth Fly Optimization (MFO) 

algorithm over Firefly A lgorithm (FA) and other algorithms have been reported in many researches [1]. Th is work has 

focussed on the application of the MFO algorithm to a typical SMIB power system. 

In a power system, the synchronous series compensator (SSSC), is very effective in damping the electromechanical 

oscillations along with power flow control. It  consists of voltage source self-commutated switching converters which 

synthesises the three phase voltages  (in quadrature) with line current to establish the compensation of the power system 

voltage imbalance [2-6]. In dynamic state; SSSC mainly controls damping of oscillations by injecting the series voltage to 

the line [3]. To  improve the system dynamic performance, an external control loop is added to SSSC which  consists of a 

controller changing the series injected voltage during transient period [4-6]. Such a stabiliser is commonly  called as lead lag 

type SSSC damping controller. The synchronizing torque, damping torque and transient stability limit fo r both small signal 

as well as for transient stability are successfully improved with real power in lead-lag (LL) based SSSC damping controller  

and PSS design [6-8].  

It is well known that the conventional controller design methods are not attractive enough for robust stability, due to 

computational burden, more t ime consuming, and slow convergence and moreover, the controller parameters are trapped to 

their local min ima and not optimal. Therefore, various optimizat ion methods such as particle swarm optimization (PSO), 

Differential Evolution (DE) etc.[2,  9-11] are extensively used for tuning PSS and auxiliary  controller based SSSC controller 

parameters[2, 11-13].  
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Because of its robustness and simple structure, the proportional integral derivative (PID) controllers have been largely 

implemented. [5-7, 14-15]. Since, there are difficult ies in finding the mathematical model as well as determination of 

parameters of PID controller in complex/nonlinear higher o rder power systems, artificial intelligence techniques have been 

used [14-17]. In this work MFO optimized controller parameters have been analyzed.  

In this investigation, the fractional PID type SSSC controller will be used and the results will be compared with other 

conventional controllers such as PI type, PI-PD type, and PID type SSSC controllers to show the robustness of the damping 

at same and different operating conditions for the proposed SMIB power system. The parameters of fractional PID type 

SSSC and PSS controllers will be simultaneously optimized by the proposed MFO algorithm [1, 16-18].  

2. System Investigated 

The robustness of damping performances has been assessed for the co-ord inately designed controllers and is tested in a 

SMIB system as shown in Fig. 1 [4-9, 19]. This setup contains a generator connected to an infin ite-bus through a double 

circuit  (DC) t ransmission line. The generator is provided with the SSSC, and excitation system along with PSS. The SSSC is 

connected in series in between Bus-1 and Bus-2 through coupling transformer. A line transformer T links to the generator 

and Bus-1 where as Bus-2 and Bus-3 are connected through DC trans mission lines. VT
 
and VB

 
are the voltages at the 

generator terminal and infinite-bus respectively. V1 and V2 are the bus voltages at Bus-1 and Bus-2 respectively as shown. 

Current I is the line current, PL1 is the real power flowing in one of the DC transmission line, where the three phase fault is to 

be created and PL is the t ie line active power flowing in a transmission line. Fig. 1 shows the model power system is 

developed by using Matlab/Simulink. A ll the relevant parameters  of this system are can be found in [13]. The use of PSS can 

also be described in a similar way[5-7]. 

 

Fig. 1 The Single Machine Infinite Bus (SMIB) Power System with a SSSC[2-3] 

2.1.   System modelling 

The SMIB nonlinear dynamic model  deals with the transient analysis  [1-5]. The speed deviation is the input to the 

controller. It is the remote signal from the fault location. The following mechanical dynamics are taken for the proposed 

system analysis. 

1
( )r e r m
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where 𝜔𝑟and 𝜃represent the angular speed and the rotor angle as state variables of the generator,  Pe  and Pm are the electrical 

output and mechanical input power respectively, J and B represent inertia and the coefficient of viscous friction of the rotor 

respectively. Detail mathematical expression interlinking the system state variables are described in [9-14]. 
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2.2.   Structure of SSSC and control system 

As discussed, SSSC is composed of  a three-phase voltage source converter (VSC), a series coupling transformer, a dc 

capacitor Vdc , and AC and dc voltage regulators[2-7]. The objective o f using VSC is to convert a dc voltage into three phase 

AC voltage with fundamental frequency which is to be fed into line and in phase quadrature (independent from line current) 

with the line current I. The injected AC voltage Vq changes in its magnitude due to variable fictit ious capacitive or inductive 

reactance during transient conditions. This voltage controls the active power flow efficiently  and damps out the power 

swings. In capacitive mode, Vcnv is greater than Vac and it supplies active and reactive power to power system and in 

inductive mode, Vcnv
 
is lower than Vac. The control device maintains the voltage profile of transmission line unchanged by 

controlling the converter voltage[2, 5, 19]. 

2.3.   Fractional order PID (FOPID) controller 

Widespread interest in FOPID controller has attracted many researchers in power system to provide insight into the 

transient stability study. It is represented by PI D
 

 which provides added degree of freedom for designing controller gains 

(KP, KI, KD) where the orders of integral and derivative are real numbers not necessarily only integers. The FOPID controller  

has the merit  of provid ing an extra degree of freedom and is  less sensitive to parameter variation compared to a classical PID 

controller [17].  The transfer function of such FOPID controller: 

( ) ( )I
c P D

K
G s K K s

s




    (3) 

3. The Structures of Various Controllers  

The structures of various types of controllers e.g. PI type, PI-PD type, PID type and the FOPID controller have been 

described in the following section for both the SSSC as well as PSS installation in the example system. 

3.1   PI type SSSC controller structure 

Fig. 2 shows the block diagram of PI type SSSC controller structure. Here Kp  is the proportional gain and KI  is the 

integral gain. The PI block is connected to a washout block(for high pass filter action) followed by a two stage Lead  Lag 

compensation block. The wash out block with time constant TW  make it  sure that there is no steady state error of the voltage 

reference due to the speed deviation ∆𝑤. Time constant TW  is not critical and may be in the range of 1 to 20 sec [12]. Here, 

TW  = 10s is taken into consideration. As the input signal (i.e.  ∆𝑤) to the controller is remote signal, the sensor time with 

transmission time delay TTD = 65ms  is provided at the input to the controller. 
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Fig. 2 Structure of PI type SSSC damping controller 

3.2   PI type PSS controller structure 
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Fig. 3 Structure of PI type PSS damping controller 

The controller gains and time constant parameters of PI type SSSC and PSS controller must be  tuned for achieving  

best performances. A first order sensor with sensor time delay Ttd = 15ms is chosen by this controller for sensing the low 

frequency speed deviation ∆𝑤 during disturbances[8]. 

3.3.   PI-PD type SSSC controller structure 

Improved system performance is expected with the cascade control system. Fig. 4 shows a cascade PI-PD controller fo r 

SSSC controller [7-10]. The performances are improved by putting a first order filter with tuning pole and filter constant N = 

100 Similar PI-PD type PSS controller structure can be used for analysing the behaviour of PSS damping controller. 
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Fig. 4 Structure of PI-PD type SSSC damping controller[19] 

3.4   PID type SSSC controller structure 

Conventional PID type SSSC controller structure is taken for comparing the responses with the previous controller 

structures. For the conventional PID type SSSC damping controller, the output is : 
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Fig. 5 Structure of conventional PID type SSSC controller 

Similar PID type PSS controller structure can be used for analysing the behavious of PSS damping controllers. 

Here, Kpc, KIc Kdc, Kp1c, KI1c, Kd1c, T1c, T2c, T3c, T4c, T11c, T21c, T31c, T41c are gains and time constant parameters of PID 

type SSSC and its PID type PSS controller that are to be tuned for achieving  best performances[20].   
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3.5   FOPID type SSSC controller structure 

For fractional type SSSC controller, the output is: 
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The proposed fractional PID type SSSC is a supplementary damping controller whose structure is shown in Fig.  6, is to 

modulate the SSSC injected voltage .qV  Similar FOPID type PSS controller structure has been applied to analyse the 

damping behaviour. A first order sensor with sensor time delay 𝑇𝑡𝑑=15ms is taken with this controller for sensing the low 

frequency speed deviation w  during disturbances. The controller gain  𝐾𝑝 ,𝐾𝐼 𝐾𝑑 ,𝐾𝑝1,𝐾𝐼1, 𝐾𝑑1and the time constant values 

like𝑇1,𝑇2,𝑇3 , 𝑇4,𝑇11,𝑇21,𝑇31,𝑇41, , , 1  and 𝜇1are to be tuned optimally [21]. 

 
Fig. 6 Structure of FOPID type SSSC damping controller 

3.6.   Control Objectives 

Power system after passing through a large disturbance exhib it oscillation which can be minimized or quenched by 

application of  SSSC and this improves the stability. These oscillations are observed in terms of  power angle, rotor speed 

and line power. The objective is to reduce any one or all of these deviations. In the present study, an integral time absolute 

error (ITAE) of the speed signals corresponding to the remote modes of oscillat ions is taken as the objective function. The 

objective function is expressed as  
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where tsim is the simulat ion time period. The percentage overshoot and the settling time can be improved by minimizing this 

objective function. The constraints here are the parameters of  SSSC controller. The optimisation problem can be as the 

following optimization problem: Minimizing J, and subject to 
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min max min max min max min max
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For PI-PD type PSS controller 
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For PID type SSSC damping controller 
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For PID type PSS controller 
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For FOPID type SSSC damping controller 
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For FOPID type PSS controller 

min max min max min max

1 1 1 1 1 1 1 1 1, ,p p p I I I d d dK K K K K K K K K       (25) 

min max min max min max min max

11 11 11 21 21 21 31 31 31 41 41 41, , ,T T T T T T T T T T T T         (26) 

min max

1 1 1     (27) 

In this investigation DE and MFO techniques are applied to search for optimal set of SSSC-based damping controller 

parameters. A brief introduction of Moth-Flame Optimization(MFO) technique is described in the next section. 

4. Overview of MFO 

This has been widely used in many such important applications and giving very promising results. It is briefly d iscussed 

in this section to make the paper self-content. The behavior of the fly is mathematically modeled by an algorithm called 

MFO algorithm, assuming the candidate solutions are moths and the problem’s variab les are the position of moths in  the 

space. This algorithm is a population-based algorithm, where the set of moths is represented in a matrix M  consisting of the 

array as their corresponding fitness values. The flame matrix is represented by where the array of F also stores the fitness 

values. 

The init ial point, final po int of the flame and range of fluctuation of spiral in the search space are required for the spiral 

movement of the moth which is expressed as 

( , )i i jM S M F  (28) 
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where Mi indicates the i -
th

 moth position, Fi indicates the j -
th

 flame position. Knowing the init ial point, final point of the 

flame and range of fluctuation of spiral in the search space, the spiral movement of the moth is expressed as 

j

bt

iji FtCoseDFMS  )2(..),(   (29) 

where t is a random number [-1, 1], and 𝐷𝑖  is the distance of the i
th 

moth for the j
th 

flame. And is calculated as: 

iji MFD   (30) 

where Mi indicates the i
th

 moth, Fj indicates the j
th 

flame, and Di indicates the distance of the i
th

 moth for the j
th

 flame which 

is to be minimized. 

The next  position of a moth is defined with respect to a flame following Eq. (29). The t-parameter in the equation which 

closeness to flame equals to -1 and 1 implies farther to the flame. Due to change of order of flames and revision of moth’s 

position at each iteration, the exp loitation of the promisingly best solutions is obtained through an adaptive mechanism 

proposed by using the number of flames.  

)
1

*(_
T

N
lNroundnoflame


  (31) 

where N and T represents maximum no. of flames, and iterat ions respectively, l is the current number of iteration. The 

algorithm flow chart is shown in Fig. 7. 

 
Fig. 7 Flow chart of the proposed MFO algorithm[1] 
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5. Simulation Results And Analysis 

The system described in Fig. 1 is simulated in MATLAB under three phase disturbance at different locations. The 

objective function is min imised by tuning the fractional PID type SSSC and PSS controller parameters with MFO and 

compared with DE algorithm as shown in Tab le 4. The result is compared  with PI type SSSC and PSS (Table 1), PI-PD type 

SSSC and PSS (Table 2), PID type SSSC and PSS damping controllers (Tab le 3). The robustness and effectiveness of the 

proposed FPID type SSSC and PSS is verified at various generator loadings. After hundred iterations, the optimized 

parameters along with the performance indices of ITAE are noted down from both DE and MFO algorithms. The simulation 

results for all controllers are shown in Figs. 8-11. 

5.1.   Case-1: PI type SSSC-PSS Controller 

The nominal loading 0
0(0.8 . , 48.48 )p u   , is the Self-cleared between Bus-2 and Bus-3. A three phase line fault is 

created at one of the double section line between Bus -2 and Bus-3 at t = 1s in SMIB power system for nominal loading and 

self-cleared for5 cycles. The post fault oscillat ion are damped out through MFO and DE optimised PI type SSSC and PSS 

controller and the effective results are found through MFO optimized parameters. The parameters comparison is shown in 

table-1 and the simulat ion responses are shown in Figs. 8-11with the legend “PI type SSSC (MFO)” with a solid green line 

and “PI type SSSC (DE)” with dotted pink line. 

Table 1 DE and MFO tuned optimal parameter of PI type SSSC and PSS controller at nominal loading
0

0
(0.8 . , 48.48 )p u    

Optimisation Controller Controller Parameters ITAE *10e-3 

DE 

PI type SSSC 
Kp KI T1I T2I T3I T4I 

3.8 
195.403 12.9818 0.5881 0.6896 1.4308 1.9145 

PI type 

PSS 

Kp1 KI1 T11I T21I T31I T41I 

21.0723 11.0937 1.2773 1.6716 0.0146 1.9139 

MFO 

PI type SSSC 
Kp KI T1I T2I T3I T4I 

3.7 
158.3171 6.3069 1.7456 1.9974 0.4081 0.8803 

PI type 

PSS 

Kp1 KI1 T11I T21I T31I T41I 

1.7652 11.4863 1.1977 0.0010 1.7735 1.6014 

 

 

 

Fig. 8 Speed deviation w in p.u Fig. 9 Rotor angle in in degree 

  

Fig. 10 The line active power
LP  in MW Fig. 11 SSSC-injected voltage

qV  in p.u 
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5.2.   Case-2:PI-PD type SSSC and PSS controller 

The nominal loading 0
0(0.8 . , 48.48 )p u   , is the self-cleared at between Bus-2 and Bus-3. Table 2 shows the optimised 

parameters with both DE and MFO for PI-PD type SSSC and PSS controller during three phase Bus-2 and Bus-3 and self-

cleared condition fo r 5 cycles . The effective responses are analysed in Fig.9. It is observed in Fig. 12-15 for speed deviation, 

tie line power and terminal voltage. The improvement of settling time and decrement of overshot of transient responses are 

observed in this MFO optimised PI-PD type SSSC and PSS controller more effectively than controller. 

Table 2 DE and MFO tuned optimal parameter of PI-PD type SSSC and PSS controller with nominal  

loading
0

0
(0.8 . , 48.48 )p u   line outage 

Optimisation Controller Controller Parameters 
ITAE 

*10e-3 

DE 

PI-PD type 

SSSC 

Kp2 KI2 Kp3 Kd3 T1ID T2ID T3ID T4ID 

4.2 
8.9062 7.7024 91.2532 32.1083 0.9168 1.7648 0.2907 0.7114 

PI-PD type 

PSS 

Kp12 KI12 Kp13 Kd13 T11ID T21ID T31ID T41ID 

55.8208 17.3684 15.7298 12.5812 0.8535 1.4744 0.2200 1.4390 

MFO 

PI-PD type 
SSSC 

Kp2 KI2 Kp3 Kd3 T1ID T2ID T3ID T4ID 

2.9 0.9990 8.2677 102.8586 92.6227 1.0339 0.6070 0.9069 1.6722 

PI-PD type 

PSS 

Kp12 KI12 Kp13 Kd13 T11ID T21ID T31ID T41ID 

0.9990 0.0000 99.87 9.3844 0.0001 1.9974 0.0001 1.8503  
  

Fig. 12 Speed deviation Fig. 13 Rotor angle in degree 

  

Fig. 14 Tie line active power Fig. 15 Terminal voltage 

5.3.   Case-3: PID type SSSC and PSS controller 

The nominal loading at ( 0

00.8, 48.4eP   ), is the line outage Bus-2 and Bus-3. PID type SSSC and PSS controller 

has also been tested with this SMIB system at line outage disturbance condition at same fault location between Bus -2 and 

Bus-3.The three phase line outage disturbance is done at t = 1s for 5 cycles and the  effective responses are analysed in Figs. 

16-18 following optimized controller parameters in table-3. It is found that, the responses for PID type SSSC and PSS 

controller are better as compared to PI and PI-PD type SSSC and PSS controller. The MFO optimized controller parameters 

of PID type SSSC and PSS g ives better responses than the DE tuned PID type SSSC and PSS controller. The settling time in 

PID type SSSC is significantly improved than PI and PI-PD type SSSC controllers. 
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Fig. 16 Speed deviation 

 
 

Fig. 17 The line active power Fig. 18 SSSC-injected voltage 

Table 3 DE and MFO tuned optimal parameter of PID type SSSC and PSS controller with nominal loading (0.8p
0

0
(0.8 . , 48.48 )p u   , line outage 

Optimisation Controller Controller Parameters ITAE *10e-3 

DE 

PID type 

SSSC 

Kpc KIc Kdc T1c T2c T3c T4c 

3.7 
134.1158 13.9487 12.3751 1.7451 1.5531 0.2802 0.5056 

PID type 

PSS 

Kp1c KI1c Kd1c T11c T21c T31c T41c 

111.8589 10.1969 48.8007 1.559 0.4859 0.1774 1.6069 

MFO 

PID type 

SSSC 

Kpc KIc Kdc T1c T2c T3c T4c 

3.2 
469.7830 3.2563 18.4041 1.4773 1.6225 1.1597 1.7668 

PID type 

PSS 

Kp1c KI1c Kd1c T11c T21c T31c T41c 

0.9990 40.4269 2.4261 0.7406 1.8584 1.8608 1.8763 

5.4.   Case-4: Fractional PID type SSSC and PSS controller 

The nominal loading at (
0

00.8, 48.4eP   ) line outage disturbance is at Bus-1. The proposed fractional PID type 

SSSC and PSS controllers have been implemented in this work to show their better quality over all the controllers. The 

transient analysis is done for the line outage disturbances of SMIB test system at nominal loading. The d isturbance is create d 

at 1 sec at one of the double circuit transmission line for 5 cycles and simulat ion results are studied from the Fig. 19-22 for 

speed deviation, tie line active power, terminal voltage and SSSC injected voltage , respectively. The settling time, overshoot 

and undershoot of the transient responses are improved effect ively with this proposed controller as shown in Table  4. The 

time delay of 50 m sec is introduced between the FOPID type SSSC and PSS. Optimized with MFO algorithm, the proposed 

controller significantly improves the transient response as compared to DE optimized FOPID type SSSC and PSS controller  

and all other controllers. 

Table 4 Case-4: DE and MFO tuned optimal parameter of FOPID type SSSC and PSS controller with nominal  

loading 
0

0
(0.8 . , 48.48 )p u   , line outage 



Proceedings of Engineering and Technology Innovation, vol. 8, 2018, pp. 46-59 

Copyright ©  TAETI 

56 

  

Fig. 19 Speed deviation Fig. 20 Terminal voltage 

  

Fig. 21 Tie line active power Fig. 22 SSSC-injected voltage controller 

5.5   Case-5: Fractional PID type SSSC and PSS controller  

The nominal loading at 
0

0(0.8 . , 48.48 )p u    line outage disturbance is between Bus-2 and Bus-3. The MFO 

optimized speed responses of all the controllers are taken together in Fig. 23 and revealed that, the fractional PID with 

fractional number of integral ga in and derivative gain effectively improves the dynamic responses as compared to rest of the 

controllers. The zoom portion of speed deviation shown in Fig. 24 clearly shows the speed response has no second overshoot, 

undershoot is less and it takes 2 sec to settle for damping out the complete oscillation s.
 

Optimisation Controller Controller Parameters 
ITAE 

*10e-3 

DE 

FPID type SSSC 
kp kI kd T1 T2 T3 T4   μ 

3.4 
294.7739 54.5911 16.8004 0.5892 1.1404 1.6048 0.7965 0.6887 0.9087 

FPID type PSS 
kp1 KI1 kd1 T11 T21 T31 T41 1

 μ1 

57.7629 11.4368 31.4137 0.2451 1.3925 0.2039 0.9830 0.4103 0.9008 

MFO 

FPID type SSSC 
KP KI Kd T1 T2 T3 T4   μ 

2.9 
100.2096 37.6333 8.6803 1.8305 1.9974 1.5018 1.7566 1.0185 0.9987 

FPID type PSS 
KP1 KI1 Kd1 T11 T21 T31 T41 1

 μ1 

161.2293 94.0954 27.9560 0.0920 0.0001 0.5633 1.4125 1.1644 1.1644 

  Fig. 23 Speed deviation for different controllers compared 

with proposed FOPID type SSSC and PSS controller
 

Fig. 24 Speed deviation in zoom version
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5.6.   Case-6: FOPID type SSSC and PSS controller nominal loading, permanent line tripping 

Under severe disturbance condition, the proposed controller is verified at nominal loading. A three phase fault for 5 

cycles is created at the mid-point of the overhead line of Bus-2 and Bus-3 and the fault is cleared by indefin ite tripping of the 

faulted section. The responses of the system are shown in the Figs. 25-27. The speed deviation is shown in Fig.25 in p.u, the 

rotor angle in deg in Fig.  26, and the healthy line power 2LP  in MW in Fig. 27, respectively. The system responses are 

unstable without the controller and becomes stable by FOPID type SSSC type PSS damping controller. This controller brings 

the initial operating point of the speed deviation at 3 sec and the rotor angle in Fig. 26 is shifted to another operating point at 

60° from its initial angle of 48.48°after 2.6 sec. 

 

Fig. 25 Speed deviation in p.u. 

  

Fig. 26 Rotor angle in degree Fig. 27 Power at healthy line 

5.7.   Case-7: FPID type SSSC and PSS controller 

With light loading 0(0.4 . ,22.85 )p u  and self-clearing, light load performances are also performed by changing the 

generator loading and the stability of the SMIB system is checked with the proposed FPID type SSSC and PSS damping 

controller. The responses are shown in the Fig. 28-30 with three phase fault for 5 cycles at middle of the double transmission 

line. The rotor angle in  Fig. 29 reduces 022.85  (without controller) to 022.5  (with controller) and settling time is achieved at 

3 sec. The effect iveness of this proposed controller is also verified in  Figs. 28, 30 and 31 by showing the damping of the 

oscillations and reduced overshoot and undershoot after the first swing. 

 
Fig. 28 Speed deviation 
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Fig. 29 Rotor angle Fig. 30 Tie line Powerin MW 

6. Conclusions 

The main purpose here is to damp the power system oscillat ions and to enhance the system performance under 

disturbances. The coordinated PI, PI-PD, PID and FPID type SSSC and PSS damping controllers are designed and 

implemented in SMIB power system. The performance of Fractional PID type SSSC and PSS has been compared with other 

controllers by its ITAE based on speed deviation of the test system and found minimum ITAE as objective function . With 

optimizing the controller parameters by MFO, the robustness and effectiveness are verified under various contingencies. The 

system damping has also been compared by using proposed controller with DE, and has concluded that the MFO technique 

yields better ITAE value and better dynamic response. The simulation work has been done in  MATLAB environment by 

running several times with adjusting controlling variables  F= 0.5-0.8, CR= 0.5-0.8, strategy=1-3, iteration, populations and 

the range of other  controller parameters within its limit  in DE technique.  Results obtained are good. However, in the 

proposed controller, 50 iterations, 10 population, F=0.8, CR=0.8, strategy=3 are co nsidered and much better result are 

obtained. Similarly, 5 agents and 50 iterat ions are taken  for MFO technique for still better results as compared to DE in  this 

proposed test systems. 

The results indicate the effectiveness of the proposed designs in prov iding good damping characterist ics to power 

system oscillat ions. This also helps in enhancement of dynamic performance. This approach can be implemented with mult i-

machine grid connected power systems. 
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