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Abstract  

This study aims to optimize a fan-stub slot patch to get better suitability and performance for Citizens 

Broadband Radio Service (CBRS). The transition from the tedious configuration of slotted patch antenna in fan-stub 

shape is evaluated. Also, the impact of stub width W, stub length L, and its orientation are tested. Multiple simulation 

tests ensure the uniqueness in the type of slots or stubs that affect the multiband nature of patch. The optimization of 

basic fan-stub structure on return loss S11, Voltage Standing Wave Ratio (VSWR), and the operating band at the 

desired frequency is performed to accommodate the federal and non-federal use of the band. The simulation results 

show that the designed antenna is technically suitable to cover 4G LTE in CBRS (LTE-43 and LTE-48 band) as well 

as 5.5 GHz Wireless Local Area Network (WLAN) band of operation. 
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1. Introduction 

The recent rapid advancement in telecommunication systems is offering a variety of services, e.g., Internet access via the 

wireless network. Wireless networks use a specific range of spectrum for facilitating the services. Cellular networks such as 

Long Term Evolution (LTE), Wireless Local Area Network (WLAN), or multilayer spectrum-based systems including 5
th

 

generation cellular systems are few of them. Reconfigurable Smart Surface (RSS) technology is considered to be a new cellular 

communication paradigm to improve services [1-2] in the communication world. Fractal Ultra-wideband (UWB) or multiband 

magneto-electric dipole antenna [3-4], Vivaldi antenna [5], lumped LC resonator antenna [6] all are portable and extendable 

antennas for wide applications. However, their fabrications are complex because of the multi-slots based geometry. LTE 

supports both duplexing technologies named as Frequency Division Duplex (FDD) technology and Time Division Duplex 

(TDD) technology, and works on a number of frequency bands. International Telecommunication Union (ITU) regularly 

expands the LTE frequency bands rapidly due to technical pressure caused by the growing need for mobile communication. 

Recently, the frequency range of 450 MHz to 3.8 GHz is allocated for LTE system and Citizens Broadband Radio Service 

(CBRS) as well. Low power cellular systems such as CBRS that cover the band pair of LTE-42 band (3550 MHz to 3660 MHz) 

and LTE-43 band (3660 MHz to 3700 MHz) are expanded globally and also known as a licensed band in Japan and in other 

countries. CBRS also includes LTE-48 band (3550 MHz to 3700 MHz). LTE-48 band is the combination of LTE-42 band and 

LTE-43 band. Hence, it includes the frequency spectrum of both bands. Now in the USA, the LTE-48 band is also known as 4G 

LTE in CBRS band. In [7], CBRS spectrum sharing between unlicensed LTE (LTE-U) and Wi-Fi is reported with technical 
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challenges. Three classes of users with hierarchical priority in CBRS band have been also presented. CBRS spectrum in which 

Incumbent Access (IA) users, Prioritized Access License (PAL) users, and General Authorized Access (GAA) users come 

under the Tier-1, Tier-2 and Tier-3 respectively are shown in Fig. 1. Depending upon the spectrum of CBRS band, all 

concerned users (from Tier-1 to Tier-3) can be also prioritized with decreasing interference protection fashion as demonstrated 

in Fig. 2. In the current scenario, the expansion of unlicensed LTE (LTE-U) as PAL or GAA users in the CBRS band is an 

enticing choice because of the high penetration at 3.5 GHz, clean channel, and wide amount of spectrum [8]. 

 

Fig. 1 CBRS spectrum for three types of users [7] 

 

Fig. 2 Users access priority [7] 

The design and optimization of new compact antennas for better radiation characteristics with multi-band features are the 

new challenge for antenna designers and researchers. Several studies in this context have been the matter of interest and are 

still going on. However, some specific band antennas or UWB, which brings fabrication complexity and unsuitability for 

limited space [9], all are relatively large in size [10] or complex in geometry. Vivaldi antennas are the major development in 

the history for UWB antennas [11-16]. Moosazadeh et al. [17] designed an Antipodal Vivaldi antenna with additional slots, but 

it is not fitted for LTE spectrum range.  

Almost all Vivaldi antennas are operational above 5 GHz as referred below. Much designing literature related to the 

planer UWB antenna with the band notched characteristics is also available. However, those designs are based on different 

type of stubs, slots, arms, and slits in the radiating element to control the radiation performance. Additionally, at the same time, 

interference may exist between them if they are not adjusted properly [18]. Novel structured UWB antennas with S11 less than 

-20 dB have been also proposed to cover the 5.2/5.8 GHz WLAN system [19-20], but their multistage recumbent structure and 

configuration brings complexity in its fabrication steps. Historically, materials with the low dielectric constant (��) such as 

different classes of Rogers material have been in extensive use as an antenna’s substrate [21-22] for all kinds of 

telecommunication antennas except biomedical applications based antennas [23-28].  

The proposed antenna is planer in nature and exhibits advantages in terms of easy fabrication because of its simple 

geometry. It also offers compactness in size and multiband characteristics with very low Voltage Standing Wave Ratio 

(VSWR � 1.3) at its central resonance frequency in each band. Here, the optimization by Monte Carlo method is used to decide 

the specific limit of antenna structure and its variable parameter. Consequently, it shows the satisfactory performance and 

reasonable operation in 4G (LTE in CBRS) band including 5.5 GHz WLAN systems.  
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Monte Carlo method is a simulation technique based on random sampling in order to get the numerical solution of 

mathematical problems [29] although it is very difficult to find a method that would bring the complete solution by 

optimization. Furthermore, the optimal dimension of the investigated antenna and other parameters are derived from 

simulation results individually, irrespective of other variables. For example, in the case of fan-stub, while optimizing the angle 

and remaining the geometrical parameters, the width W and length L are treated as a constant. This process will be repeated and 

completed for all parameters step by step. Obviously, the multiband nature with state of frequencies can be changed by 

changing the antenna configuration [30-32].  

2. Fan-Stub Antenna and Its Optimization to Matching 

The general geometry of fan-stub planer patch antenna is shown in Fig. 3(a). It consists of the length L, width W, and angle 

θ that can be treated as its dimensional parameters. When the angle of the structure is adjusted between 0˚ to 180˚ (0˚ � θ �

180˚) with any value of the length L and width W, it appears as fan-stub. However, in suggested geometry, this angle is 

typically chosen between � and 2� (180˚ � θ � 360˚) and looks like a sectored circular patch as depicted in Fig. 3(b). Rogers 

(RO3035) with dielectric constant �� of 3.6 is used as a substrate and has the height of 5.0 mm. The copper metal that has the 

thickness and conductivity as 0.035 mm and 5.8 ⋅ 10�	s/m respectively is placed over substrate as a radiating element.  

  
(a) General fan-stub geometry (b) Optimized geometry of fan-stub patch 

Fig. 3 The geometry of fan-stub patch 

 

 
Fig. 4 The optimization flow chart for proposed antenna 
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This work is dedicated to LTE-43, LTE-48, and 5.5 GHz WLAN bands applications, therefore its concerned frequency 

range from 3 GHz to 6 GHz is taken as a frequency of interest for investigation. To optimize the antenna performance within 

the range of frequencies (3 GHz to 6 GHz) and to create multiband features in the antenna, the optimization of antenna 

dimensions (at constant substrate height and ��) is worked out as shown in Fig. 4. To ensure the maximum wave power transfer 

from the cable to the respective antenna, the adjustment of the return loss S11 within the bandwidth (BW) is also justified. 

2.1.   The optimization of stub angle θ for lowest return loss S11 

In this section, the influence of stub angle θ variation on S11 at constant value of the stub width W and stub length L is 

analyzed by a simulated graph. Sonnet Lite (V.15.53) is used to simulate the parametric variation response within a specified 

range of frequencies. Subsequently, it will help achieve the optimized value of the stub angle to get the satisfactory result. The 

assumed value of patch stub dimension is recorded in Table 1 and is used to plot the return loss S11. The right column in Table 

1 highlights the individual S11 plot color for each patch as shown in Fig. 5. Here, the S11 graph shows that the fan-stub shaped 

patch with larger stub angle causes more declination in the return loss at the higher frequency found outside the resonance band. 

However, at constant patch width and length, the stub angle of 220˚ shows the steep fall in return loss (minimum return loss 

window) around 5.8 GHz, which ensures and predicts the existence of multiband at this angle for another stub width and length. 

Therefore, the stub angle of 220˚ is suitable for our objective.  

Table 1 Fan-stub patch with variable angle 

Stub width (mm) Stub length (mm) Stub angle (degree) S11 graph color in Fig. 5 

5 10 300 Pink 

5 10 260 Red 

5 10 220 Blue 

 

 

Fig. 5 The influence of stub angle θ variation on S11 

2.2.   The optimization of stub width W for lowest return loss S11 

Fig. 6 reveals the simulated return loss S11 graph for different widths of fan-stub structure, ranging from 10 mm to 20 mm 

at constant value of length and angle as tabulated in Table 2. The right column in Table 2 reflects the color identification among 

the S11 plots for the specified patch stub illustrated in Fig. 6.  

Fig. 6 shows that the generation of the frequency band is strongly affected by the width W variation, in which the lower 

value of width W creates the first band at a higher range of frequency (having resonance frequency of 4.78 GHz, at W = 10 mm), 

and the larger value of width W yields the first band at a lower range of frequency (having resonance frequency of 4.08 GHz, at 

W = 20 mm) with small variation of return loss. However, the larger patch width W is the cause of larger flaring in a patch 

structure and also the cause of multiband generation. Hence, finally, a better response can be observed at W = 25 mm. 
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Table 2 Fan-stub patch with variable width W 

Stub width (mm) Stub length (mm) Stub angle (degree) S11 graph color in Fig. 6 

15 25 220 Blue 

20 25 220 Pink 

25 25 220 Red 

 

 

Fig. 6 The influence of stub width W variation on S11 

2.3.   The optimization of stub length L for lowest return loss S11 

Table 3 shows that the change in length for a fan-stub antenna at constant width W and angle θ affects the return loss S11. 

A specific color (the rightmost column in Table 3) is assigned to distinguish the S11 plot for each patch. The simulated return 

loss S11 graph for the suggested patch with the variable length L, ranging from 15 mm to 25 mm, is reported in Fig. 7. Here, it 

can be significantly noticed that the variation of antenna length L results in major changes in return loss in the primary 

frequency band. The larger antenna length L in fan-stub patch generates the wider primary band (for example, the primary band 

having BW of 400 MHz is created at L = 25 mm) with smaller value of S11 (-33.59 dB) including multi band characteristics. 

The smaller antenna length L inserts a primary band at a lower range of frequency with higher value of S11 (-18.1 dB at L = 15 

mm). Since the return loss of -33.59 dB is found at the antenna length of 25 mm among all values of L, the optimized value of 

stub length is locked at 25 mm to achieve the objective and applications of the proposed antenna.  

Table 3 Fan-stub patch with variable length L 

Stub width (mm) Stub length (mm) Stub angle (degree) S11 graph color in Fig. 7 

15 15 220 Blue 

15 20 220 Red 

15 25 220 Pink 

 

 

Fig. 7 The influence of stub length L variation on S11 
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It is worth noting that we do not consider any substrates other than Rogers RT3035 (�� � 3.6, ����	��� !�� � 0.0018) 

because the comparative analysis as shown in Fig. 8 indicates that the thicker substrates with low dielectric constant value such 

as Rogers RT5880 (�� � 2.2, ����	��� !�� � 0.0009), Rogers RT5870 (�## � 2.33, ����	��� !�� � 0.002), Arlon AD450 

(�� � 4.5, ����	��� !�� � 0.0035), etc. do not achieve the resonance at optimized value of W, L, and θ for CBRS and WLAN 

bands in fan-stub structure. Furthermore, the obtained multi-bands by Rogers RT5880, Rogers RT5870, and Arlon AD450 

have low BW along with higher return loss (S11 > -18 dB). Therefore, in an antenna design, it could possibly not be accepted in 

active terrestrial mobile communication with proper transmitting power limit irrespective of desired bands.  

 

Fig. 8 The influence of different substrate material on S11 for a fan-stub patch (W = 25 mm, L = 25 mm, and θ = 220˚)  

3. Designing Specifications and Simulation Results 

3.1.   Designing specification for proposed antenna 

In order to make the antenna as suitable as possible for optimum performance, the center feed antenna is fabricated on 4.6 

mm thicker Rogers (RO3035) substrate with the proposed structure. The dimensional value of fan-stub shaped antenna is 

decided and derived from its optimized response. Final 2D and 3D geometry of the optimized antenna with its dimension is 

shown in Fig. 9(a) and in Fig. 9(b) respectively. The antenna structure is very simple and easy in manufacturing. The best result 

is expected to be found at W = 25 mm, L = 25 mm, and θ = 220˚. 

 

  

(a) 2D view of optimized fan-stub patch (b) 3D view of optimized fan-stub patch 

Fig. 9 The schematic view of proposed fan-stub patch 

3.2.   Simulation results 

The designed antenna performance is explored on the basis of its return loss S11 for each band, including other deciding 

factors such as VSWR, input impedance Zi, surface current distribution at different frequencies, etc. Fig. 10 presents the 

performance of the antenna in its multi-band behavior with the respective value of S11 at its corresponding resonance frequency. 

The simulated return loss plot ensures the existence of triband characteristics, and it is found from 3.65 GHz to 3.86 GHz 

(5.61% BW), 4.13 GHz to 4.21GHz (1.91% BW), and 5.41 GHz to 5.67 GHz (4.68% BW). The first frequency band (3.65 GHz 
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to 3.86 GHz) is enough to cover the entire LTE-43 band and major portion of LTE-48 band with all radiation features. The 

second frequency band (4.13 GHz to 4.21 GHz) and the third frequency band (5.41 GHz to 5.67 GHz) may be additionally 

reserved for future band expansion for LTE and WLAN application respectively. Fig. 11 illustrates VSWR versus frequency 

graph of the designed and suggested antenna. VSWR in all bands are less than 2 and reaches closer to 1 at the central resonance 

frequency. 

  
 

Fig. 10 The simulated S11 plot of proposed and  

optimized patch 

Fig. 11 The simulated VSWR plot of proposed and  

optimized patch 

  
 

Fig. 12 The real part of input impedance with  

frequency variation 

Fig. 13 The imaginary part of input impedance  

with frequency variation 
 

The frequency dependence on input impedance Zi in terms of its real and imaginary part is depicted in Fig. 12 and in Fig. 

13 respectively. The phase variation of the input impedance is demonstrated in Fig. 14 and exclusively proves its linearity over 

the entire operating band. Additionally, a two dimensional (in xy-plane) version of current density J followed by Ohms Law is 

also computed graphically. The current density (JXY) is proportional to the tangential electric field strength over the area of 

patch surface. Therefore, this current density has to be used to see how an antenna radiates electromagnetic (EM) waves as a 

beam. The surface current distribution plots over the patch at central resonance frequency of 3.74 GHz (first band), 4.17 GHz 

(second band), and 5.55 GHz (third band) depicted in Fig. 15. The figures sufficiently illustrate strong stability and acuteness 

of the concentration of surface current distribution within the band frequencies. Also, they depend upon central resonance 

frequencies. However, a variation in JXY can be further seen at constant resonance frequency if a different phase angle is 

found with respective frequency. For example, the JXY plot at the resonance frequency of 5.55 GHz with different phase 

angles such as 30˚, 60˚, 90˚, 120˚, and 150˚ can be seen in Fig. 16. Hence, the observed JXY reveals that the strong EM fields 

are presented across peripheries of the patch stub width W pointing toward patch center and are non-negligible. 

VSWR circle (2.0) is added to Smith plot and is shown in Fig. 17 with red color, which confines and shows all those 

frequencies which come under VSWR % 2. 
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Fig. 14 The phase variation of input impedance with frequency variation 

 

   

(a) The surface current distribution  

at 3.74 GHz 

(b) The surface current distribution  

at 4.17 GHz 

(c) The surface current distribution  

at 5.55 GHz  

Fig. 15 The surface current distribution at central resonance frequencies (at phase angle of 0˚) in tri-band 

 

  

(a) The surface current distribution  

at 5.55 GHz at 30˚ 

(b) The surface current distribution  

at 5.55 GHz at 60˚ 
 

   

(c) The surface current distribution  

at 5.55 GHz at 90˚ 
(d) The surface current distribution  

at 5.55 GHz at 120˚ 
(e) The surface current distribution  

at 5.55 GHz at 150˚ 

Fig. 16 The surface current distribution at 5.55 GHz at difference phase angle 

The VSWR value for a given circle may be determined directly from the chart coordinate system. It can be defined by 

reading the resistance value. Here the VSWR circle crosses the resistance axis to the right of prime center (where the circle 

crosses the resistance axis to the left of prime center indicates the inverse ratio) [33]. 
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Fig. 17 The Smith plot impedance with VSWR (2.0) circle at characteristics impedance Z0 of 50 ohm 

4. Results and Discussion 

The consequences of the optimized and designed antenna reveal that apart from the substrate (��) and its height, the 

feeding technique, impedance matching, stub width, stub length, and stub angle (in the case of angular patch) are strongly 

linked to the effect of optimization. The width W and length L of the patch stub are taken as control variables at the constant 

stub angle of 220˚. The proposed antenna begins its first frequency band from 3.65 GHz to 3.86 GHz with VSWR % 2, and is 

suitable to cover LTE-48 and LTE-49 bands. The achieved S11 and VSWR at central resonance frequency in this first window 

are -23.9 dB and 1.13 respectively. The second frequency band has a narrow BW of 80 MHz, and its central resonance 

frequency (4.17 GHz) shows higher value of S11 and VSWR in contrast to the first frequency band, that is -16.63 dB and 1.35 

respectively. The third frequency band has the range from 5.41 GHz to 5.67 GHz with BW of 260 MHz, and its VSWR value 

lies in between 1.04 to 2. The generated third band is suitable for 5.5 GHz WLAN applications. Rapid changes in the real and 

imaginary part of the input impedance Zi result in the narrow operating frequency band. The concentration of surface current 

distribution over the patch antenna is very stable at its operating band of frequency and does not change with the change of 

phase angle.  

5. Conclusions 

In this study, a single layer fan-stub shaped triband antenna is presented. The simulated result concludes that the stub 

length L and stub width W of the designed antenna is the chief performance controlling dimension. The fan-stub antenna with 

larger width W generates working feasibility at lower frequency band. This antenna also provides the extra BW support of 160 

MHz to the upper end of the existing LTE-48 band from 3650 MHz to 3860 MHz with S11 < -10 dB. The resultant primary band 

fully covers the LTE-43 band, and the additional BW of 10 MHz and 160 MHz are found at its lower and upper ends of 

spectrum. Consequently, the extended BW is perfectly matched and enough for the telecommunications services that support 

ultra-high resources, and it could be versatile to 4.9 G and 5G technology based network deployment. Furthermore, the 

enhanced BW may be utilized to restrict channel congestion in several applications, such as in wireless sensor networks, in 

remote control and sensing, in security remote controlled cameras, in industrial and agriculture equipment, etc. In future, this 

work may be expanded to cover the LTE-42 band, LTE-49 band, and WLAN 5.5 GHz band in the case of spectrum congestion. 

Spurious band-notched characteristics of the proposed antenna can be eliminated and filtered out by adjusting the length L, 

width W, orientation, and feeding point of the slotted patch. 
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