
Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54

English language proofreader: Chih-Wen Teng

A Codebook Compression Method for Vector Quantization Algorithm

Abul Hasnat1,*, Dibyendu Barman1, Md Azizul Hoque2, Santanu Halder3, Debotosh Bhattacharjee4

1Government College of Engineering and Textile Technology, Berhampore, West Bengal, India

2Sreegopal Banerjee College, Magra, Hooghly, West Bengal, India

3Government College of Engineering and Leather Technology, Kolkata, West Bengal, India

4Jadavpur University, Kolkata, West Bengal, India

Received 08 January 2024; received in revised form 21 February 2024; accepted 22 February 2024

DOI: https://doi.org/10.46604/peti.2024.13268

Abstract

This study introduces a novel approach to enhance the compression ratio of the vector quantization (VQ)

algorithm by specifically targeting the compression of its codebook. The VQ algorithm typically generates an index

matrix and a codebook to represent compressed images. The proposed method focuses on reducing the size of the

codebook, which comprises N codewords, each with elements quantized into four levels. Each 8-bit element in a

codeword is compressed to 2-bits, and the encoded codeword is accompanied by the minimum value and a threshold

value in the codebook. Experimental results on benchmark color images, such as baboon, airplane, Lena, and others,

demonstrate a significant reduction of 62.50% in the size of the VQ codebook.

Keywords: codebook, peak signal-to-noise ratio, structural similarity index, quantization, VQ

1. Introduction

The vector quantization (VQ) algorithm [1-5] is a lossy image compression technique. It divides an image into image

blocks and each such image block forms a training vector. All such training vectors are combined to build the training dataset

for the image. Linde-Buzo-Gary (LBG) algorithm is applied to this training dataset to compress the image and as a result, LBG

produces one index matrix and one codebook as the compressed form of the original image.

The codebook contains N codewords/ code vectors. The number of code vectors or codewords is 128 or 256 generally.

Each training vector is associated with one of the code vectors. The association between the training vectors and codewords is

specified by an index matrix indicating which training vector maps to which code vector. The visual quality of the compressed

image using the VQ depends on the selection of the right set of codewords (designing the optimal codebook).

The size of the compressed image using VQ is the total size [1-2] of the codebook and the size of the index matrix. The

compression ratio of the algorithm is in the approximate range of 88% to 95% [1] for a standard color image (three-channel) of

size 256 × 256 to 512 × 512 with a codebook size of 256 × 16. The compression ratio of the VQ (for a predefined size of the

codebook) is not scalable [1] for an image.

This paper is divided into five sections. Section 2 gives a brief discussion of the literature survey. Section 3 discusses the

codebook compression method. Section 4 presents the experimental findings and a discussion of them. The paper is concluded

in Section 5.

* Corresponding author. E-mail address: email.abulhasnat@gmail.com

 Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 46

2. Literature Review

In the literature, a few studies are reported on the modification of the codebook of VQ. These methods are covered briefly

below. Some studies focused on the learning of the codebook of VQ using machine learning [4] and convolutional neural

networks (CNN) [5]. Another approach reported the usage of evolutionary algorithms (EA) [6-8] for better codebook design.

As input, they have taken the LBG-generated codebooks (of multiple runs) as initial search points and then applied genetic

algorithm (GA), particle swarm optimization (PSO), whale optimization, etc., algorithms to optimize the codebook further.

In 2016, Shah et al. [9] reported a hybrid technique for codebook and index matrix compression of the VQ algorithm.

They dropped elements of odd positions of a code vector (of size 16) to get a new code vector of size 8 for codebook

compression. Also, they used the search order coding (SOC) concept, for index matrix compression. They further reduced the

size of the VQ compressed image. However, the visual quality of the decompressed image is degraded significantly.

Rahebi [10] 2022 reported an efficient codebook generation using EA for image compression. The codebook is optimized

using the whale optimization algorithm. The method focused on producing high-quality reconstructed images using the

optimized codebook. The method [10] reported more efficient compression in terms of image quality than the evolutionary

algorithms such as particle swarm optimization, bat, and firefly algorithms. The study is not about improving the compression

ratio of the VQ.

In 2022, Barman et al. [11] reported a codebook updating procedure to enhance the VQ method’s performance. This

method reduces the size of the codebook by 37.50% and improves the compression ratio of the algorithm by representing each

element in the codebook with 5-bits rather than 8-bits. But using this method, the size of the codebook is reduced by 37.50%

only.

Again, in 2022, Barman et al. [12] developed another codebook update method that focused on the improvement of the

visual quality of the decompressed image. It is applied to multiple images together. During the compression phase, the method

is applied to multiple codebooks of more than one image at the same time. It divides the codebook into two parts. The first part

of the codebook contains the code vectors with high frequencies and it is kept unchanged. But the second part of the codebook

containing code vectors with low frequencies is further compressed. Here code vectors are converted into code vectors of four

levels using quantization for better compression ratio. Also in a few cases, the visual quality of the reconstructed image is

affected to some extent.

In 2023, Chavan et al. [13] reported an analysis of codebook optimization for image compression using EA. This study

examines the codebook optimization of VQ using the modified GA, and PSO. They concluded that the PSO performs better in

optimizing the codewords for the training samples for image compression. However, the initial selection approach is important

in the PSO algorithm.

Most of the studies focused on better codebook design. Shah et al. [9] compressed the VQ-generated codebook and index

matrix further but the visual quality of the compressed image is affected reasonably. Also, Barman et al. [12] reported the

method where they developed a common codebook for multiple images. They further compressed the second part of the

codebook containing the codewords with low frequencies.

The objective of this study is to improve the compression ratio of the VQ algorithm. VQ produces an index matrix and a

codebook as the compressed form of an image. The size of the compressed image using VQ is the sum of the size of the index

matrix and the size of the codebook. The contribution of this study is that the VQ-generated codebook is compressed further.

As a result, the size of the codebook is reduced by 62.50%. Overall compression performance of the VQ method is further

improved. At the same time, the visual quality of the reconstructed image using this codebook compression method is almost

similar to the visual quality of the reconstructed image using the VQ. The method is tested extensively on benchmark color

images and color images of UCID.v2 database [14].

Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 47

3. Method

Image compression using VQ takes an image as input, forms the training vector, and then applies the LBG algorithm to

the training dataset. The steps of the VQ [8] algorithm are explained below.

Step 1: VQ divides an image into � � � blocks (sub-images). Each block forms one training vector of size k where � �

� � � . All these training vectors of the entire image form the training vector set. A training vector, � �

���, �
, ��, ⋯ , �� is a k-dimensional array. Let there be an M number of such training vectors in the training dataset.

Step 2: Generate a codebook containing N (� �) number of code words. Each code word/vector is of length k. Generally, the

codebook is generated using the LBG algorithm. Let the codebook be a set of N vectors, �� � ���, �
, ��, ⋯ , ���.

Where �� contains k number of elements. The codebook contains the representatives of all the training vectors. Every

training vector must be mapped into one of the code vectors. This association is decided based on the minimum

distance between the code vector and the training vector. Thus, there is an index matrix for indicating specific training

vector mapping to a specific code vector. It contains one index value for each � � � sub-image/block. The objective

of the LBG algorithm is to find the codebook for which the total distortion during the quantization of training vectors

is minimized.

The LBG algorithm produces one codebook and one index matrix. The generated codebook along with the index matrix is

stored as a compressed form of the original image. Application of a lossy compression on the index matrix is not desirable

because if the index value is altered, then it may point to a wrong code vector resulting distorted reconstructed image. So, the

study aims to compress the codebook for better a compression ratio. The goal of the study is to compress the VQ-generated

codebook further. Let the size of the VQ-generated a codebook � � 16. The codebook consists of � number of codewords and

each codeword consists of sixteen elements. Fig. 1 shows one sample codework containing sixteen elements. Each element has

a depth of 8-bits. Generally, N is taken as 256.

Fig. 1 A sample codeword of size 16

This section explains the method to compress the codebook further for a better compression ratio. Thus, if the method is

integrated along with VQ, then the VQ becomes a two-step compression method- (1) VQ compression and (2) codebook

compression. Here, the second step is explained. It is codebook compression and codebook decompression methods. The steps

of the encoding and decoding process are explained below.

3.1. Encoding process

The steps of encoding the VQ-generated codebook are given in Algorithm 1.

Algorithm 1: Codebook compression

Input: VQ-generated codebook, Output: Compressed codebook

Step 1: Let the ith codeword is ��� . Here minimum and maximum values of ��� codeword, ��� are ���� � ��������

and � �� � � ������. The threshold value, !� for ��� codeword is also calculated using:

3

−
=

i i
i

MAX MIN
T (1)

For the codeword shown in Fig.1, the minimum value, ���� � 16, maximum value, � �� � 66, and threshold value, !� �

""#�"

�
� �66 $ 16� 3⁄ � 17. Fig. 2 shows the ���� and !� values of the codeword shown in Fig. 1. For each codeword, the

minimum ���� and threshold !� values are stored along with the encoded codeword.

 Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 48

Fig. 2 The minimum and threshold values

of the codeword shown in Fig. 1

Step 2: The range, � �� $���� is quantized into four levels as follows. There is a tradeoff between the number of

levels considered and the information loss. Increasing the number of levels reduces information loss but demands more storage

space for each element. Conversely, decreasing the number of levels reduces storage space but may result in higher

information loss. The goal is to identify the optimized number of levels for a code vector, balancing minimal information loss

with high compression efficiency. Selecting two levels (bit depth 1) incurs significant information loss while opting for eight

levels (bit depth 3) increases storage requirements. So, four levels (bit depth 2) are considered in this study for optimized

results.

0
= iL MIN (2)

1
= +i iL MIN T (3)

2
2= + ×i iL MIN T (4)

3
3= + ×i iL MIN T (5)

So, for the codeword shown in Fig. 1, the quantized four levels are () � 16, (� � 33, (
 � 50, and (� � 67.

Step 3: For each element in the codeword, the Euclidean distance between the element and all four levels (), (�, (
, and

(� are calculated. Each element is replaced with that level index which has the minimum distance.

Fig. 3 The quantized levels of the codewords (shown in Fig. 1)

Step 4: Every value of the newly created codeword is converted into a 2-bit binary value. Each element shown in Fig. 3 is

converted into a 2-bit binary pattern and it is shown in Fig. 4.

Fig. 4 The generated codeword once each value is converted to a 2-bit binary value

Step 5: Four consecutive binary values (as shown in Fig. 4) are concatenated together. Fig. 5 shows the concatenated

binary string of 8-bits for the four consecutive 2-bit binary strings shown in Fig. 4.

Fig. 5 Merged binary codeword after taking each set of four consecutive

values together (from Fig. 4)

Step 6: Convert each eight consecutive binary bits into decimal. Fig. 6 shows the converted decimal values of the binary

strings in Fig. 5.

Fig. 6 Decimal codeword

This process is repeated for every code vector of the VQ-generated codebook to get the compressed codebook. A portion

of the codebook generated by the VQ algorithm for the R channel of the Pepper image is shown in Table 1. Table 2 shows the

encoded codebook of the VQ-generated codebook shown in Table 1. The second last column and the last column of Table 2

show the minimum and threshold values (of the respective codebook in Table 1) respectively. This modified codebook as

shown in Table 2 is stored as the compressed form of the VQ-generated codebook. The size of the compressed version of the

codebook is � � �4 - 2� � � � 6 instead of the original size � � 16, where each element is of depth 8-bits.

Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 49

Table 1 A portion of the codebook generated by the VQ algorithm of the R channel of the pepper image

24 22 22 23 21 20 21 24 20 20 19 21 23 21 20 21

85 72 63 61 83 75 73 66 131 128 80 71 133 83 75 73

67 55 62 61 58 54 54 62 55 52 59 71 68 58 54 54

119 119 130 139 117 122 126 138 118 120 129 139 114 117 122 126

60 57 60 82 53 54 54 63 64 53 52 60 72 53 54 54

111 106 121 121 93 95 119 124 88 87 115 132 82 93 95 119

Table 2 Compressed codewords and their respective minimum

and threshold values of the codebook in Table 1.

Compressed codewords Minimum Threshold

224 87 81 149 19 2

64 84 244 213 61 24

218 66 71 112 52 6

91 27 27 6 114 8

87 2 7 192 52 7

175 95 11 23 87 12

3.2. Decoding of the encoded codebook:

It is the reverse process of the encoding steps. The steps of decoding the encoded codebook are discussed in Algorithm 2.

Algorithm 2: Decoding the encoded codebook

Input: Compressed codebook, Output: Decompressed codebook

Step 1: Convert each decimal value of the codeword into an 8-bit binary value. Split the 8-bit binary string into four by

taking two consecutive binary bits together. Fig. 7 shows the 8-bit and 2-bit binary strings of the elements shown in Fig. 6.

Fig. 7 Codeword after conversion of each decimal value of Fig. 6 into 8-bit binary value then

taking 2-bits together

Step 2: Take each 2-bit binary value and convert it into a decimal value. These are the index values of the quantized

levels.

Fig. 8 Codeword after translating each 2-bit binary value of the codeword shown in Fig. 7 to decimal

Step 3: Let the value of a cell be x in Fig. 8. Then the corresponding element or quantized level is calculated as

′ = + ×L MIN T x (6)

where ��� is the minimum value of the codeword and ! is the threshold value.��� and ! are stored along with the

compressed codeword. Replace elements with the computed level value. Thus, all elements of the codeword are retrieved. The

computed elements are shown in Fig. 9 for each element of the Fig. 8.

Fig. 9 Retrieved codewords after substituting the corresponding level value for each element in Fig. 8

The codeword shown in Fig. 9 is the decoded codeword. To decompress the codebook completely, repeat the decoding process

for all � number of codewords.

 Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 50

4. Experimental Result

The codebook compression method is tested on benchmark color images i.e.- Lena, baboon, house, etc., and images from

the UCID.v2 database. It is implemented using the MATLAB2018. The performance is evaluated using three performance

metrics [15-16]- (a) compression ratio, (b) peak signal-to-noise ratio, and (c) structural similarity index

Fig. 10 shows the original pepper image, and the decompressed images, using the conventional VQ, codebook

modification method (CBM), and the VQ with codebook compression method respectively. It shows that the visual quality of

decompressed images using the VQ and new method (it is a two-step VQ compression method where for the second stage,

codebook compression is done by above discussed method) is almost similar. Here, the codebook size is taken as 256 and each

codeword contains 16 elements (the block size is 4) for all three channels.

(a) Original pepper image (b) Compressed image using the VQ

(c) Compressed image using the CBM (d) Compressed image using VQ with codebook compression

Fig. 10 Original pepper image and its compressed version using different methods

The standard VQ-generated codebook [1-4] is of size � � 16 where � � 128 or 256, 16 is the number of elements in

each codeword, size of each element is one byte (8-bit depth). Therefore, the required storage space for the codebook is

� � 16 � 8 � � � 128 bits. Using the new approach, each encoded codeword contains four elements of length 8-bits, also

each codeword is required to store the minimum and threshold values. Each of these minimum and threshold values is 8-bits in

length. Here, each encoded codeword requires 4 � 8 - 8 - 8 � 48 bits. Therefore, to store the compressed codeword requires

� � 48 bits. So only for the codebook the required storage space is reduced by �� � 128 $ � � 48 � � 128⁄ � � 100% �

Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 51

62.50%. The method effectively reduces the storage space requirement by up to 3% more than the VQ for an image of size

256 � 256 to 512 � 512. Table 3 shows the percentage of storage space reduction achieved using the VQ, CBM, and VQ

with codebook compression. Here, the new method performs better than CBM, and also CBM performs better than VQ.

Table 3 Amount of storage space reduced using VQ [1], codebook modification [12], and

VQ with codebook compression

Image
Amount of storage space reduced (percentage)

VQ [1] CBM [12] VQ with codebook compression

4.1.01.tiff 88.48 90.81 91.08

4.1.02.tiff 88.67 91.06 91.28

4.1.03.tiff 90.77 93.22 93.37

4.1.04.tiff 88.39 90.85 90.99

4.1.05.tiff 89.15 91.49 91.75

4.1.06.tiff 89.00 91.46 91.60

4.1.07.tiff 89.43 91.87 92.04

4.1.08.tiff 89.44 91.78 92.04

4.2.07.tiff 93.24 93.81 93.90

mandril.tif 92.72 93.18 93.37

4.2.05.tiff 93.85 94.42 94.50

house.tiff 94.20 94.78 94.85

ucid00006 93.10 93.63 93.96

ucid00007 92.00 92.73 92.86

ucid00008 93.16 93.74 94.03

ucid00028 93.29 94.08 94.15

Fig. 11 shows a bar chart for performance comparison in terms of the percentage of space reduction achieved using VQ,

CBM, and VQ with codebook compression. It is shown for sixteen images of varying sizes- benchmark color images of size

256 � 256, benchmark color images of size 512 � 512, and four images of UCID.v2.0 of size 384 � 512. In this respect, it

may be observed that the VQ with the codebook compression method performs better than the CBM and VQ. For the index

matrix, run-length encoding (RLE) has been applied to all 8 � 8 blocks in a zigzag manner.

Fig. 11 Percentage of space reduction using VQ, codebook modification, and VQ with codebook compression

The PSNR between the original image and encoded image using VQ, CBM, and the new method is shown in Table 4. It

shows that the visual quality of the encoded image using the VQ is slightly better than VQ with codebook compression in terms

of PSNR. But it performs better than the CBM. Fig. 12 shows the comparative bar chart of the average PSNR obtained between

the original image and encoded image using VQ, CBM, and VQ with codebook compression. It is again shown for the same set

of images as shown in Fig. 11. The visual quality of the decompressed images using the VQ is slightly better than the new

approach.

 Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 52

Table 4PSNRbetween the original and encoded image using VQ, CBM, and VQ with codebook compression

Image

PSNR

VQ CBM VQ with codebook compression

R G B R G B R G B

4.1.01.tiff 34.66 38.39 36.87 32.97 37.45 36.57 34.36 38.41 36.85

4.1.02.tiff 35.31 39.93 38.70 34.88 38.74 37.82 35.10 39.88 38.66

4.1.03.tiff 38.49 46.30 42.80 37.15 45.45 41.89 37.90 46.18 42.68

4.1.04.tiff 36.13 37.62 35.70 35.14 37.12 35.40 35.72 37.54 35.72

4.1.05.tiff 35.52 37.10 35.48 33.86 36.87 34.53 35.06 36.98 35.49

4.1.06.tiff 29.64 36.52 33.42 29.14 36.00 33.12 29.34 36.45 33.40

4.1.07.tiff 39.15 39.42 38.18 37.92 38.98 37.88 38.37 39.52 38.24

4.1.08.tiff 37.06 37.98 37.14 34.49 36.72 36.52 36.32 37.97 37.20

4.2.07.tiff 33.51 35.17 34.73 32.22 34.95 34.45 33.29 35.16 34.74

mandril.tif 25.83 30.25 30.84 25.16 30.79 31.70 25.75 30.22 30.82

4.2.05.tiff 33.35 37.58 37.34 32.78 36.87 36.98 33.06 37.57 37.29

house.tiff 31.21 36.17 33.34 30.78 35.65 33.12 31.04 36.10 33.31

ucid00006 25.82 36.11 35.53 24.95 36.49 35.92 25.74 35.94 35.33

ucid00007 25.06 33.76 34.73 23.91 34.52 35.40 24.87 33.59 34.14

ucid00008 28.34 37.65 37.39 27.29 37.45 37.40 28.17 37.47 37.21

ucid00028 30.37 40.52 39.25 29.58 39.97 38.02 30.04 40.30 39.04

Fig. 12 Average PSNR between the original image and encoded image using VQ, CBM, and VQ with codebook compression

Table 5 shows the SSIM between the original image and the encoded image using VQ, the CBM, and the new method. In

terms of SSIM, the visual quality of compressed images using the new method and the VQ is almost similar. Again, it is better

than the codebook modification method.

Table 5 SSIM using VQ, Codebook modification, and VQ with codebook compression

Image
SSIM

VQ [2] CBM [13] VQ with codebook compression

4.1.01.tiff 0.8999 0.8569 0.8966

4.1.02.tiff 0.9080 0.8991 0.9046

4.1.03.tiff 0.9544 0.9487 0.9525

4.1.04.tiff 0.9549 0.9488 0.9532

4.1.05.tiff 0.9595 0.9482 0.9582

4.1.06.tiff 0.9097 0.9042 0.9056

4.1.07.tiff 0.9850 0.9821 0.9844

4.1.08.tiff 0.9824 0.9662 0.9810

4.2.07.tiff 0.9714 0.9657 0.9707

mandril_color.tif 0.8086 0.8020 0.8089

Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 53

Table 5 SSIM using VQ, Codebook modification, and VQ with codebook compression (continued)

Image
SSIM

VQ [2] CBM [13] VQ with codebook compression

4.2.05.tiff 0.9140 0.9098 0.9112

house.tiff 0.9246 0.9210 0.9229

ucid00006 0.7934 0.7588 0.7924

ucid00007 0.8585 0.8294 0.8560

ucid00008 0.8758 0.8381 0.8736

ucid00028 0.8912 0.8714 0.8888

Fig. 13 shows the bar chart of SSIM obtained between the original image and the encoded image using VQ, the CBM, and

the new method for the same set of images. It is observed that in terms of SSIM, the visual quality for decompressed images

using VQ with codebook compression and VQ is almost similar. The new method always performs better than the CBM.

Fig. 13 SSIM between an original image and the encoded image using VQ, Codebook modification, and

VQ with codebook compression

Another perspective is the additional time complexity introduced for the VQ due to the compression of the codebook. The

time complexity of the codebook compression method 2���, where N is the number of codewords in the codebook. Additional

computations for codebook compression have four steps- (a) Searching the minimum and maximum value of the code vector-

It requires a fixed number of computations. Because the size of the code vector and the number of code vectors in a codebook

are two predetermined fixed values. Generally, the size of the code vector is 16, and the codebook size (number of code vectors)

is either 128/256 respectively, (b) Finding the threshold for mapping into four levels- for a given code vector and given

maximum and minimum values, a division operation is required to find the threshold value. (c) Quantization step- at most four

multiplications and four addition operations are required to quantize each code word into four levels. Thus, the number of

computations for encoding a codeword is fixed. As the number of codewords in a codebook is also fixed, let it be �. Hence, the

additional time complexity of the codebook compression is 2���. Therefore, the time complexity of the VQ algorithm is

increased 2��� if the codebook compression is integrated with the VQ.

5. Conclusions

In this study, the VQ algorithm is modified as a two-step compression method. This study method improves the

compression ratio of the VQ algorithm. It reduces the size of the VQ codebook by 62.50%. The visual quality of encoded

images using VQ and this method is almost similar in terms of PSNR and SSIM. In terms of storage space requirement, for

images of size 256 � 256 and 512 � 512, it improves the overall performance of the VQ by up to 3%. Future work may be

aimed at the compression of the index matrix to further improve the compression performance of VQ.

 Proceedings of Engineering and Technology Innovation, vol. 26, 2024, pp. 45-54 54

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] A. Hasnat, D. Barman, S. Halder, and D. Bhattacharjee, “Modified Vector Quantization Algorithm to Overcome the

Blocking Artefact Problem of Vector Quantization Algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 5, pp.

3711-3727, 2017.

[2] R. Li, Z. Pan, and Y. Wang, “A General Codebook Design Method for Vector Quantization,” Multimedia Tools and

Applications, vol. 77, no. 18, pp.23803-23823, September 2018.

[3] L. Wang, Z. M. Lu, L. H. Ma, and Y. P. Feng, “VQ Codebook Design Using Modified K-Means Algorithm with Feature

Classification and Grouping Based Initialization,” Multimedia Tools and Applications, vol. 77, no. 7, pp. 8495-8510,

April 2018.

[4] S. Yang and Y. Mao, “Vector Quantization of Deep Convolutional Neural Networks with Learned Codebook,” 17th

Canadian Workshop on Information Theory, pp. 39-44, June 2022.

[5] M. H. Vali and T. Bäckström, “NSVQ: Noise Substitution in Vector Quantization for Machine Learning,” IEEE Access,

vol. 10, pp. 13598-13610, January 2022.

[6] H. A. S. Leitao, W. T. A. Lopes, and F. Madeiro, “PSO Algorithm Applied to Codebook Design for Channel-Optimized

Vector Quantization,” IEEE Latin America Transactions, vol. 13, no. 4, pp.961-967, April 2015.

[7] A. Hasnatand D. Barman, “A Proposed Multi-Image Compression Technique,” Journal of Intelligent & Fuzzy Systems,

vol. 36, no. 4, pp.3177-3193, 2019.

[8] D. Barman, A. Hasnat, and B. Barman, “A Quantization Based Codebook Formation Method of Vector Quantization

Algorithm to Improve the Compression Ratio While Preserving the Visual Quality of the Decompressed Image,”

Multidimensional Systems and Signal Processing, vol. 34, no. 1, pp. 127-145, March 2023.

[9] P. K. Shah, R.P. Pandey, and R. Kumar, “Vector Quantization with Codebook and Index Compression,” International

Conference System Modeling & Advancement in Research Trends, pp. 49-52, November 2016.

[10] J. Rahebi, “Vector Quantization Using Whale Optimization Algorithm for Digital Image Compression,” Multimedia

Tools and Applications, vol. 81, no. 14, pp. 20077-20103, June 2022.

[11] D. Barman, A. Hasnat, and B. Barman, “A Codebook Modification Method of Vector Quantization to Enhance

Compression Ratio,” High Performance Computing and Networking, vol. 853, pp. 227-234, 2022.

[12] D. Barman, A. Hasnat, and B. Barman, “An Enhanced Technique to Improve the Performance of Multi-Image

Compression Technique,” Advanced Computing and Intelligent Technologies, vol. 914, pp. 307-315, 2022.

[13] P. Chavan, B. Sheela Rani, M. Murugan, P. Chavan, and M. Kulkarni, “An Analysis of Codebook Optimization for Image

Compression: Modified Genetic Algorithm and Particle Swarm Optimization Algorithm,” Proceedings of Fourth

International Conference on Communication, Computing and Electronics Systems, vol. 977, pp. 849-866, 2023.

[14] A. Hasnat, D. Barman, and B. Barman, “Luminance Approximated Vector Quantization Algorithm to Retain Better Image

Quality of the Decompressed Image,” Multimedia Tools and Applications, vol. 80, no. 8, pp.11985-12007, March 2021.

[15] U. Sara, M. Akter, and M. S. Uddin, “Image Quality Assessment Through FSIM, SSIM, MSE and PSNR—A Comparative

Study,” Journal of Computer and Communications, vol. 7, no. 3, pp. 8-18, March 2019.

[16] J. K. Mandal, Reversible Steganography and Authentication via Transform Encoding, Studies in Computational

Intelligence, vol. 901, Singapore: Springer, 2020.

Copyright© by the authors. Licensee TAETI, Taiwan. This article is an open-access article distributed

under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license

(https://creativecommons.org/licenses/by-nc/4.0/).

