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Abstract 

This study aims to apply a new deep-learning technique to detect and categorize individual and complex PQ 

issues such as swell, flickers, surges, interruptions, and sags. The suggested technique, the long short-term memory 

(LSTM) network, is a novel artificial intelligence technique and an identifiable form of recurrent neural network. 

This technique is utilized to detect and identify power quality (PQ) issues based on three principal solutions: 

automatic feature extraction, voltage/current magnitude calculations, and PQ problem duration. Simulated PQ 

problems generated by the Matlab simulation and many real field data sets are used to authorize the proposed 

technique's capability. The real data contain voltage and current waveforms that are measured, recorded, and 

analyzed in medium-voltage and high-voltage (MV/HV) substations by using a data acquisition device. The 

simulation results show that the proposed method is capable of detecting and classifying PQ problems more 

accurately compared with other artificial intelligence techniques. 
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1. Introduction 

The improvement of techniques for PQ disturbance classification has moved from conventional signal processing and 

statistical methods to more progressive machine learning and deep learning approaches. Among these, LSTM networks have 

emerged as a predominantly effective tool due to their ability to handle time-series data and the imprisonment of long-term 

dependencies. This emphasizes the need for continued research in the application and modification of deep learning models to 

further improve the accuracy and reliability of PQ disturbance classification [1].Power quality (PQ) problems refer to any 

fluctuations in current, voltage, or frequency, such as harmonic distortion, swells, interruptions, sags, flickers, and surges. 

Unexpected changes in current or voltage from their normal state can interrupt or damage any electrical equipment installed 

for critical functions within the electric power system.  

Most domestic, commercial, and industrial electrical systems have non-linear loads, which inject more harmonics into 

the electric power systems, increasing voltage and current distortion and reducing overall power quality [2].Over the past 

several years, a substantial amount of research on power quality (PQ) has been published, focusing on various methods for 

analyzing and detecting PQ problems. Khetarpal et al. [3] utilized the Fourier transform (FT) in computational algorithms for 

analyzing stationary signals by extracting the spectrum at several specified frequencies. This analysis allows the signal to be 

viewed as an aggregate of sine waves of different frequencies. Cen et al. [4] detected the presence of a component with a 

specific frequency in the signal, even in the absence of any data at the time when that frequency component becomes prominent. 

Consequently, time information is often neglected during the transformation of the signal to the frequency domain.  
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The short-time Fourier transform (STFT) method has been used to classify and identify power quality (PQ) problems in 

the time-frequency domain, as presented in [5]. However, the STFT is suitable only for stationary signals where frequency 

does not vary with time. For signals in a non-stationary state, the STFT fails to identify the dynamic properties of the signal 

due to the limited width of the fixed window. Wavelet transform (WT) methods have been employed to extract information 

on time and frequency for PQ problems, as reported in [6]. As a well-regarded and effective approach to feature representation 

in the time-frequency domain, WT offers improved support for signal analysis. However, the disadvantages of WT include 

complex calculations and sensitivity to noise levels. 

The s-transform (ST) has been documented as an efficient method for processing PQ signal problems. It builds upon the 

conceptions of the short-time Fourier transform (STFT) and wavelet transform (WT), offering definite advantages over both 

methods. The ST preserves high-frequency resolution, allowing for the detection of high-frequency transients and providing 

good frequency resolution over long periods. Several studies have used the ST technique for the detection and classification 

of power quality (PQ) problems [7-8].  

The Hilbert-Huang transform (HHT) has been acknowledged as a highly suitable method for detecting instantaneous 

events in non-stationary and non-linear PQ problems. The HHT technique can efficiently detect instantaneous events in various 

PQ problems, even under noisy circumstances [9]. The discrete Gabor transform (DGT) is an improved form of the STFT, as 

noted in [10]. The input signal in the DGT is focused around a window function and transformed using the FT to simplify 

time-frequency analysis. The main benefits of the DGT include a smaller feature size, reduced execution time, and greater 

accuracy. Consequently, the DGT technique requires low memory usage during both testing and training procedures. The 

modification of the basic component amplitude of the voltage source using the Kalman filter (KF) to analyze and detect voltage 

events was first presented in [11]. The KF outcomes depend on the system model and the suitable choice of filter parameters 

[12]. 

By integrating AI and signal processing techniques into a hybrid model, it is possible to provide the strengths of both 

approaches. This combined use raises the accuracy, robustness, and interpretability of power quality (PQ) synthesis systems, 

resulting in more effective and reliable performance, particularly in real-world and real-time applications [13]. Future research 

could investigate developing adaptive algorithms that dynamically balance the computational load between AI and signal 

processing mechanisms, further optimizing performance [14-17]. 

This study presents a design for an optimal aggregation of a hybrid solar-wind turbine and battery bank setup model, 

examining the potential for energy generation to meet domestic load demand. Long-term time series data on wind speed and 

solar radiation were collected to evaluate the wind and solar power potential in Zurbatiyah Subdistrict, Badra District, Wasit 

Governorate, Iraq. Wind speed data were analyzed using Windographer software, while solar radiation data were analyzed 

with PVsyst 7.1 software to assess the solar energy potential and photovoltaic system performance. The expected energy 

production from the hybrid system, which involves a 4.0 kW small wind turbine and a 4.0 kW solar photovoltaic scheme, aims 

to fulfill the local residential electricity needs. 

The rest of the study is organized as follows: Section 2 presents the suggested technique using the LSTM network. Section 

3 demonstrates the simulation results, while Section 4 describes the practical results. Section 5 discusses these results, and the 

conclusions of this work are presented in Section 6. 

2. Proposed Technique 

The proposed technique is the long short-term memory (LSTM) method, which is a specific case of recurrent neural 

network (RNN) used for automatically learning properties, identifying, discovering, and classifying power quality (PQ) events 

and problems. 
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2.1.   Background 

LSTM is a type of recurrent neural network (RNN) capable of learning long-term dependencies. It can encode time series 

problems over both long and short durations using a memory cell (hidden layer). LSTM is specifically designed to overcome 

the vanishing gradient problem that RNNs often encounter by maintaining a constant error that can propagate through the 

network over time.  

(1) LSTM network architecture: The LSTM architecture consists of a series of cells, arranged as three layers  

Ⅰ Input layer: Receives the input data sequence. 

Ⅱ Hidden layers: The core of the LSTM network, which includes three main gates that regulate the flow of information: 

(Ⅰ) forget gate: Decides what information from the previous cell state should be discarded. 

(Ⅱ) input gate: Determines which new information should be stored in the cell state. 

(Ⅲ) output gate: Determines the output of the current cell and what information should be passed to the next cell. 

Ⅲ Output layer: Produces the final classification or prediction. 

A detailed diagram is shown in Fig. 1 [18]. 

 

Fig. 1 Architecture of LSTM network system 

(2) Recurrent neural networks (RNNs): RNNs contain a loop in the interior networks to ensure the persistence of information. 

RNNs are fully connected layers as well as among the nodes within the same layers. In addition, hidden cells in RNNs 

receive feedback from the previous states to the current state [19]. Fig. 2 shows the construction of the LSTM network, 

with a layer of sequence input at the start, a layer of LSTM, and a layer of prediction at the end. 

 

Fig. 2 Construction of LSTM network system 

The principle behind LSTM architecture is a memory cell, which can maintain its status for a definite time. The non-

linear mechanism of this cell can regulate the data flow in/out of the cell of the LSTM. The LSTM networks are used to develop 

a deeper neural network that is nonlinear. The hidden layer is constructed to contain a memory cell, which includes an input 

gate, a forget gate, an output gate, and a recurrent connection unit. 

(3) LSTM Layer construction: Fig. 3 shows the inflow of time-series data (X) with a time step (t) through the LSTM layer. 

The layer state includes the cell state (c) and the hidden state (h). At time step (t), the hidden state includes the layer of 

LSTM output at this step [20]. 
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Fig. 3 LSTM layer with a flow of time series data 

The cell state includes all data acquired from the preceding steps. At each time step, the LSTM layer eliminates or adds 

data to the cell state. According to this operation, the LSTM layer uses gates to control the cell updates as shown in Table 1. 

Table 1 Cell state and hidden state control gates 

Gate Objective 

Input (i) Update the cell state 

Forget (f) Reset the cell state 

Layer input (g) Insert data into the cell state 

Output (o) Add cell state to the output state 

The primary LSTM cell takes the initial case of the network and the initial time step (x1) and calculates the initial output 

(h1) and the cell state (c1). At time step (t), the LSTM cell takes the network's previous state (ct−1, ht−1) and the next input 

(xt) to calculate the output state (ht) and the updated cell state (ct). Fig. 4 presents the structure of the LSTM cell and the 

function of the gates for updating the hidden and the cell states [21]. 

 

Fig. 4 Structure of LSTM cell 

As presented in Eq. (1), the matrices W, R, and b represent the input and recurrent weights, and the bias for each 

component, respectively. 
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where the i, f, g, and o represent the input, forget, LSTM layer input, and the output gates, respectively. 
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Table 2 Formula for each gate at time step (t) 

Gate Formula 

Input (i) 1( )t i t i t ii W x R h b −= + +  

Forget (f) 1( )t f t f t ff W x R h b −= + +  

Layer input (g) 1tanh( )t g t g t gg W x R h b−= + +  

Output (o) 1( )t o t o t oo W x R h b −= + +  

The tanh function changes all cell states, but the gates use a sigmoid function (σ), which is used for transformation and 

prediction in neural networks. The LSTM cell is defined by the following equations, for each component at time step (t), as 

shown in Table 2.  

( )
1

(1 )x
x

e −
 =

+  
(2) 

1t t t t tc f c i g−= +  (3) 

where it is the state of a cell at the time (t), and ⊙ is element-wise vector multiplication. The hidden state at the time (t) is 

given by [22]: 

tanh( )t t th o c=  (4) 

2.2.   Noise analysis and mitigation techniques 

Various signal-to-noise ratios (SNRs) are considered to understand the model's robustness in practical environments. 

Noise can significantly affect the accuracy of detection by presenting variability and uncertainty in the input data. To address 

this, the model compensates for noise using regularization techniques, data augmentation, and noise filtering during 

preprocessing. Furthermore, the LSTM network's architecture is optimized to learn robust patterns even in noisy conditions. 

2.3.   Hyperparameter optimization 

The hyperparameters of the LSTM network, including the number of hidden layers, learning rate, batch size, and number 

of epochs, are selected and optimized using grid search and cross-validation techniques. Various configurations are 

experimented with to determine the optimal settings that maximize model performance while preventing overfitting. The final 

configuration used for the experiments includes the accuracy and loss metrics. 

2.4.   Implementation 

The LSTM method is designed to implement the identification and discovery process using four parameters: amplitude, 

start time, end time, and problem period, and one output for the waveform class as shown in Fig. 5.  

 

Fig. 5 Construction of the proposed technique 

The set of PQ problems includes surge, normal, flicker, sag, interruption, and swell. Any output that does not belong to 

these categories is considered a distortion. The LSTM system output can take values as shown in Table 3. 
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Table 3 LSTM system output values 

PQ disturbance LSTM network output 

Interruption signal 0.0 

Sag signal 0.5 

Normal sine wave signal 1.0 

Swell signal 1.5 

Surge signal 3.0 

The datasets used for training and testing consist of (describe the datasets’ size, diversity, and origin). These datasets 

include a range of PQ disturbances such as voltage sags, swells, transients, harmonics, and interruptions, collected from 

(specify the source, e.g., simulated environments, real-world power grids). To ensure adequate representation of different PQ 

issues, the data are augmented using techniques such as noise injection, scaling, and time-shifting. 

The plain text of pseudocode for LSTM Implementation can be written as follows: 

(1) Initialize network parameters: Input size, Hidden size, Output size, Learning rate, and Number of epochs. 

(2) For each training epoch: 

Ⅰ For each input sequence xt: 

(Ⅰ)  Compute the forget gate: 
1( )t f t f t ff W x R h b −= + +  

(Ⅱ) Compute the input gate:
1( )t i t i t ii W x R h b −= + +  

(Ⅲ) Compute the candidate cell state: 1tanh( )t g t g t gg W x R h b−= + +  

(Ⅳ) Update the cell state: 1t t t t tc f c i g−= +  

(Ⅴ) Compute the output gate: 
1( )t o t o t oo W x R h b −= + +  

(Ⅵ) Update the hidden state: tanh( )t t th o c=  

(3) Compute the loss and backpropagate the error to update weights and biases. 

(4) Repeat until convergence or until the maximum number of epochs is reached. 

3. Simulation results 

The signals simulating the power quality (PQ) problems are generated by a MATLAB program using a mathematical 

model, as shown in Table 4 [23-24]. Each simulated waveform is sampled at a rate of 3.2 kHz (64 samples per cycle). 

Table 4  Mathematical models of PQ problems 

PQ problem mathematical model technical parameters 

pure wave signal ( ) sin( )V t A t=  2 f =  

sag signal 1 2( ) (1 ( ( ) ( )))sin( )V t u t t u t t t = − − − −  
2 10.1 0.9 , 9T t t T   −   

swell signal 1 2( ) (1 ( ( ) ( )))sin( )V t u t t u t t t = + − − −  
2 10.1 0.8 , 9T t t T   −   

interruption signal 1 2( ) (1 ( ( ) ( )))sin( )V t u t t u t t t = − − − −  
2 10.9 1 , 9T t t T   −   

surge signal 1( )

1 2( ) sin( ) ( ( ) ( ))sin( )t t TV t t e u t t u t t t  − −= + − − −  
2 11.8 , 9T t t T  −   

flicker signal ( ) (1 sin( ))sin( )V t f t t  = +  0.1 0.2 , 5 20f Hz      

harmonic signal 1 3 5 7( ) sin( ) sin(3 ) sin(5 ) sin(7 )V t t t t t       = + + +  2

3 5 70.1 , , 0.15 , 1i     =  

While MATLAB provides a powerful environment for modeling and simulating power systems, certain practical details 

such as real-world noise, component aging, environmental variations, and unexpected operational conditions may not be fully 

captured in a simulation environment. Several assumptions were made to simplify the modeling process, including ideal 
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operating conditions, linear system components, and controlled data input. For the types of PQ events and problems, one 

hundred training events are executed by changing the start time, the magnitude of the amplitude, and the ending time of each 

and every PQ disturbance and problem. Most simulated signals are merged with different signal-to-noise ratio (SNR) values, 

including 40 dB, 30 dB, and 20 dB. 

As shown in Eq. (5), SNR is the ratio of signal power to noise power, expressed in decibels(dB). An SNR with a ratio 

greater than 1:1 (0 dB) indicates that the signal is stronger than the noise. 

signal

noise

p
SNR

p
=

 
(5) 

A high SNR indicates better design and more suitable data and evidence than undesirable data. 

In addition to accuracy, other evaluation metrics such as precision, recall, and the F1-score are included to provide a more 

comprehensive assessment of the model's performance. Precision measures the proportion of correctly identified positive 

instances out of all instances predicted as positive, while recall assesses the model's ability to correctly identify all relevant 

instances. The F1-score, a harmonic mean of precision and recall, provides an overall metric that balances both concerns. 

These metrics help illustrate the model's effectiveness in correctly identifying various types of PQ disturbances [25]. 

3.1.   Voltage interruption 

The voltage interruption is the complete loss of voltage, dropping below 0.1 p.u., on one or more phases for a definite 

period. The simulated interruption waveform mixed with SNR 40 dB is shown in Fig. 6(a). The amplitude magnitude and the 

output of the LSTM technique for this signal are displayed in Figs. 6(b) and 6(c), respectively. The LSTM output equals zero, 

indicating that this signal represents an interruption waveform. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 6 Voltage interruption with SNR 40 dB 

3.2.   Voltage sag 

The sag signal is a sudden reduction in RMS voltage amplitude, typically between 0.1-0.9 p.u., followed by the voltage 

recovery after a period of duration time from a few cycles to a few seconds. The voltage sags are caused by the electrical short 

circuit, switching of large loads, and power fluctuations of speed drives. The simulated sag waveform is mixed with the SNR 
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of 30 dB which is shown in Fig. 7(a). The magnitude or amplitude and the output of the LSTM technique of this signal are 

shown in Figs. 7(b) and 7(c), respectively. The output of LSTM equals 0.5, this means that this waveform is a voltage sag 

waveform. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 7 Voltage sag with SNR 30 dB 

3.3.   Voltage distortion 

Voltage distortion occurs when sinusoidal voltages contain multiple frequencies in addition to the fundamental power 

system frequency. This distortion is caused by using nonlinear loads. The simulated voltage distortion waveform mixed with 

the SNR of 30 dB is shown in Fig. 8(a). The magnitude and the output of the LSTM method for this signal are shown in Figs. 

8(b) and 8(c), respectively. The LSTM output equals 1, indicating that this is a distorted waveform. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 8 Voltage distortion with SNR 30 dB 
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3.4.   Voltage swell 

Voltage swell is a temporary increase, between 1.1-1.8 p.u., in the RMS voltage magnitude of the healthy phases when 

an earth fault occurs in one of the phases for a short period of time ranging from 0.5 cycles to 1 minute. The voltage swell is 

caused by the disconnection of large loads. The simulated voltage swell waveform is mixed with the SNR of 20 dB and is 

shown in Fig. 9(a). The magnitude and the LSTM output for this signal are shown in Figs. 9(b) and 9(c), respectively. The 

output of the LSTM equals 1.5, meaning that this is a voltage-swell waveform. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 9 Voltage swell with SNR 20 dB 

3.5.   Voltage surge 

The voltage surge is a sudden increase in RMS voltage magnitude, between 1-3 p.u., lasting for a short duration of time 

of only a few cycles. Voltage surges occur due to the disconnection of the heavy loads. The simulated voltage surge waveform 

is mixed with the SNR of 30 dB and is shown in Fig. 10(a). The magnitude and the LSTM output for this waveform are shown 

in Figs. 10(b) and (c), respectively. The output of the LSTM equals 3, this means that this waveform is a surge waveform. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 10 Voltage surge with SNR 30 dB 
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3.6.   Voltage flicker 

Voltage flicker is a rapid change in RMS voltage magnitude, typically between 0.9-1.1 p.u. Flicker results from the visible 

voltage fluctuations in lamps and is caused by arc furnaces. The simulated voltage flicker signal, the magnitude, and the LSTM 

technique output are shown in Figs. 11(a), (b), and (c) respectively. 

 
(a) Waveform 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 11 Voltage flicker 

3.7.   Comparative analysis 

To confirm the LSTM method efficiency, its prediction results are compared with the other AI techniques results, such 

as Kalman filter and fuzzy-expert system (KF, FES) [12], adaptive linear neuron (ADALINE), feed-forward neural networks 

(FFNN) [26], s-transform and dynamics (ST and dynamics) [27-28], double resolution s-transform (DRST), directed acyclic 

graph (DAG) [29], sparse signal decomposition on hybrid dictionaries (SSD on hybrid dict.), and fuzzy decision tree (fuzzy 

DT) [30].  

Table 5 Comparison of several prediction techniques for noiseless PQ disturbances and problems 

 

Noiseless 

ADALINE and 

FFNN [26] 

DRST, 

DAG [27] 

SSD on hybrid 

dict. [30] 

Proposed 

LSTM network 

Normal 100.00 100.00 100.00 100.00 

Interruption 100.00 097.00 100.00 100.00 

Sag 100.00 099.50 100.00 100.00 

Flicker 94.00 099.50 100.00 100.00 

Swell 100.00 099.00 100.00 100.00 

Surges - - - 100.00 

Harmonics 098.00 100.00 100.00 100.00 

Sag with 

Harmonics 
098.00 100.00 084.67 100.00 

Swell with 

Harmonics 
097.00 099.50 086.00 100.00 

Mean (%) 098.38 099.31 096.33 100.00 
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The LSTM technique is evaluated both with and without high-noise conditions. Statistical significance tests, such as p-

values, are used to assess the differences in performance metrics (accuracy, precision, recall, F1-score) across various datasets. 

All p-values obtained are below 0.05, indicating that the LSTM model's developed performance is statistically significant. The 

results establish the superiority of the LSTM approach in handling complex, time-dependent patterns in power-quality data. 

The total results and the categorization accuracies for noiseless and noisy states and conditions at 20 dB, 30 dB, and 40 dB are 

100%, 94.56%, 98.22%, and 99.94%, respectively which are summarized in Tables 5-8. 

Table 6  Comparison of several prediction techniques for different PQ disturbances and problems with 20 dB SNR 

PQ disturbance 

With 20 dB SNR 

KF, FES [12] 
ST and 

dynamics [28] 

ADALINE, 

FFNN [26] 

DRST, 

DAG [30] 

Proposed 

LSTM network 

Normal - 96.00 090.00 100.00 97.00 

Interruption 92.00 85.00 100.00 092.00v 94.00 

Sag 93.00 95.00 098.00 099.00 95.00 

Flicker - 91.00 087.00 097.00 93.00 

Swell 94.00 97.00 099.00 098.50 94.00 

Surges 92.00 - - - 95.00 

Harmonics 90.00 97.00 090.00 099.50 94.00 

Sag with 

Harmonics 
93.00 95.00 089.00 099.50 95.00 

Swell with 

Harmonics 
92.00 97.00 088.00 097.00 94.00 

Mean (%) 92.29 94.13 092.63 097.81 94.56 

Table 7  Comparison of several prediction techniques for different PQ disturbances and problems with 30 dB SNR  

PQ disturbance 

With 30 dB SNR 

ST and fuzzy 

DT [27] 
KF, FES [12] 

ST and 

dynamics [28] 

SSD on hybrid 

dict. [30] 

Proposed 

LSTM network 

Normal - - 100.00 100.00 99.00 

Interruption 096.670 98.00 096.00 098.00 97.50 

Sag 097.330 99.00 099.00 100.00 99.00 

Flicker - - 096.00 100.00 98.00 

Swell 098.670 99.00 098.00 100.00 99.00 

Surges - 96.00 - - 98.00 

Harmonics 100.00 94.00 099.00 100.00 98.00 

Sag with 

Harmonics 
- 97.00 097.00 083.33 98.00 

Swell with 

Harmonics 
096.00 96.00 098.00 082.67 97.50 

Mean (%) 097.73 97.00 097.88 095.50 98.22 
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Table 8 Comparison of several prediction techniques for different PQ disturbances and problems with 40 dB SNR  

PQ disturbance 

With 40 dB SNR 

ST and fuzzy 

DT [27] 

KF, FES 

[12] 

ST and 

dynamics [28] 

SSD on hybrid 

dict. [30] 

Proposed 

LSTM network 

Normal - - 100.0 100.0 100.0 

Interruption 096.670 100.00 098.0 100.0 099.5 

Sag 097.330 100.00 100.0 100.0 100.0 

Flicker - - 098.0 100.0 100.0 

Swell 098.670 100.00 100.0 100.0 100.0 

Surges - 098.00 - - 100.0 

Harmonics 100.00 097.00 100.00 100.0 100.0 

Sag with 

Harmonics 
- 098.00 099.00 84.67 100.0 

Swell with 

Harmonics 
098.00 098.00 099.00 86.0 100.0 

Mean (%) 098.13 98.71 099.25 96.33 99.94 

4. Practical Results 

This section presents some of the practical and real output results to ensure the LSTM technique's ability to discover and 

categorize PQ problems. Before reviewing the practical results, it is important to introduce certain concepts and the tool settings 

used to achieve these results. Therefore, we must delve into these concepts, the challenges that hinder the application of the 

proposed method, and how to deal with them. 

4.1.   Field data setup 

The measurements of the field and the site are taken from the secondary power transformer side of rating 25MVA - 

66/11KV and the transformers supply the electric power to different loads including industrial, residential, and commercial. A 

part of the single-line diagram (SLD) and measurement location of the acquisition device is shown in Fig. 12. 

 

Fig. 12 Part of SLD of HV substation with data ACQ device location 

4.2.   Data acquisition device 

The data acquisition (DAQ) device is a great performing, power-analyzing equipment, and event recording device. Data 

DAQ device applies the IEC 61000-4-30 specification for voltage detection and measurements, enabling it to identify, calculate 
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the period of time, and measure all events values related to harmonic distortions, inter-harmonics, voltage asymmetry, 

frequencies, flickers, and time synchronizations. These measurements are performed using the connections shown in Figs. 

13(a) and (b). Through each second, the DAQ equipment records multiple data on phase and line currents, voltages, active and 

reactive power, harmonic distortions, power factors, and power system frequency. The recorded data and outputs give an in-

depth overview of the total performance of the proposed method. The sampling frequency (fs) used in the DAQ device is 41 

KHz or 820 sample/cycle at a frequency of 50 Hz. 

  

(a) Practical and site connection of data DAQ device (b) SLD of data DAQ device connection with the secondary 

core of CT and PT 

Fig. 13 Installation of data DAQ device 

4.3.   Practical application limitations and scalability considerations 

The proposed method's scalability is tested by gradually increasing the dataset size and input sequence length. While 

LSTM networks are integrally computationally intensive, the use of the DAQ device significantly reduces the processing time 

and latency by optimizing real-time data acquisition and transmission. Future research will explore additional optimizations 

and the application of lightweight models for deployment in resource-constrained environments. The DAQ device is enhanced 

to lessen processing time and potential issues by using advanced digital signal processing (DSP) techniques to pre-process the 

data before it is fed into the LSTM network.  

This pre-processing step decreases the data size and complexity, allowing the LSTM network to focus on critical 

structures, which in turn reduces the time required for model inference. Furthermore, the DAQ device is equipped with high-

speed communication interfaces that guarantee rapid data transfer, further decreasing latency. The DAQ device is specifically 

designed to handle continuous data streams efficiently. It uses a buffer management system that ensures data is collected and 

transferred in real-time without interruptions or data loss. This capability, combined with the LSTM network’s construction, 

allows the system to process data continuously and provide timely predictions and classifications of power quality issues. 

5. Results and Discussions 

The results of this study provide real-world validation of the proposed LSTM-based approach for power quality (PQ) 

analysis. By using real data from an HV/MV substation, the system establishes its effectiveness in classifying and categorizing 

numerous PQ problems, such as interruptions, voltage sags, swells, and harmonic distortion. Additionally, several key concepts 

must be considered in achieving these results, as listed below. 

5.1.   Assumptions and limitations  

In this study, several assumptions were made to simplify the modeling and analysis procedure. Firstly, the data used for 

training and validation are assumed to be demonstrative of typical power quality (PQ) disturbances, but they may not cover all 

possible real-world scenarios. Additionally, ideal operating conditions are assumed, such as steady environmental factors and 
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fully functional components. Furthermore, the model relies on the availability of high-quality datasets, which may not always 

be approachable or may vary considerably in real-world applications. These assumptions may bind the generality of the 

proposed methodology to all possible PQ problems. Future work should focus on validating the model under more diverse and 

challenging conditions, including various noise levels, diverse grid configurations, and dynamic operational environments. 

5.2.   Validation with real-world data 

Although this study provides an initial assessment using simulated data, additional testing with real-world datasets is 

essential to confirm the model's robustness and practical applicability. Future work will involve collaboration with industry 

partners to obtain high-quality, real-world data and validate the model under different operating conditions. Preliminary results 

from initial real-world testing have shown promising arrangement with the simulated data results, suggesting the model's latent 

for effective deployment in practical situations. 

5.3.   Model interpretability 

To improve the interpretability of the LSTM model's decision-making process, techniques such as attention mechanisms 

and feature importance analysis, have been employed. The attention mechanism allows the model to focus on specific parts of 

the input sequence that are most applicable to the forecasting, while feature importance analysis classifies which features 

contribute most to the model's decisions. These approaches provide insights into the model's internal workings, making it more 

transparent and reliable for practical applications. 

5.4.   Error analysis 

To better understand the limitations of the projected LSTM model, a detailed error analysis has been accompanied. This 

analysis examined cases where the model misclassified PQ disturbances, detecting common patterns among the errors. The 

results indicate that most misclassifications happened with disturbances that have overlapping characteristics, such as 

differentiating between certain sorts of harmonics and voltage sags. These errors could be attributed to insufficient diversity 

in the feature space for similar disturbances. Future enhancements will focus on improving feature extraction and refining the 

model to better distinguish between closely associated PQ problems. 

5.5.   Training accuracy and loss curves 

To demonstrate the model's learning process and convergence behavior over time, training accuracy and loss curves are 

plotted in Fig. 14 and Fig. 15, respectively. The curves show that the LSTM model converges steadily, with both the training 

accuracy increasing and the loss decreasing steadily over the epochs. The curves confirm that the model is neither overfitting 

nor underfitting, which is crucial for its robustness and generalizability in practical applications. 

  

Fig. 14 Training and validation accuracy Fig. 15 Training and validation loss 
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The model shows steady improvement in both training and validation accuracy across epochs, with minimal overfitting. 

By the fifth epoch, the model achieves a high training accuracy of 85% and a solid validation accuracy of 83%, indicating 

good generalization. However, there is still potential for improving validation performance, possibly through additional 

training or fine-tuning of hyperparameters. Both training and validation loss steadily decrease over the five epochs, indicating 

that the model is learning effectively.  

The gap between training and validation loss remains small, suggesting minimal overfitting. The reduction in loss reflects 

the model's improved ability to predict accurately as the training progresses. Further tuning may heighten performance, but 

these results already show solid convergence. 

5.6.   Recorded data 1 (recorded data are for 3ph voltages UL1, UL2, and UL3) 

(1) Voltage waveform of the first phase line (UL1): The real data of UL1 and its amplitude are shown in Figs. 16(a) and (b) 

respectively. The LSTM output, for waveform prediction is shown in Fig. 16(c), indicating that the voltage waveform 

UL1 didn't contain any power quality events; therefore, this waveform is a normal voltage. The magnitude of this normal 

voltage computed from Fig. 16(b) is 0.97 p.u. 

 
(a) Real waveform UL1 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 16 Recorded data 1 for UL1 
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(2) Voltage waveform of the second phase line (UL2): The real data of UL2, the prediction signal, and its amplitude are 

shown in Figs. 17(a), (b), and (c) respectively. The LSTM output is shown in Fig. 17(d), which indicates a PQ problem 

in waveform UL2: a voltage swell. The swell magnitude computed from Fig. 17(c), is 1.52 p.u. The start and end points 

of the swell are detected by using the LSTM output, as demonstrated in Fig. 17(d), the duration of the voltage swell is 

158.2 ms.  

(3) Voltage waveform of the third phase line (UL3): The real data of waveform UL3 and its amplitude are shown in Figs. 

18(a) and (b) respectively. The LSTM output is shown in Fig. 18(c), which shows a power quality problem in voltage 

waveform UL3: a voltage sag. The amplitude of the voltage sag is computed from Fig. 18(b), which is 0.72 p.u. The start 

and end points of sag are detected by using the LSTM output, as presented in Fig. 18(c), the duration of voltage sag is 

113.4 ms. 

 

(a) Real waveform UL2 

 

(b) Prediction waveform UL2 

 

(c) Magnitude 

 

(d) LSTM output 

Fig. 17 Recorded data 1 for UL2 
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(a) Real signal UL3 

 
(b) Magnitude 

 
(c) LSTM output 

Fig. 18 Recorded data 1 for UL3 

5.7.   Recorded data 2 (the recorded data are for UL1) 

Voltage waveform UL1: The real data of voltage signal UL1 and its amplitude are shown in Figs. 19(a) and (b) 

respectively. The LSTM output is shown in Fig. 19(c), which demonstrates a PQ event in voltage waveform UL1: a voltage 

surge. The magnitude of the surge, as computed from Fig. 19(b) is 3.3 p.u. 

 
(a) Real signal UL1 

Fig. 19 Recorded data 2 for UL1 
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(b) Magnitude 

 
(c) LSTM output 

Fig. 19 Recorded data 2 for UL1 (continued) 

5.8.   Recorded data 3 (the recorded data are for UL1) 

Voltage waveform UL1: The real data of waveform UL1 and its amplitude are shown in Figs. 20(a) and (b) respectively. 

The LSTM output is shown in Fig. 20(c), which presents a PQ event in voltage waveform UL1: a voltage interruption. The 

magnitude of the voltage interruption, calculated from Fig. 20(b), is 0.0097 p.u. The start and end points of a voltage 

interruption are detected using the LSTM output, as shown in Fig. 20(c), the duration of voltage interruption is 1.8054 sec. 

 
(a) Real signal UL1 

 
(b) Magnitude 

Fig. 20 Recorded data 3 for UL1 
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(c) LSTM output 

Fig. 20 Recorded data 3 for UL1 (continued) 

6. Conclusions 

This study presents a significant application of a novel artificial intelligence (AI) technique to detect and identify power 

quality (PQ) problems such as interruptions, sags, swells, surges, flickers, and harmonic distortion. Several sets of real data 

(three-phase voltages and currents) are used to validate the effectiveness of the proposed technique in successfully identifying 

and detecting PQ problems. The real data, measured from an HV/MV substation, are recorded and analyzed using a data 

acquisition device. The proposed technique learns from and detects both simulated and real data based on three main 

components: advanced and automatic feature extraction, voltage/current magnitude computations, and PQ problem duration.  

The projected technique, the long short-term memory (LSTM) network, which is a particular type of recurrent neural 

network (RNN), accomplishes classification accuracies of 100%, 94.56%, 98.22%, and 99.94% for noiseless and noisy 

conditions under signal-to-noise ratio (SNR) situations of 20 dB, 30 dB, and 40 dB, respectively. These results demonstrate 

superior efficiency compared to the Kalman filter (KF), feature extraction strategies (FES), short-time Fourier transform (STFT) 

with dynamics, adaptive linear neuron (ADALINE), feedforward neural networks (FFNN), and dynamic time warping (DTW) 

schemes. The simulation and real results propose that the LSTM technique is a favorable choice for future PQ analysis without 

the necessity for human experts, especially if larger datasets become accessible.  

The outcomes of this study have important suggestions for both industry and academia. For industry, the proposed LSTM-

based methodology offers a robust and scalable solution for real-time power quality monitoring and management, potentially 

reducing interruption and improving grid reliability. For academia, this work contributes to the growing body of knowledge 

on the application of deep learning techniques in electrical engineering, especially within the situation of smart grid 

technologies. Future studies will focus on covering the validation of the proposed LSTM model using more general real-world 

datasets from different topographical regions and power system configurations.  

Additionally, there is a plan to investigate supplementary types of PQ disturbances and further optimize the model for 

real-time deployment in various environments. Moreover, the other aim is to explore hybrid approaches that integrate AI with 

traditional signal processing techniques to control the strengths of both methodologies for improved accuracy and robustness.  
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