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Abstract 

This study presents an application that employs a machine-learning algorithm to identify fish species found in 

Leyte Gulf. It aims to help students and marine scientists with their identification and data collection. The application 

supports 467 fish species in which 6,918 fish images are used for training, validating, and testing the generated 

model. The model is trained for a total of 4,000 epochs. Using convolutional neural network (CNN) algorithm, the 

best model during training is observed at epoch 3,661 with an accuracy rate of 96.49% and a loss value of 0.1359. It 

obtains 82.81% with a loss value of 1.868 during validation and 80.58% precision during testing. The result shows 

that the model performs well in predicting Malatindok and Sapsap species, after obtaining the highest precision of 

100%. However, Hangit is sometimes misclassified by the model after attaining 55% accuracy rate from the testing 

results because of its feature similarity to other species. 
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1. Introduction 

The Leyte Gulf is among the major fishing grounds in the Philippines with a shelf area of about 2,724 square kilometers, 

covering the islands of Samar and Leyte. It is home to more than 467 different fish species [1]. Fishes are cold-blooded animals, 

typically with backbone, gills, fins, and lungs. They range from about 15,000 to 17,000 species [2]. Fishes have many kinds 

and have varied colors, shapes, and sizes [3]. Fish species recognition is a multi-class classification problem and is a 

compelling field of study that employs machine learning and computer vision [4]. Some researchers noticed that detection is a 

crucial part of a fish classification and counting system [5]. Moreover, manual species identification is not only 

time-consuming but also prone to misclassification especially in the Leyte Gulf, in which over 467 fish species exist [6].  

There is relatively poor documentation for most groups of fishes, and the information on the inventory of species present 

within the gulf is especially scarce. Thus, employing computer vision and machine learning in fish species identification with 

developed technologies would transform marine science [7]. Various promising techniques for the identification of fishes 

emerged particularly in genetics, interactive computer software, image recognition, hydro-acoustics, and morphometry [8]. 

Recently, there is a paradigm shift of set-based classification for object recognition [9]. The convolutional operation is 

frequently used in computer vision, especially for noise reduction and edge detection [10]. 

An automated system for the identification and classification of fish species was created using a reduced version of 

AlexNet based on deep convolutional neural networks (CNNs). The results show that the modified AlexNet model has 

achieved the testing accuracy of 90.48% while the original AlexNet model achieved 86.65% over the untrained dataset [11]. In 

addition, a CNN system for aquarium family fish species identification achieved 85.59% testing accuracy [12]. 
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Optical fish detection network was applied to a system that is capable of parameterizing fish schools in underwater images. 

This was based on deep learning object detection architectures, and carried out the task of fish detection, localization, and 

species classification using visual data obtained by underwater cameras. Based on the experiments, it successfully detects 

66.7% of the fish included, and further classifies 89.7% correctly [13]. Rekha et al. [14] used CNN with different 

architectures to extract and analyze the features in the detection and classification of various fish species to help and protect 

endangered species. The system exhibits an accuracy of 90% and 92% on the detection and classification respectively.  

On the other hand, Fabic et al. [15] used blob counting and shape analysis for fish detection, counting, and species 

classification from underwater video sequences to identify the two most common fish species found in the Tubbathaha reef in 

the Sulu Sea, Philippines. Moreover, a two-step deep learning approach was used for the detection and classification of 

temperate fishes without pre-filtering. It employed the You Only Look Once (YOLO) object detection technique. In the second 

step, it adopted CNN with squeeze-and-excitation (SE) architecture for classifying each fish in the image without pre-filtering. 

The system achieved an accuracy of 99.27% using the pre-training model. Using the post-training model, it obtained 83.68% 

and 87.74% with and without image augmentation [16]. 

Given the above challenges in fisheries, the agreed unifying strategic objective for the classification and identification of 

fish is to develop information and communications technology (ICT) software or systems such as mobile applications, which 

have quickly become useful tools and are widely used today for their diversity and portability [17]. 

Thus, this study intends to develop a handy mobile application to identify fish species present in Leyte Gulf. The mobile 

users can capture an unknown fish image to the developed mobile application, in which the proposed model embedded in the 

application will then attempt to recognize the fish species. The application displays the recognition results on the application’s 

graphical user interface. Aside from helping the non-professional fish enthusiasts, the produced information is essential in the 

decision-making processes of fisheries, marine conservation managers, and scientists, as well as in the documentation of 

species present within the gulf. 

2. Materials and Methods 

2.1.   Data preparation  

The available dataset is collected from the Bureau of Fisheries and Aquatic Resources (BFAR) Regional Office No. VIII. 

The dataset includes the list of species in Leyte Gulf and their local names. The corresponding images of the various species come 

from the BFAR publications and Fishbase [18]. There are 6,918 images used covering 467 fish species present in the areas along 

the Leyte Gulf as shown in Fig. 1. These images are clustered into 35 classes according to their local names. A ratio of 80-10-10 of 

the images is allocated, i.e., 5, 548 images for training, 685 images for validation and testing respectively as presented in Table 1. 

 
Fig. 1 Map of Leyte Gulf 
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Table 1 Image allocation per class 

Class 
Number of images 

Total 
Training Validation Testing 

Abo 109 13 13 135 

Alho 163 20 20 203 

Alibangbang 100 12 12 124 

Baga-baga 122 15 15 152 

Bisugo 87 11 11 109 

Bon-ak 184 24 24 232 

Danggit 316 40 40 396 

Dumpilas 199 8 8 215 

Gangis 102 13 13 128 

Ganting 120 15 15 150 

Hamorok 104 13 13 130 

Hangit 120 15 15 150 

Katambak 121 15 15 151 

Kirawan 140 17 17 174 

Labungan 179 23 23 225 

Lapu-lapu 320 40 40 400 

Lubayan 122 16 16 154 

Malatindok 102 13 13 128 

Mamsa 115 15 15 145 

Mangagat 119 15 15 149 

Mol-mol 305 38 38 381 

Pakol 162 21 21 204 

Palad 181 23 23 227 

Panit 100 13 13 126 

Pating 187 24 24 235 

Sagisi-on 88 11 11 110 

Sapsap 122 16 16 154 

Siri 182 23 23 228 

Sulid 118 15 15 148 

Surahan 239 30 30 299 

Talakitok 102 13 13 128 

Tamban 189 24 24 237 

Tarukitok 123 16 16 155 

Ti-aw 184 24 24 232 

Tingag 322 41 41 404 

Grand total 5,548 685 685 6,918 

2.2.   Conceptual framework   

The application starts with the user capturing an image of fish using a mobile camera. The captured image will then be 

processed by the generated fish classification model. Finally, the application displays its prediction result with the details of the 

identified fish species as shown in Fig. 2.  

 

 
 
 
 
 
 
 

 

 
 
 
 

Fig. 2 Conceptual framework of the study 
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2.3.   Building the CNN model  

The proposed model is built by using Python 3.6. The architecture of the deep network for the fish species identification is 

introduced in details in Fig. 3. It depicts the architecture for this study, which takes a fish image, processes the image, and then 

classifies the image under a certain type of fish species. The input image sequentially goes through a series of 

convolution-pooling layers for extracting low-level to high-level features and fully connected layers for mapping the extracted 

features into the final output. 

 

Fig. 3 CNN architecture  

The convolutional layer contains learnable filters or kernels which are applied across the width and height of the input 

tensor. It then performs element-wise products between the entries of the filters and the input at any image positions and 

summed to obtain the feature maps. The output feature maps of convolution are passed through a rectified linear activation 

function, which returns the input directly if it is positive or zero as it receives any negative input. This function allows the 

model to learn faster and to perform better.  

The pooling layer will then perform a downsampling operation, which progressively reduces the spatial size of the 

representation to decrease the number of subsequent learnable parameters as well as the computation in the network. In this 

study, max pooling with a filter of 2 × 2 and with a stride of 2 is applied, which outputs the maximum value in each patch 

extracted from the input feature maps.  

The operations will be repeated until all the convolution-pooling layers have been finished, in which the final feature 

maps will be transformed to a one-dimensional array of numbers and connected to the fully connected or dense layers. The 

flattened output is being fed to a feed-forward neural network and applied backpropagation to every iteration of training. Over 

an iterated epoch, the model can distinguish between domination and certain low-level features in the images and classify them 

through the softmax activation function, wherein each value ranges between 0 and 1, and all values sum up to 1. 

2.4.   Model performance evaluation   

The next phase is to determine how effective the model is, based on some basic performance metrics using the test dataset. 

The metrics include accuracy (Eq. (1)), precision (Eq. (2)), recall (Eq. (3)), and specificity (Eq. (4)). 
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where tp represents that when the actual class is true and the predicted is also true; tn represents that when the actual class is 

false and the predicted is also false; fp represents that when the actual class is false and the predicted is true; fn represents that 

when the actual class is true and the predicted is false.   

3. Results and Discussion 

3.1.   CNN model for fish recognizer   

Fig. 4 illustrates that the 64 × 64 input image becomes 62 × 62 after the 3 × 3 filter in the first convolutional layer. It gets 

reduced in half after each pooling layer, from 31 × 31 on the first, then to 14 × 14 on the second, and 6 × 6 on the last pooling 

layer. This will then be flattened, resulting in 4,608 (6 × 6 × 128), the shape of the data once it comes out of the convolutions. 

The first dense layer with 256 neurons has a total of 1,179,904 (256 × (4,608 + 1)) parameters, while the second dense layer 

with 35 neurons as well has 8,995 parameters (35 × (256 + 1)). 

 

Fig. 4 Summary of model layers 

A sequential neural network with input shape (64, 64, and 3) is configured wherein 64 × 64 represents the image dimension, 

while 3 indicates that the input image is colored (RGB). The network is composed of a linear stack of 3 sets of convolutional 

(Conv2D) - pooling (MaxPooling2D) layers before the dense or fully connected layers at the bottom. The Conv2D layers have 32, 

64, and 128 output channels respectively and a kernel size of 3 × 3. The activation function for each Conv2D layer is the Rectified 

Linear Unit (ReLU), followed by a MaxPooling2D layer, which reduces the number of parameters in the model by sliding a 2 × 2 

pooling filter across the previous layer and taking the max values in the filter. Between the convolutional layers and the dense 

layers, there is a flatten layer that connects them. The first two dense layers both have 256 nodes, each activated by a ReLU 

function. The last dense layer has 35 nodes activated by the softmax activation function, which allows the output to be interpreted 

as probabilities. Thus, the model will take the class option, which obtains the highest probability. 

Figs. 5-7 demonstrate the visualization of every channel for each intermediate activation phase. It shows how CNN finds the 

patterns in the images and how it carries the information from one layer to another layer. It can be noticed that the activations in 

the above layers retain almost all of the information present in the initial image. However, when the layers get more in-depth, the 
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activations become increasingly abstract and less visually interpretable. The network begins to encode higher-level presentations 

which carry gradually less information about the visual contents of the image and more information related to the class of the 

image. There are instances that the filters are left blank, which indicates that they are not activated at all. 

 
(a) Feature map from the first set of Conv2D layer 

 
(b) Feature map from the first set of ReLU 

 
(c) Feature map from the first set of MaxPooling2D layer 

Fig. 5 Visualization of feature maps from the first set of Conv + ReLU + Pool  

 

 
(a) Feature map from the second set of Conv2D layer 

 
(b) Feature map from the second set of ReLU 

 
(c) Feature map from the second set of MaxPooling2D layer 

Fig. 6 Visualization of feature maps from the second set of Conv + ReLU + Pool  
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(a) Feature map from the third set of Conv2D layer 

 
(b) Feature map from the third set of ReLU 

 
(c) Feature map from the third set of MaxPooling2D layer 

Fig. 7 Visualization of feature maps from the third set of Conv + ReLU + Pool  

 Fig. 8 shows the training and validation accuracy as a function of the epoch. The accuracy metric is calculated to measure 

the algorithm’s performance in an interpretable way. It is the measure of how accurate the model’s prediction is compared to 

the actual data. 
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Fig. 8 Training accuracy plot of the CNN model  
 

The loss is also calculated to serve as a reference in determining how well the model is during the training and validation 

phase. Unlike accuracy, a loss is not a percentage. It is the sum of errors made for each sample in training or validation sets, and 

implies how poorly or well a model behaves after each iteration of optimization. The loss function of the model is illustrated in 

Fig. 9, which shows that the loss for the training phase is nearly zero indicating that the model’s prediction on the trained 

datasets is almost perfect. On the other hand, as to the validation phase, there is an occurrence of overfitting showing that the 

model does not affirmatively well in predicting new datasets. 

 

 

The model is trained for a total of 4,000 epochs. The best model during training is observed at epoch 3,661 obtaining an 

accuracy rate of 96.49% with a loss value of 0.1359. However, the performance of the model for the validation set is only 

82.81% with a loss value of 1.868. The result implies that the model performs less well on the unseen dataset. 

3.2.   Model performance   

The confusion matrix shown in Table 2 describes the performance of the model on the testing dataset. It displays the 

number of correct predictions (diagonal) made by the model, as well as the number of incorrect predictions (off-diagonal). 

Based on the generated confusion matrix, the model garners an accuracy of 80.58% during testing. As observed also, 

Malatindok and Sapsap are the best species predicted by the model since they obtain 100% accuracy. It is because of their 

distinct morphological features susch as shape and color. On the other hand, Hangit gains the least accuracy after it results in 

a 55% precision rate. It means that Hangit is the most misclassified species by the model because of its feature similarity to 

other species. 
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Fig. 9 Training loss plot of the CNN model 
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Table 2 Confusion matrix 
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Fig. 10 Precision versus recall 

Table 3 presents the results of calculating some of the performance measures that can be derived from the confusion 

matrix. Palad, as observed also in Fig. 10, earns the highest recall of 95.65%, and Hangit suffers from low precision of 55%, 

which denotes that Hangit positive values are unpredictable. However, only a few of these positive predictions are correct. On 
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the other hand, Malatindok and Sapsap have the highest precision of 100% while Kirawan garnered the lowest recall of 64.71%. 

This is a manifestation that the model is returning very few results, yet most of its predicted labels are correct when compared 

to the training labels. Moreover, Malatindok and Sapsap classes obtain the highest specificity percentage which signifies that 

the model is 100% accurate in recognizing the fish images. 

Table 3 Performance evaluation result 

Class Precision Recall Specificity 

Abo 85.71% 92.31% 99.70% 

Alho 88.89% 80.00% 99.70% 

Alibangbang 90.91% 83.33% 99.85% 

Baga-baga 76.47% 86.67% 99.40% 

Bisugo 88.89% 72.73% 99.85% 

Bon-ak 90.91% 83.33% 99.70% 

Danggit 69.23% 90.00% 97.52% 

Dumpilas 60.00% 75.00% 99.41% 

Gangis 84.62% 84.62% 99.70% 

Ganting 90.91% 66.67% 99.85% 

Hamorok 58.82% 76.92% 98.96% 

Hangit 55.00% 73.33% 98.66% 

Katambak 85.71% 80.00% 99.70% 

Kirawan 84.62% 64.71% 99.70% 

Labungan 81.82% 78.26% 99.40% 

Lapu-lapu 70.45% 77.50% 97.98% 

Lubayan 92.31% 75.00% 99.85% 

Malatindok 100.00% 69.23% 100.00% 

Mamsa 83.33% 66.67% 99.70% 

Mangagat 75.00% 80.00% 99.40% 

Mol-mol 93.94% 81.58% 99.69% 

Pakol 75.00% 85.71% 99.09% 

Palad 95.65% 95.65% 99.85% 

Panit 91.67% 84.62% 99.85% 

Pating 95.45% 87.50% 99.85% 

Sagisi-on 80.00% 72.73% 99.70% 

Sapsap 100.00% 81.25% 100.00% 

Siri 68.00% 73.91% 98.79% 

Sulid 92.31% 80.00% 99.85% 

Surahan 79.31% 76.67% 99.08% 

Talakitok 84.62% 84.62% 99.70% 

Tamban 87.50% 87.50% 99.55% 

Tarukitok 71.43% 93.75% 99.10% 

Ti-aw 79.17% 79.17% 99.24% 

Tingag 76.19% 78.05% 98.45% 
 

3.3.   Graphical user interface   

The graphical user interface for the mobile-based application is created using Android Studio 4.1 in which the model is 

embedded in the application. The generated model, which is a Keras file (.h5), is converted into a Tensorflow file (.tflite) 

using TensorFlow Lite which is a set of tools to help developers run TensorFlow models on mobile. This file is then 

deployed into the mobile-based application. The graphical user interface of the application is shown in Figs. 11 (a) and (b) 

which display the final prediction of the classification model on the uploaded or selected image as well as the necessary 

information of the predicted fish.  
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(a) Main interface of the application (b) Recognition result interface 

Fig. 11 Graphical user interface of the application 

4. Conclusions and Recommendations 

This study was able to come up with a fish species recognizer model which was successfully embedded in a mobile-based 

application. By using CNN, the generated model obtained a training accuracy rate of 96.49% somehow higher than the study of 

Pudaruth et al. [19], which only gained 96% using k-nearest neighbors (kNN) classifier. During the validation process, the 

model achieved 82.81% accuracy with a loss value of 1.868, which indicates that the model has good reliability when it comes 

to predicting the fish images. Moreover, during the testing process, the model gained an accuracy rate of 80.58%. The result 

revealed that the model performs well in predicting Malatindok and Sapsap species, which gained the highest precision of 

100%. It is because of their distinct morphological features such as shape and color. On the other hand, Hangit was sometimes 

misclassified by the model after obtaining a 55% accuracy rate from the testing results because of insufficient dataset for this 

specific species as well as of its feature similarity to other species. In the future, there is a need to further improve the 

performance of the model by using more datasets of fish images to have a better prediction result. 
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