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Abstract 
This study presents a design of an adaptive neuro-fuzzy controller for tractors’ tillage operations. Since the 

classical controllers allows plowing depth errors due to the variations of lands structure, the use of the combined 

neural networks and fuzzy logic methods decreases these errors. The proposed controller is based on Adaptive 

Neuro-Fuzzy Inference System (ANFIS), which permits the generation of fuzzy rules to cancel the nonlinearity and 

disturbances on the implement. The design and simulations of the system, which consist of a hitch-implement 

mechanism, an electro-hydraulic actuator, and a neuro-fuzzy controller, are conducted in SolidWorks and MATLAB 

software. The performance of the proposed controller is analyzed and is contrasted with a Proportional Integral 

Derivative (PID) controller. The obtained results show that the neuro-fuzzy controller adapts perfectly to the 

dynamics of the system with rejection of disturbances.  
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1. Introduction 

On farmlands, a tractor’s electro-hydraulic hitch system lowers, holds, or lifts implements into the ground depending on 

the desired working depth [1]. To command the hydraulic hitch system, modern tractors are supplied with position control and 

draft force control system. However, variations in soil conditions (e.g., texture and organic matter) causes plowing depth errors. 

This situation directly decreases root penetration and plant growth.    

For a better approximation of land structures, it is recommended to mix the position and draft control [2-3]. In [2], a 

combined position-draft control was used to adjust the tillage depth of the implement. In their study, the participation ratio of 

the position target and the draft force target are mixed before being processed for regulation. Then, a fuzzy controller sends an 

appropriate signal to the electro-hydraulic system to cancel the plowing depth error. This strategy makes it possible to limit the 

changes in plowing depth due to the changes in soil resistance. Shafaei, Loghavi, and Kamgar [3] also prove the capacity of 

fuzzy controller to decrease plowing depth errors, driving wheel slip, and fuel consumption in tillage operations. Furthermore, 

the fuzzy logic controller is also used in [4] to compensate nonlinearities and reduce pressure fluctuation in tractor’s hydraulic hitch.  

If fuzzy logic is often used in the control of the electro-hydraulic system of the tractor to overcome nonlinearities, it 

nevertheless has limits, in particular on the accuracy of the information expressed in natural language after mixing position and 

draft. To overcome this drawback, the current trend is to use hybrid architectures to take advantage of fuzzy logic and neural 

networks. The use of Adaptive Neuro-Fuzzy Inference System (ANFIS) offers the possibility of modeling a priori knowledge 

and linguistic decision rules obtained by experts in the field [5-6]. 
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Indeed, much research has proven the usefulness of the ANFIS method, developed by Jang [7] for the control of systems. 

The neuro-fuzzy controller was used in [8] to ensure that one leg of a quadruped robot follows the desired trajectory. In [9], the 

neuro-fuzzy controller was used to stabilize the climatic variables inside greenhouse system at required levels for crops 

development. An adaptive neuro-fuzzy controller was designed in [10], for the speed control of permanent magnet 

synchronous motor. The proposed controllers were satisfactory in terms of easy settling time, zero peaks overflow, and high 

robustness. 

In this work, a controller combining two intelligent techniques (fuzzy logic and neural networks) is designed to decrease 

tractors’ plowing depth errors. This study comprises six sections. First, the hitch-implement model is presented in section 2. 

Then, section 3 describes the electro-hydraulic actuator and section 4 presents the proposed controller. To show the 

effectiveness of the enhanced neuro-fuzzy control strategy, the simulations examples are provided and commented in section 5. 

Finally, a concluding summary ends the study. 

2. Modelling of Hitch-Implement Mechanism 

A tractor’s three-point hitch mechanism is modeled in SolidWorks software. The kinematics of the up and down 

movement of the system is described in [11]. The common mechanism of the system is shown in Fig. 1. The tractor model is 

category 2, which has a maximum lifting capacity of 3546 Kg with a power of 90 hp [12].  

The dimensions of the model are listed in Table 1. For a more realistic simulation, the MATLAB/Simscape Multibody 

model of the tractor’s hitch system is imported from SolidWorks software with the physical properties to calculate the 

movement. The MATLAB model of the hitch-implement mechanism is given in Fig. 2. 

 
Fig. 1 Computer-Aided Design (CAD) model of the tractor’s three-point hitch mechanism 

 
Table 1�!Parameters of the three-point hitch linkages 

Part name Measure 
Lift arm length 295 mm 

Lower link length 946 mm 
Lift rod length 765 mm 

Vertical length from lift arm pivot point to upper link pivot point 130 mm 
Upper link length 650 mm 

Mast Height 610 mm 
Vertical length from upper link pivot point to lower link pivot point 460 mm 

External lift cylinder length 380-560 mm 
Stroke of the cylinder 180 mm 
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Fig. 2 Hitch-implement mechanism in MATLAB 

In this work, two implement have been used: chisel plow and moldboard plow. The parameters listed in Table 2 are 

provided from the data in [13]. The force applied to the implement on the ground is the disturbance of the system. It is 

expressed by [13]:  

2( )s e dF T A B V C V W H= ´ + ´ + ´ ´ ´  (1) 

where F is the implement draft (N); Ts characterizes a dimensionless soil texture adjustment parameter for a category of soil s; 

A, B, and C are machine specific parameters; V is the tractor field speed (km/h); We is the machine width (m) or number of rows; 

Hd is the tillage depth (cm).   

Table 2�!Parameters of implements and field operations 
Parameters Chisel plow Moldboard plow 

Plowing depth (cm) 30 10 
Weight (kg) 380 200 

A 107 116 
B 6.3 0 
C 0 2.3 

Soil type clay fine 
Working width (m) 2.1 1.04 

Tractor speed (km/h) 7 5 
Draft force (N) 8095 2429 
Draft range (%) 50 40 

3. Modelling of Hydraulic Actuator 

The actuator of the tractor is its electro-hydraulic system (Fig. 3), which allows the movement of hitch-implement 

mechanism. It consists of three main parts, namely the hydraulic pump, proportional valve, and the cylinder. The pump is 

operated by the tractor engine running at 1500 rpm. It provides a flow rate of 40 l/min. A pressure relief valve assembled on the 

main distribution block limits the pressure to 194 bars. The two-module servo valve, type BOSCH EHR5 [14], directs the flow 

of fluid from the pump to the cylinder. Ports B and F are the actuator outputs to the hitch-implement mechanism. 
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According to the manufacturer [14], the lifting valve control signal must be within an operating range of 1 to 3.35 A and 

the lowering valve control signal must be within an operating range of -1 to -3.35 A. To lift the implement, a positive signal is 

sent to the solenoid of the valve. Likewise, a negative signal is sent to the solenoid of the valve to lower the implement. The 

cylinder has a total stroke of 180 mm. Its base is fixed on the main frame of the tractor, and its rod is on the lift arm. The 

position of the lift arm measured by a sensor is an input to the controller. The overall diagram of the tractor’s tillage depth 

control system is shown in Fig. 4. 

 
Fig. 3 Electro-hydraulic actuator in MATLAB/Simscape Fluids 

 
Fig. 4 Block diagram of the tillage depth control system 

4. Design of Controller 

4.1.   Mixed position-draft control strategy 

The combination of the position control and draft control allows dual goals, including tillage depth and tillage resistance. 

The target of position control is the depth parameter. The depth deviation is written as: 

d me H H= -  (2) 

where e is the error in depth, Hd is the desired depth, and Hm is the measured depth. 

The draft control is used to modify tillage depth according to the soil resistance, using Eq. (1): 

2( )d
s e

F
H

T A B V C V W
=

´ + ´ + ´ ´
 (3) 
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The depth deviation can be expressed by using Eq. (2):  

2( )
d m

s e

F F
e

T A B V C V W

-
=

´ + ´ + ´ ´
 (4) 

where e is the error in depth, Fd is the desired draft force, and Fm is the measured draft force. 

Here, the participation ratio of the position target and the draft is adjusted according to the mix coefficient (M) proposed 

in [2]. The tillage depth deviation in the mixed control can be written as follows: 

( )
2

(1 )
(

[ ]
)

d m
d m

s e

F F
e M H H M

T A B V C V W

-
= + - -

´ + ´ + ´ ´
 (5) 

when M = 0, the control mode is position; when M = 1, the mode is draft control; when 0 < M <1, the control mode is mixed. 

The schematic diagram of the proposed controller is illustrated in Fig. 5. The user from the tractor panel enters the 

parameters of the desired depth Hd, coefficient M, tractor speed V, and type of implement. In the hitch-implement mechanism, 

the signals are measured by a force sensor and a position sensor. The data acquisition and calculation module collects the above 

signals and calculates the depth deviation e. Then, the neuro-fuzzy controller calculates the command value of the 

electro-hydraulic proportional valve which adjusts the plowing depth of the implement. 

 
Fig. 5 Schematic diagram of the neuro-fuzzy controller with mix draft-position strategy 

4.2.   The proposed adaptive neuro-fuzzy controller design 

In MATLAB software, the ANFIS editor graphical user interface is available in neuro-fuzzy designer app. Firstly, in 

Simulink environment, a Proportional Integral Derivative (PID) controller is designed and applied to the system in order to 

obtain the input and output data sets for training ANFIS. Oksanen, Eriksson, and Mikkola [15] proposed the practical method 

for tuning a PID hitch controller. Two modes of control are considered: upwards and downwards with different parameters. 

These parameters are summarized in Table 3.   

Table 3�!Parameters of the PID controller 

Parameter Upward Downward 
kp 1.22 0.612 
K i 0 0 
Kd 0 0.174 

 

The data set consists of the error in depth (e), the change in error (ce), and the controller output. Using the given 

input/output data set, the toolbox constructs a Fuzzy Inference System (FIS) whose membership function parameters are 

adjusted using a hybrid least-squares and back-propagation gradient descent algorithm method. This allows the fuzzy systems 
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to learn from the data they are modeling. After several training processes with 20 epochs, a suitable neuro-fuzzy controller is 

obtained for tillage operations. A computing flowchart of ANFIS is provided in Fig. 6. The data set is a three-dimensional 

vector. 70% of the data are used for training, 15% are used for testing, and 15% are used for verification. The controller has 

seven membership functions for the two inputs with 49 rules, and the Gaussian combination membership functions have been 

chosen for fuzzification. After training, the error tolerance is close to zero as shown in Fig. 7, and the membership functions 

using grid method are shown in Fig. 8. Note that the input data have been normalized in the range of -1 to 1. 

 
Fig. 6 Computing flowchart of the ANFIS model 

 
Fig. 7 Training error of the proposed ANFIS 

 

  
(a) Error (e) (b) Change in error (ce) 

Fig. 8 Membership functions after training  

5. Results and Discussion 

The graphs in Figs. 9-11 show the positions of the chisel plow under PID and neuro-fuzzy control, for different value of 

mix coefficient (M = 0, M = 0.25, and M = 0.5). At the instants t = 0s and t = 55s, the implement starts from the upper position. 

The mechanism takes some time to attend the desired upper position (20 cm) because lifting speed of the hitch mechanism is 

limited by the hydraulic power system. Then, a lowering signal is applied at t = 5s, and the implement penetrates progressively 
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under the soil until the desired depth (30 cm). The more the value of the coefficient M increases, the implement becomes more 

sensitive to soil resistance. This is beneficial for preventing tractor slippage and reducing fuel consumption. However, for large 

values of the mixing coefficient (M > 0.5), the implement moves away from the desired depth. 

  
(a) PID (b) Neuro-fuzzy 

Fig. 9 Position of the chisel plow for M = 0 
 

  
(a) PID (b) Neuro-fuzzy 

Fig. 10 Position of the chisel plow for M = 0.25 
 

  
(a) PID (b) Neuro-fuzzy 

Fig. 11 Position of the chisel plow for M = 0.5 

The graphs in Fig. 12 show the positions of the moldboard under PID and neuro-fuzzy control, for different values of the 

mix coefficient (M = 0, M = 0.25, and M = 0.5). Between t = 10s and t = 60s, the implement follows the desired depth (10 cm). 

Note that for a small plowing depth, increasing the M coefficient does not have a significant effect on the desired depth. This is 

due to the fact that, at shallow plowing depths, soil resistances are reduced. 

  
(a) PID (b) Neuro-fuzzy 

Fig. 12 Position of the moldboard plow 
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In this work, the well-known Integral Time Absolute Error (ITAE) objective function is used to evaluate the proposed 

controller. The ITAE criterion is defined by: 

( )
0

ITAE t e t dt
¥

= �  (6) 

Table 4 Performance of the different controllers 
Implement Controller M value Depth mean Min Max Standard deviation ITAE 

Chisel plow 

Neuro-fuzzy 
M = 0 29.88 29.07 30.85 0.25 0.32 

M = 0.25 28.68 27.01 30.23 0.54 2.02 
M = 0.5 28.29 26.43 30.28 0.64 2.45 

PID 
M = 0 29.47 28.92 31.61 0.45 0.76 

M = 0.25 27.96 26.9 30.70 0.77 2.27 
M = 0.5 27.67 26.22 30.96 0.78 2.71 

Moldboard plow 

Neuro-fuzzy 
M = 0 9.94 9.66 10.18 0.09 0.11 

M = 0.25 9.84 9.51 10.23 0.11 0.41 
M = 0.5 9.69 9.23 10.08 0.17 0.65 

PID 
M = 0 9.93 9.28 10.52 0.20 0.23 

M = 0.25 9.83 9.15 10.52 0.21 0.63 
M = 0.5 9.68 8.95 10.34 0.25 0.86 

 

Table 4 shows the comparative analysis between the proposed neuro-fuzzy controller and the PID controller. From Table 

4, the following remarks and interpretations are deduced. For different values of M, in the case of neuro-fuzzy controller, the 

depth mean value is near to the desired depth compared to the PID controller. For the chisel plow, the value of ITAE is 0.32, for 

M = 0, in the case of the neuro-fuzzy controller; which is almost half of the PID controller. In addition, the standard deviations 

on the desired depth for different M values are shown in Table 4. It appears that, the standard deviation values for the proposed 

controller are lower than those obtained by the PID controller. These parameters shows that the system offers a great 

robustness toward the load perturbations and a better stability using the neuro-fuzzy controller rather than the PID controller. 

6. Conclusions 

This research presented an adaptive neuro-fuzzy controller for tractor’s tillage operations. The design of this controller 

was carried out under MATLAB / neuro-fuzzy, after several attempts to arrive at an optimal architecture. Firstly, a CAD model 

of the three-point hitch system was designed under SolidWorks software. After that, the designed model was exported under 

MATLAB/Simscape Multibody. Then, an electro-hydraulic valve was simulated under MATLAB /Simscape Fluids to actuate 

the hitch-implement mechanism. Finally, the proposed controller was used in the system for the control of two implements 

hitched to the tractor. The performance index on ITAE indicates good responses in the case of neuro-fuzzy tillage depth 

controller which can replace other controllers. In the future, the proposed controller can be implemented in an agricultural tractor. 
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