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Abstract 

In this paper, we present a point memory robust state observer with time-varying adjustable parameters for a 

class of uncertain linear systems with state delays. The point memory robust state observer proposed in this paper 

consists of fixed observer gain matrices and time-varying adjustable parameters, which are determined by updating 

rules. Sufficient conditions for the existence of the proposed point memory robust state observer can be reduced to 

solvability of LMIs. Finally, simple numerical examples are included to illustrate the effectiveness of the proposed 

robust state observer. 

 

Keywords: point memory robust state observer, time-varying adjustable parameters, state delays, LMIs 

 

1. Introduction 

Time delays are a phenomenon that occurs in physical systems such as manufacturing, long transmission lines in 

networked control systems and so on. When designing control systems, time delays is usually the reason that generates 

oscillation, poor performance, or instability of underlying control systems.  Namely, dealing with time delays is an important 

issue of controller design, and designers have to manage time delays so as to avoid the negative effects on the performance of 

control systems. Therefore, various control strategies for time-delay systems have been widely studied (see. [1] and references 

therein). In particular, [2] has adopted a point memory feedback strategy and presented an LMI-based design method of LQ 

regulator for a class of time-delay systems. Additionally, for uncertain time delay systems, lots of existing results for robust 

controller design methods have been shown (e.g. [3-4]). Particularly, in the work of [5], a guaranteed cost controller for a class 

of uncertain time-delay systems has been suggested. Furthermore, a variable gain robust controller for a class of uncertain 

linear systems with state delays has also been proposed [6]. 

By the way, in the control theory, the concept of state variable feedback is the most fundamental strategy for controlling 

dynamical systems. In particular, for linear systems, when the liner system is controllable (e.g. [7-8]) and references therein), 

the closed-loop poles arbitrary can be assigned.  However, due to physical, technical and/or economic reasons, not all variables 

can be measured; designers have to be able to deduce information on the state of the dynamical system by means of 

observations and measurements or a priori knowledge of the system structure. Namely, the so-called state observers must be 

designed. If the estimate of the state variable can be constructed, by using the estimate can derive from a feedback control 

system based on the state observer. It is well-known that the state observer was first presented and developed by [9-10], and 

further studied by many researchers (e.g. [11]). The observer design only aimed to linear time-invariant systems with complete 
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knowledge of system parameters, also the input and output signals.  However, it is inevitable to include uncertain parameters 

and parameter variations; at the same time, the controlled systems are affected by unknown disturbances. Therefore, state 

observers which guarantee the exactness of state estimation in the presence of unknown parameters are required. Thus, the 

design problem of robust state observers for uncertain dynamical systems has been well studied, and in order to deal with this 

problem, a large number of existing results of robust state observer design have been presented [12-13]. In the work of Wang et 

al.[14], a design method of an optimal observer of uncertain linear systems has been proposed.  Note that these robust state 

observers have fixed observer gains. Furthermore, a robust state observer for linear systems with perturbations has been shown 

[15]. The [15] have introduced time-varying complementary variables, and based on a Riccati equation approach a design 

method of the robust state observer has been suggested. Additionally, the relation between solvability of the derived Riccati 

equation and H∞-norm performance of a transfer function has been analyzed. For their work, a comment and authors' reply 

have also been presented [16-17]. However, the robust state observer given in [15] is incomplete.  

In this paper, on the basis of the existing result [6], we present a point memory robust state observer with time-varying 

adjustable parameters for a class of uncertain linear systems. The proposed point memory robust state observer consists of a 

time-varying adjustable parameter and a number of fixed gain parameters.  In this paper, we derive complete sufficient 

conditions of the existence of the proposed variable gain robust state observer, and the sufficient conditions are given in terms 

of LMIs.  This paper is organized as follows; Notations and useful lemmas, which are used in this paper, are shown in Section 

2. In Section 3, we show the class of uncertain linear systems under consideration and an observer with fixed and time-varying 

adjustable parameters. Section 4 is the main result in this paper. The design method of the proposed point memory robust state 

observer with time-varying adjustable parameters is presented. Finally, we show simple illustrative examples to show the 

effectiveness of the robust state observer developed in this paper. 

2. Preliminaries 

In this section, notations, well-known and useful lemmas (see [18] for details) which are used in this paper are presented. 

The following notations are used in this paper. For a matrix ,S  the inverse of matrix ,S  and its transpose are denoted by 

1
,


S  and
T

S , , respectively. Moreover,  SeH  and nI  mean 
T

SS   and n -dimensional identity matrix, respectively, and 

for real symmetric matrices W and Z , ZW   (resp. ZW  ) means that ZW  is positive (resp. nonnegative) definite 

matrix.  For a vector ,n
w   w  denotes standard Euclidian norm and for a matrix W , W  represents its induced norm.  

The symbols “  ”  and “ ” mean equality by  definition and symmetric blocks in matrix inequalities, respectively. 

Lemma 1 (Schur complement formula [18]) : For a given constant real symmetric matrix  , the following items are 

equivalent: 

(i) ψ = (
ψ11 ψ12

∗ ψ22
) > 0, 

(ii) ψ11 > 0 and ψ22 −  ψ12
T ψ11

−1ψ12 > 0, 

(iii) ψ22 > 0 and ψ11 −  ψ12ψ22
−1ψ12

T > 0. 

3. Problem Formulation 

Consider the uncertain time delay system described as the following state equation; 

   

),()(

),()()()()()(

tCxty

tBuhtxEtCAtxEtCAtx
dt

d
hh

T

h

T





 

(1) 

where 
n

tx )( , 
m

tu )(  and 
l

ty )(  are the vectors of the state, the control input and the measured output, 

respectively. In Eq. (1), matrices ,A B  and C  represent the nominal systems parameters with appropriate dimensions, and



Proceedings of Engineering and Technology Innovation, vol. 11, 2019, pp. 38-45 

 

40 

nq
E


  and 

nhq

hE


  denote the structure of unknown parameters. Moreover 
ql

t


 )(  and hql

h t


 )( are 

unknown time-varying parameters which satisfy the relations 0.1| |)(| |  t  and 0.1| |)(| |  t
h

, respectively. 

Now the design problem under consideration is how to design a variable gain robust state observer with the measured 

output 
l

ty )(  and the control input 
m

tu )( . The estimation error between the state variable and the estimate based on 

the observer can converge asymptotically to 0. In this paper, we introduce the following point memory robust state observer; 

),()())()(())()(()()()( ttBuhtxChty
h

LtxCtyLhtx
h

AtxAtx
dt

d
















 

(2) 

where
n

tx 


)(  is the estimate of the state variable )(tx , and 
ln

L


   and 
ln

hL


  are fixed observer gain parameters. 

Moreover 
n

t )(  in Eq. (2) is a compensation input with time-varying adjustable parameters [6]. Then we obtain the 

following estimation error system; 

),()()()()()()()()()( thtx
h

Et
h

T
CtExt

T
ChteC

h
L

h
AteLCAte

dt

d


 

(3) 

where )(te  is an estimation error vector defined as )()()( txtxte


 , 

From the above, our control objective in this paper is to construct the point memory robust state observer of Eq. (2), for 

the uncertain time-delay system of Eq. (1). That is to derive the fixed gain matrices 
ln

L


  and 
ln

hL


 , and the 

compensation input 
n

t )(  such that the estimation error system of Eq. (3) is asymptotically stable.  

4. Main Results 

In this section, we derive an LMI-based design procedure for the proposed point memory robust state observer with 

time-varying adjustable parameters. Next theorem gives a sufficient condition for the existence of the proposed robust state 

observer.  

Theorem 1: Consider the uncertain time delay system of Eq. (1) and the robust state observer of Eq. (2).  

If the symmetric positive matrices exist, 
nn

P


  , 
nn

hP


  and 
ll

X


 , matrices 
ln

W


  and 
ln

hW


  and 

positive scalars , ,h   and h  which satisfy the LMIs 

 

,0
000

0000








































l
I

h

l
I

h

l
I

l
I

lnlnlnlnh
E

T
h

E
h

P

T
PC

T
PC

T
PC

T
PCC

h
W

h
PA

h
PE

T
EWCP

T
AeH













 

(4) 

,0
 














l
I

T
PCXC

T
C

 

(5) 

then the fixed gain matrices 
ln

L


   and 
ln

hL


  are determined as WPL
1

  and hh WPL
1

 , respectively and the 

compensation input 
n

t )(  is designed as: 

Note that if 0)(
2/1

tCeX , then ),()(  tt  where )(lim 0    tt [19]. 
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Proof: In order to prove Theorem 1, we introduce the following function: 

.)(
1

2
)(

2/1

2

)(

2

)(

)( tXCe
T

CP

tCeX

htx
h

E
h

txE

t














 

(6) 

By using the point memory robust state observer with the fixed gain matrices 
ln

L


  and 
ln

hL


 , and the 

compensation input 
n

t )(  , the estimation error )(te converges asymptotically to 0. 

.
0

)()()()(),( 



h

dte
h

Pt
T

etPet
T

eteV 

 

(7) 

The time derivative of the function ),( teV of Eq. (7) along with the trajectory of the estimation error system of Eq. (4) is given 

by 

 ( , ) ( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( ).

d T T TV e t e t H P A LC e t e t PC t Ex t
edt

T T Te t P A L C e t h e t PC t E x t h
h h h h

T T Te t P t e t P e t e t h P e t h
h h



    
 

     

    

 (8) 

If the relation 0)()( tCPePCte
TT

 holds, then it is to be seen from Eq. (6) and the relation 0)()(2  tPte
T

 that the 

following inequality is satisfied; 

 ( , ) ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( )

d T TV e t e t H P A LC e t e t P A L C e t h
e h hdt

T Te t P e t e t h P e t h
h h

     
 

   

 (9) 

The inequality of Eq. (9) can be written as: 

 
.

)(

)()()(

)(

)(
),( 
































hte

te

h
P

C
h

L
h

AP
h

PLCAPeH
T

hte

te
teV

dt

d

 

(10) 

Thus the matrix inequality: 

 
,0

)()(















h
P

C
h

L
h

AP
h

PLCAPeH

 

(11) 

is satisfied, then the following relation holds;  

( , ) 0, ( ) 0 ( ) 0.
d

V e t e t and e t h
dt

       (12) 

Next we consider the case of 0)()( tCPePCte
TT

. Additionally, we introduce the relation: 

),()()()( tXCe
T

Ct
T

etCPe
T

PCt
T

e 
 

(13) 

where
ll

X


  is a symmetric positive definite matrix. Note that if the condition 0)()( tXCeCte
TT

 holds then 

0)()( tCPePCte
TT

is also satisfied.  

We can see that the relation of Eq. (13) means the following inequality; 
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,CP
T

PCXC
T

C   
(14) 

By applying Lemma 1(Schur complement formula) to Eq. (14), we obtain 

.0
 














l
I

T
PCXC

T
C

 

(15) 

It is obvious that if the condition of Eq. (10) holds, then we have 0)()( tXCeCte
TT

in the case of .0)()( tCPePCte
TT

 

From the definition of the estimation error vector, the relations )()()( txtetx


 and )()()( htxhtehtx 


 holds. 

Therefore, the time derivative of the function ),( teV can be rewritten as 

 

 

( , ) ( ) ( ) ( ) 2 ( ) ( ) ( ( )) ( ))

2 ( ) ( ) ( ) 2 ( ) ( ) ( ( ) ( ))

2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( C) ( )

d T T TV e t e t H P A LC e t e t PC t E e t x t
edt

T T Te t P A L C e t h e t PC t E e t h x t h
h h h h

T T Te t P t e t P e t e t h P e t h
h h

T Te t H P A LC e t e t P A L e t
e h h h




     
 


       

    

    
 


1

( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( ).

T T T Te t PC CPe t e t E Ee t

T
T T Te t PC CPe t x t E E x t

T T T Te t PC CPe t e t h E E e t h
h h

h
T

T T Te t PC CPe t h x t h E E x t h
h h

h
T T Tt P t e t P e t e t h P e t h

h h

















 
 

   

 
   

    

 

(16) 

Here we used the relation )()()( txtxte


  and the well-known inequality 

b
T

ba
T

ab
T

a



1

2 

 

(17) 

for any vectors a  and b  with appropriate dimensions and any positive constant .  By substituting the compensation input of 

Eq. (6) to Eq. (16) and some algebraic manipulations gives  

.
)(

)(
),,,,,(

)(

)(
),( 























hte

te

hhh
PP

T

hte

te
teV

dt

d


 

(18) 

In Eq. (15), 
nn

hhhPP
22

),,,,,(


  is the matrix given by  















h
P

C
h

L
h

AP
hhh

PP

hhh
PP

)(),,,,.(11),,,,,(




 

(19) 

 
h

PE
T

ECP
T

PC

hh

LCAPeH
hhh

PP 


















1111
)(),,,,,(11

 

(20) 

Therefore, the inequality condition of  Eq.(12) is satisfied provided that the following condition holds, 

.0),,,,,( 
hhh

PP 
 

(21) 
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Additionally, one can clearly see that the matrix inequality of Eq. (21) is a sufficient condition of Eq. (11), i.e. if the matrix 

inequality of Eq. (21) holds then the condition of Eq. (11) is also satisfied. 

Finally, we consider the matrix inequality of Eq. (21). By applying Lemma 1 (Schur complement formula) to Eq. (21), we can 

obtain the LMI of Eq. (4). Thus, the proof of Theorem 1 is accomplished. 

5. Numerical Example 

This section shows a simple numerical example to demonstrate the proposed point memory robust state observer. In this 

example, we consider the uncertain time delay system given by 

 

1.0 1.0 1.0 0.5 0.0
( ) ( ) ( )

0.0 1.0 1.0 0.0 0.0

0.5 0.0 1.0 0.0 0.0 0.0
( ) ( 0.5) ( ),

0.0 0.5 1.0 0.0 0.5 1.0

( ) 1.0 1.0 ( ).

h

d
x t t x t

dt

t x t u t

y t x t

         
        

       

         
            
         



　 　 　  

 

(22) 

Firstly, by solving LMIs of Eq. (4) and Eq. (5), we have symmetric positive definite matrices 2 2P   , 2 2
h

P   and 

1 1X  , matrices 2 1W   and 2 1
h

W   and positive scalars , ,h   and h  as 

3 2

3

3

3 3 2

2 2 2

2.1570 2.1208 5.6711 10 1.3509 10
10 , ,

6.4073 102.1570

4.2335 5.0857
4.0718 10 , 10 , 10 ,

1.7941 4.9957

5.4931 10 , 5.4351 10 , 5.4737 10 , 5.4632 10

h

h

h h

P P

X W W

   

     
         

   
        

   

      


　

　 　

　 　 = 　 2.
 

(23) 

Thus the fixed gain matrices 2 1L    and 2 1
h

L   can be calculated as 

1

1

3

8.3413 2.4208 10
10 , .

8.2843 6.4078 10
hL L





   
     

    
　

 

(24) 

In this example, initial values for the uncertain linear system of Eq. (22) and the proposed variable gain robust state observer 

are selected as  (0) 1.0 0.5
T

x    and  (0) 0.0 0.0
T

x 


, respectively. Furthermore, unknown parameters are given as 

 ( ) 0.0 cos(5 )t t   and, respectively. Moreover, we assume that the control input is given by ( ) sin( )u t t . 

The simulation result of this numerical example is shown in Figs. 1-4. In these figures, Xl, Xextl and El (l=1,2) denotes 

the l-th element of the state, the estimate of the state variable and the estimation error.  From these figures, we can see that the 

proposed point memory robust state observer can estimate the state variables of the uncertain time delay system of Eq. (22) and 

the estimation error for the proposed point memory robust state observer converges to 0. Thus we have shown the effectiveness 

of the proposed point memory robust state observer. 

  

Fig. 1 Time histories of the first element of ( )x t  and ( )tx


 Fig. 2 Time histories of the second element of ( )x t  and ( )tx

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Fig. 3 Time histories of  the first ( )e t  Fig. 4 Time histories of ( )e t  

6. Conclusions 

In this paper, on the basis of the work of Endo et al.[6], we have proposed a new point memory robust state observer for a 

class of uncertain time delay systems. The sufficient condition for the existence of the proposed point memory robust state 

observer is reduced to LMIs, and thus the proposed robust state observer can easily be obtained.  

Future research subjects are going to extend the proposed point memory robust state observer to uncertain large-scale 

interconnected systems with state delays, uncertain discrete-time systems and so on. Furthermore, we will evaluate the 

conservativeness of the proposed observer design. 
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