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Abstract  

In the lock-down period, the islanding mode of operation with droop controllers has several advantages in the 

alternating current grid. This study focuses on an improvised droop controller. It consists of an advanced filtering 

segment embedded with a conventional droop controller, which overcomes the drawback of droop controllers of the 

non-handling of non-linear loads in an ordinary situation. A selective harmonic elimination technique in 

grid-connected mode and lock-down mode and an advanced filter embedded with droop control are used so that the 

proposed controller can also work as an Active Harmonic Filter (AHF). The simulation results in different cases 

show that the proposed controller can control the active and reactive power in the lock-down period as well as the 

harmonics in the normal period up to an extent. 
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1. Introduction  

Several blackouts of grids were faced in the early 1990s, but the lock-down situation is unique in several ways. There are 

significant differences, e.g., the lock-down period is longer than the blackout period. Therefore, the need for electrical power is 

being decreased for a long duration. However, the disturbance is a severe condition (90 percent of the industry load has been 

shut down), not only from a stability aspect but also from an economic point of view. The best way to deal with this problem is 

to disconnect the conventional grid and convert it into the Micro-grid (MG) supplied with Distributed Generation (DG) [1]. 

MG is a group of generation sources, loads, etc. DG is one of the attractive solutions with many advantages [2]. 

The operation of DG can be broadly classified into two categories: current-controlled (grid following) and 

voltage-controlled (grid forming). The latter is also known as the islanding mode of power sharing and control, which is most 

widely used in the droop controller in islanded mode. There are two principal tasks to perform the droop controller 

proportionately and maintain the voltage and frequency stability. Thus, the MG connected with DG requires a high energy 

management technique, as described in [3]. The novel control scheme of decoupled trigonometric saturated controller is 

discussed to improve the power-sharing accuracy with better stability. Moreover, this method provides robust decoupling with 

guarantees for both voltage and frequency stability [4]. Power sharing and control are mostly based on the droop concept. 

However, the conventional droop controller focuses on fundamental components of power and ignores the harmonics of the 

non-linear load [5]. Several control strategies, such as master-slave control and average current-sharing control, have been 

widely implemented worldwide to operate parallel-connected inverters for load sharing in the DG network. Among these 

techniques, due to the lack of essential communication links between parallel-connected inverters, the droop control technique 

has been widely accepted in the scientific community [6]. However, no strategy is applied in a lock-down situation. 
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The main objective of this study is to design an advanced filtering segment embedded with a conventional droop 

controller, which overcomes the drawback of droop controllers of the non-handling of non-linear loads in a lock-down 

situation. In a normal period, the droop controller pulse generator works on the principle of Selective Harmonic Generation 

(SHG) so that the droop controller supplies harmonics and works as an Active Harmonic Filter (AHF). 

2. Power-Sharing Control 

The MG power-sharing control in inverter-controlled mode is broadly classified into two categories. 

2.1.   Communication based control 

This control strategy requires communication lines between modules and controllers, resulting in the increased cost of the 

whole system. Long-distance communication lines can be easier to get interfered with noise. Thus, the expandability and 

reliability of the system is reduced. 

2.2.   Wireless based or droop control 

Droop control is sometimes also known as a wireless controller [5]. This method does not require any wired connection. 

Despite this, several other advantages are associated with this method, e.g. less complexity, less cost, improved redundancy, 

improved reliability, and more natural. 

If islanding is unintentional, then islanding should be detected. It can be detected by passive or active methods 

(measurements). In the passive method, the autocorrelation function of modal current is used [5]. Another detection scheme 

based on the rate of change of exciter voltage is used for detecting unintentional islanding [6]. The other detection methods are 

vector jump detection and voltage harmonics detection [7-9]. 

Droop controlled methods are applied to achieve power sharing of fundamental components. However, in non-linear 

loads, droop control does not consider the harmonic associated with it [10]. As a consequence, high circulating current and 

poor power quality are generated. To solve this problem, two approaches are given in this paper. The fundamental equations 

used for the droop control problem are as follows: 
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Fig. 1 Basic characteristics of droop controller 

where X is the reactance of inverter, � is the angle between the output voltage of inverter and common bus, Ei is the output 

voltage of inverter, and V is grid voltage. It is noted that the active power depends on the angle, and the reactive power depends 

on the voltage magnitude. This principle can be applied in Voltage Source Inverter (VSI) by using the P/Q droop controller (as 

shown in Fig. 1) [10-11].  
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( )maxrated i if f m P P= − −  (3) 

( )maxrated i iE E n Q Q= − −  (4) 

Here, � and � are droop slopes; � is the index of the inverter; ����	
, 	����	
, 
���, and ���� are the nominal frequency, 

voltage, active power, reactive power rating respectively. The value of � and � are chosen to affect the stability of the system. 

In a similar concept, further researchers found a relationship between angle and power, i.e., the phase angle is set to common 

timing. Power requirements can be shared based on an angle of the conventional droop controller. The angle droop controller is 

described as follows [12].  

( ),i rated i i rated
m P Pδ δ= − −  (5) 

3. Filter Designing 

By the use of power converters, we can maximize the power transfer from renewable energy sources. Therefore, power 

converters are essential, but every power converter associates with harmonics, and there is an essential requirement of filters. 

The first key step is to connect a simple inductor in series, but the harmonic attenuation provided by the series filter is not 

prominent as the ripple injected does not meet the standard. In addition to it, the voltage drop is very high and the inductor 

required is very heavy. Thus, in compariosn with L filter, LCL filter is much more pronounced [13-14]. 

Here the LC filter is considered because it involves a second inductor due to the stray effect (as shown in Fig. 2). 

Furthermore, it is considered due to the uncertainties and disturbances found in such applications with various LCL filter 

parameters [15]. The capacitor (Cf) cannot be placed at the inverter side because it will be converted into the current source, 

and then the whole current will go through a grid. In a practical grid, there will be some stray impedance of transformer, lines, 

etc. For this reason, the LCL filter is proposed. A second inductor is also connected with the stray inductor. 

  

Fig. 2 The introduction of stray capacitance Fig. 3 The LCL filter per phase model 

3.1.   The LCL filter modeling 

In Fig. 3, a per phase model of the LCL filter is shown. Here, t-type filter is considered. This is especially designed to 

reduce harmonics of voltage or current absorbed by nonlinear load or grid, with a droop controller output stage. The transfer 

function of this circuit is defined as the ratio of output to input quantity. In this case, the output quantity is current (ig), and the 

input quantity is voltage (Vi).   

( )
( ) 2

2

1

2

1

1

1

1

g

i

i s sC

sLV s
sL

sCsCsL

sL
sC

= ×
+

+
+

 

(6) 

51 



Proceedings of Engineering and Technology Innovation, vol. 18, 2021, pp. 49-60 

 

1 2
L L L= +  (7) 

1 2

1 2

p

L L
L

L L
=

+
 (8) 

1

p

r
w

L C
=  (9) 

( )
( ) 2

1

1

g

i

r

i s
L

V s s
s

w

=

+
  
  

   

 (10) 

3.2.   The choice of L1 and L2 

The choice of L1 and L2 is expressed as Eq. (11) and Eq. (12).    

1 2
L aL=  (11) 

( )2

2
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L

w aC

+
=  (12) 

���� is required when ɑ=1, keeping wr and C constant [9]. The ripple in the minimum value of ig is for fixed L and C when 

ɑ=1. For fixed ig ripple and fix L requirement, the C requirement is minimum when ɑ=1. If the grid voltage and current are in 

the same phase (as shown in Fig. 4(a)), then the requirement of the inductor is less and close to ����. The value of lagging 

power factor (as shown in Fig. 4(b)) is between ���� and ���� according to Eq. (13). 

min max
L L L≤ ≤  (13) 

 

  
(a) At unity power factor (b) Lagging power factor 

Fig. 4 Phasor diagrams 

3.3.   The choice of capacitor C 

A choice of capacitance depends on optimizing total reactive power loss. The above described characteristics should be 

kept in mind while designing the LCL filter. A limit on the reactive power requirement of the filter gives the maximum value of 

capacitance (Cmax).  
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The reactive power requirements may cause capacitor resonance when a capacitor is interacting with the grid. Passive or 

active damping can be adopted to resolve the problem by using an algorithm to design an LCL filter [14]. The parameters 

required for designing the LCL filter include VL (line to line root mean square voltage in inverter output), Vp (phase 

voltage-inverter output), P (rated active power in Watt), Vdc (direct current link voltage), fg (grid frequency), fsw (switching 

frequency), and fres (resonance frequency), as shown in Table 1. The base values of impedance and capacitance are as follows: 

2

L
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=  (16) 
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The variation of maximum power factor k is 0.15 (15%), the maximum ripple tolerance r is 0.10 (10%), and the 

attenuation factor x is 0.20 (20%). Vdc is calculated by considering nominal alternating current voltage variation (+5% factor), 

filter voltage drop (+10% factor), and the dead band in the pulse width modulation output (5% factor):   
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To avoid the situation of resonance, a small series resistance is required to be connected with the filter capacitor to 

attenuate some parts of the ripples. The resonant frequency should lie in range (Eq. (25)). If it is not, then the attenuation factor 

is to be changed. The maximum and minimum limit of resonant frequency are described as follows: 
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The value of the series resistor should be typically one-third of the impedance of the filter capacitor at the resonant 

frequency and can be calculated by Eq. (26). 
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Table 1 The parameters of LCL filter 

Symbol Name Values 

�� Grid frequency 50Hz 

��� Switching frequency 10kHz 


 Nominal Power 5kW 

�� Inverter output line voltage 440√3V 

�
� Direct current link voltage 1509.27V 

�� Inverter side inductor 1.174 mH 
 

3.4.   The design of direct current link capacitor 

As per IEEE 1547 standard, the value of current can be utilized for capacitor designing [16], as shown in Eq. (30). 

According to the standard, the ripple current should not be more than 5%.   

( )50
2

ac

ac

I
I at Hz =  (27) 

( ) cos cos 2 50
out sw ac

i nT I nTπ=  (28) 

( ) 230 2
0.5 cos cos 2 50

800
sw

d n nTπ≅ +  (29) 

( ) ( ) ( )
1/ 2

22

1

_ _

1
N

out sw

i

ac at swf
i nT d n d n

N
I

=

= −
     
∑  (30) 

( )
50

1/2
2 2 2

at atHz fsw
rms ac dc ac

I I I I= + +  (31) 

4. Selective Harmonic Generation (SHG) 

SHG is a technique emerged from selective harmonic elimination. In this technique, a designed pulse generator with the 

appropriate value of  1,  2, and so on, can be implemented easily. Therefore, before the generation of pulse, a non-linear load 

is to be modeled as: 

0 0

0
sin 5 sin 7 ...

5 7

E E
V E sinwt wt wt= + + +  (32) 

The fundamental component can be described as:  

1 1 2
1 2cos 2cos 0.8V α α= − + =  (33) 

The 5th harmonic component is: 

5 1 2
1 2 cos 5 2cos 5 0.2V α α= − + =  (34) 

The 7th harmonic component is: 

7 1 2
1 2 cos 7 2 cos 7 0.142857V α α= − + =  (35) 
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Fig. 5 The pulse generation for suppling the 5th harmonic 

The 3rd harmonic and the multiples of 3rd harmonic eliminate in line to line voltage. By solving Eqs. (33) and (34), the 

value of  � and  ! will be:  � = 25.3592˚,  ! = 36.5208˚ . The pulse generated by the pulse generator to supply a 5th harmonic 

component is shown in Fig. 5. By solving Eqs. (33) and (35), the value of  � and  ! will be:  � = 16.1859˚,  ! = 30.6427˚. 

Sometimes instead of two switching values in quarter-wave symmetry, three switching instances can be used by which Total 

Harmonic Distortion (THD) is further reduced. The fundamental component can be described as:  

1 1 2 3
1 2cos 2cos 2cos 0.8V α α α= − + − =  (36) 

The 5th harmonic component is: 

5 1 2 3
1 2 cos 5 2 cos 5 2 cos 5V α α α= − + −  (37) 

The 7th harmonic component is: 

7 1 2 3
1 2cos 7 2cos 7 2cos 7V α α α= − + −  (38) 

By solving Eqs. (36), (37), and (38), the value of  �,  !, and  " will be:  � = 23.5774˚,  ! = 21.9858˚,  " = 83.6411˚. 

5. The Proposed Technique 

When the grid and the inverter-connected renewable sources feed, then the load operates broadly in the following two 

conditions [17]: a) On-grid and b) Off-grid islanding mode (as shown in Fig. 6). If the load is connected to the grid, in this case, 

the grid controls the voltage and frequency. The droop controller works as an active power filter by using SHG technique. 

Hence, the possibility of low harmonics ripple is reduced. In the second case, an islanding mode inverter works as VSI. We 

design a passive filter for improving the waveform of inverter output, then the power is sharing according to the droop control 

concept. The roles of droop controller are as follows. 

5.1.   On grid with nonlinear load 

In this case, harmonics are generated by the inverter [18] with reverse polarity and the same amplitude of non-linear load 

harmonics. The droop controller pulse generator works on the principle of SHG (as shown in Fig. 7). The droop controller 

supplies harmonics. Thus, THD is reduced. Therefore, the droop controller functions as AHF. The simulation studies are 

carried out using MATLAB. The active filters are tuned non-linear load at the 5th harmonic, the 7th harmonic, and the 
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combination of the 5th and 7th harmonics of the fundamental frequency, and the control signals of Insulated Gate Bipolar 

Transistors (IGBTs) are generated through the pulse generator with the calculation of switching angle (in section 5) using 

MATLAB coding. 

5.2.   Off grid by droop controller 

In this case, the filter is designed precisely (as discussed in section 3). Overall, THD gets reduced. This is the reason why 

this type of droop controller is known as an improvised droop controller. The block diagram is shown in Fig. 6. 

 
Fig. 6 The working process of droop controller  

The working process of the droop controller is explained by using block diagram in Fig. 6. In the islanding mode, it works 

as a conventional droop controller with an advanced filtering facility. In the grid-connected mode (if islanding does not occur), 

it works as AHF for power quality improvement. In this situation, the harmonics required by the non-linear load are supplied 

by changing the switching instant of the inverter pulse generator, and are embedded with a droop controller.  

5.3.   Simulation model 

 

Fig. 7 The Simulink model of the off-grid conventional droop controller 

A simulation model of the droop controller is represented in Fig. 7 in which two different DG systems are connected to 

examine their respective power-sharing. The simulation setting of POWERGUI is shown in Table 2. 
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Table 2 The simulation setting of POWERGUI 

Solver ODE23tb(Stiff/TR/BDF2) 

Carrier frequency 10,000Hz 

Simulation Time 0.08 Sec (4 Cycles) 

Discrete step time 2#10-6 Sec 

6. Results 

6.1.   Case1: when a non-linear load is supplied by the grid without AHF 

The system is simulated for a purely resistive load of 13.6 kV and 50kVA as a base value. If AHF is not connected, the 

non-linear load is composed of the fundamental, the 5th harmonic, and the 7th harmonic components (Fig. 8). The 3rd and the 

multiples of 3rd harmonic are not considered here as they are not presented in line to line components. The 5th harmonic only 

and the 7th harmonic only are of low frequency. The 5th harmonic and 7th harmonic simultaneously are of high switching 

frequency, therefore they can be used for a low and medium load.   

 

Fig. 8 The non-linear load supplied by the grid (without AHF) 

6.2.   Case 2: When a non-linear load is supplied by the grid and AHF 

If the 5th harmonic is required by the non-linear load, it is generated and supplied by AHF, and the fundamental 

component is supplied by the grid. In Fig. 9, the circuit is simulated, and the component of load current supplied by the grid and 

AHF is shown.  

 

 

Fig. 9 The fundamental and the 5th harmonic component of load current supplied by AHF and grid 

 Similarly, the 7th harmonic and fundamental component required by the load is shown in Fig. 10. However, in this case, 

the grid quality is not very good because the harmonics are also presented in the grid. Therefore, these harmonics must be 

removed.  
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Fig. 10 The fundamental and the 7th harmonic component of load current supplied by AHF and grid 

If the non-linear load consists of both of the 5th and 7th harmonics, then both of the 5th and 7th harmonic components of 

load current are supplied by AHF, as shown in Fig. 11. Also, the load current is supplied by the grid which is sinusoidal in 

nature and the overall grid quality is improved, as shown in Fig. 11.  

 

 

Fig. 11 The load current supplied by grid and the 5th and 7th harmonic components of load current supplied by AHF 

It is clear from the above-mentioned results that the load current supplied by grid is nearly sinusoidal. The conditions with 

and without AHF harmonic component of 100 kW at UPF load are compared and shown in Fig. 12.  

 
Fig. 12 The harmonic comparison with and without AHF 

In this studied case, the droop controller works in the grid-connected mode as well as in the islanded mode. In the 

grid-connected mode, the droop controller works as AHF and reduces THD. It has not given desired results by eliminating only 

the 5th or only the 7th harmonic by taking three α1, α2, α 3 switching instances, but it has given desired results by taking the 5th 

and 7th harmonic elimination simultaneously. We use only a simple pulse generator for this task, and for reducing THD further, 

we can use more switching instances such as α1, α 2, α3, and so on. It requires a high computation technique, which is possible 

in the present time.  
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6.3.   Case 3: When the non-linear load is supplied by distributed generator 

If the grid is disconnected, the electrical power is supplied by the distributed generator [19]. Now, the operation of the 

droop controller shifts from AHF to the conventional droop controller with Advanced Filtering Technique (AFT). 

  

(a) Power delivered by D1 (without AFT) (b) Power delivered by D2 (without AFT) 

  

(c) Power delivered by D1 (with AFT) (d) Power delivered by D2 (with AFT) 

Fig. 13 The active and reactive power sharing by both DG systems 

It starts the following droop characteristics. Here in Fig. 13, the electrical power-sharing of two DG systems is shown. 

The active and reactive power sharing by both DG systems is according to Fig. 13. This figure shows the variation of active and 

reactive power in the DG system. It is evident that in the islanded mode this controller works in a normal way so that power can 

provide according to the load requirements. As per Fig. 13, the droop controller supplies the active and reactive power to the 

load (described in Fig. 13(a) and Fig. 13(c)) without AFT. Fig. 13(b) and Fig. 13(d) represent the active and reactive powers 

supplied to load with AFT. The only difference is that the reactive power supplied with AFT is more. Therefore, we can say 

that the reactive power is required with AFT. The requirement of reactive power is lesser when AFT is embedded with 

conventional droop controller.  

7. Conclusions 

This paper has presented an improvised droop controller strategy for controlling power in the grid-connected and in the 

islanding mode. A detailed description of the operation of the droop controller is given in the grid-connected and in the 

lock-down mode. In the grid-connected mode, a new technique SHG is used so that the droop controller can supply the desired 

harmonic component to a non-linear load, and the overall THD can be reduced. In the lock-down mode, the conventional droop 

characteristics with advanced filtering features reduce the requirement of reactive power. Especially, this controller provides a 

complete solution in all conditions with a slight modification in pulse generation techniques with advanced filter designing. 
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