
Proceedings of Engineering and Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 

English language proofreader: Chih-Wen Teng 

Generalized and Improved Human Activity Recognition for Real-Time 

Wellness Monitoring 

Qurban Memon*, Mohammed Al Ameri, Namya Musthafa 

Department of Electrical Engineering, UAE University, Al Ain, UAE 

Received 23 June 2024; received in revised form 16 August 2024; accepted 17 August 2024 

DOI: https://doi.org/10.46604/peti.2024.13900 

 

Abstract 

Human activity categorization using smartphone data can be useful for physicians in real-time data monitoring in 

sports or lifestyle monitoring. The goal of this research is to develop a methodology that can identify strong machine-

learning classifiers applied to various human activity datasets. The first step is pre-processing the data, followed by 

feature extraction, selection, and classification. Relying on a single dataset does not yield high confidence in the findings. 

Instead, examining multiple datasets is crucial for a comprehensive understanding, as it avoids the pitfalls of basing 

conclusions on one dataset alone. Multiple datasets and classifiers are applied in different experiments to achieve 

improved and generalized human activity recognition performance. Experimental results of the support vector machine 

(SVM) with its generalized performance of 99% encourage us to use the trained SVM-based model to monitor normal 

human activities inside the home, in the park, in the gym, etc. enhancing wellness monitoring. 
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1. Introduction 

Current-era smartphones already have a plethora of built-in sensors, but usually, they are connected to a specialized 

application for specific functionality. Each smartphone model includes its unique collection of mobile sensors, which are 

divided into three distinct groups: motion sensors, environment sensors, and location sensors. Sensors for tracking health 

conditions do not have their class. The rationale for this is that each group of sensors can be utilized for healthcare monitoring 

when coupled with smartphone gadgets, wearable technology, or applications. For example, an application involving motion 

sensors can call an emergency service if an individual remains motionless for roughly a minute after falling. Position sensors 

function whenever an individual uses a fingerprint to monitor heart rate. Involving environment sensors can help people 

address their health risks when they have been exposed to extreme conditions for an extended period, such as high radiation 

levels, high levels of humidity, or extreme temperatures. 

Human activity recognition (HAR) and monitoring is an evolving field of data science. It has practical applications in the 

field of healthcare, particularly in tracking the elderly to ensure they do not end up doing things that could harm them. HAR 

allows for a wide range of application scenarios in ambient assisted living. Healthcare is one of the most visible applications 

of HAR, benefiting both elderly and disabled persons as well as healthy ones. The ubiquitous use of numerous sensors 

embedded into mobile devices makes daily human actions simpler and more common to analyze. The broad use of HAR 

improves people’s safety and overall health. A more recent HAR methodology consists of a wearable device containing 

accelerometers, gyroscopes, magnetometers, and other sensors that can record actions during daily life, and a system that can 

identify these activities conducted by the individual. 
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HAR approaches facilitate the monitoring of daily human activities such as eldercare, research, healthcare, sports, and 

smart homes. It is quite possible to monitor indicators such as eye health, heart rate, pulmonary and lung health, daily activity, 

ear health, and cognitive functions using various sensors deployed in a health monitoring system. Remote monitoring of 

everyday activities inside the home environment or parks may aid in tracking patient adherence to therapeutic procedures such 

as exercise monitoring to better estimate the number of calories utilized by the body over time. 

Lifestyle monitoring (LM) is especially useful to support the assessment process after hospital discharge, during 

rehabilitation, and in the reablement period. It provides a far more accurate depiction of a person’s daily routine when they 

live on their own than a talk with the accompanying person and family members who do not live with them. The data assists 

health and social care providers in making appropriate care and support decisions, and it may even offer reassurance to families 

and caregivers. The market share of wearable healthcare devices, based on the size and accelerating growth of the global 

market of wearable health monitoring devices, stood at 20.1 billion US$ in 2021 and is expected to grow to over 83.9 billion 

US$ by 2026 [1]. 

Because of the widespread use of devices such as smartphones and their ability to collect activity data, HAR provides a 

diverse set of applications. One of the goals of activity recognition is to provide details about a user’s behavior so that 

computing systems can support them proactively. As a result of the growing usage of HAR in sports and health, numerous 

HAR models have been published in the literature. Current models, however, frequently overlook the successful extraction of 

geographical and temporal information from data on human activities. Understanding such activities allows for engagement 

with the subject via the application. Advances in artificial intelligence (AI) have substantially boosted the ability to extract 

relevant information for precise detection. The typical multi-class classification used in such recognition tasks necessitates the 

acquisition of training data for all activity types that may be encountered during the prediction stage. 

Maintaining a healthy lifestyle is now nearly impossible with demanding job schedules. In these situations, deep learning 

and machine learning can help by assessing medical data to accomplish a variety of objectives, such as patient fatality control 

and preventive healthcare. The merging of cloud computing and cloud storage can be adopted to enable real-time cost savings 

on services. The research conducted by Sujith et al. [2] covers current developments and obstacles, in addition to providing a 

comprehensive evaluation of smart health monitoring. The objective of this research is to develop a protocol-based 

methodology that yields a strong classifier, providing improved and generalized human activity classification performance 

across multiple open-access datasets for real-time monitoring in sports or LM in general. 

The remaining portions of this paper are structured as follows. Section 2 presents an overview of related research in the 

area of HAR and accelerometer data. In Section 3, a model is proposed that reads human activity data from multiple datasets 

to satisfy two objectives: (a) a publicly available dataset is chosen for human activity positions of the subject, performs time-

frequency-based feature extraction, and selects a strong classifier for improved performance in the final activity recognition 

step, and (b) a second dataset is chosen involving increased human activities for validation and generalized performance. 

Section 4 presents experimental results from three separate classifiers using two datasets and compares them for optimal 

performance. In Section 5, results are discussed, followed by conclusions in Section 6. 

2. Related Works 

Changes in activity profiles are utilized to indicate a change in an individual’s wellness state in LM, a crucial area of 

telecare study. According to a literature survey by Brownsell et al. [3], the majority of research activity is focused on 

technology development initiatives, particularly those related to motion tracking, followed by door and electrical appliance 

usage. Cardinaux et al. [4] suggest an LM technology simulator for generating daily activity data, which can then be utilized 

for LM system development and validation. They propose that everyday activities are influenced by various external factors 



Proceedings of Engineering and Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 3

that affect the desire to carry out the activities. Additionally, real research was used to populate the simulator settings, including 

hardware testing and data collection from senior citizens. The authors demonstrate experimental validation, showing that the 

intended features are reasonably represented by the simulator. 

Rosaline et al. [5] propose a machine learning classifier using the public domain USC human activity dataset (USC-HAD) 

for real-life HAR using smartphone sensors and the OPPORTUNITY dataset. The confusion matrix measure scores were 

calculated to investigate the results of the proposed classifier, with an accuracy of 97.9%. An activity monitoring platform 

capable of acquiring data from four inertial sensors placed on the human body may also be used for real-time data display or 

on a server for long-term data analysis [6]. 

In similar research, Hassan et al. [7] present a smartphone inertial sensors-based approach for HAR based on features that 

are processed using kernel principal component analysis (PCA), linear discriminant analysis (LDA), and deep belief network 

(DBN), which are compared with support vector machine (SVM) and artificial neural network (ANN). A human physical 

activity recognition system based on data collected from smartphone sensors is also discussed in Voicu et al. [8], where 

physical activities such as walking, running, sitting, standing, ascending, and descending stairs are classified using two datasets 

with accuracies of 86.1% and 76.8%. 

Accelerometers have also been utilized to evaluate physical activity energy expenditure, physical activity, sedentary time, 

and sleep-related behaviors. The choice of appropriate features is a crucial component of HAR since the performance of the 

activity recognition system relies heavily on features retrieved from the sensing device. For feature extraction in a HAR system, 

a CNN model trained on accelerometer data is recommended [9], where the authors assert that the model outperforms several 

previously used recognition methods that use the same dataset. 

Another study by Ahmed et al. [10] employed sensor data from smartphones mounted on the subjects’ waists for HAR 

tasks with high-dimensional feature vectors selected using a hybrid approach. The features, once selected, are sent to an SVM 

model. A benchmark dataset is then used to validate the model, resulting in a classification performance of 96.81% when using 

optimal features, and an improvement in performance of about 6% compared to using no feature selection. 

A CNN-based deep learning method relies on local feature extraction for online human activity classification, as reported 

in the literature [11]. To enable continuous activity classification, the duration of the time series is limited to 1 second while 

studying the impact on recognition accuracy. Two widely known datasets, WISDM and UCI, each containing labeled data, 

were utilized to assess the accuracy [11]. The outcomes show cutting-edge performance with minimal computational expense 

and no human feature engineering. Recently, there has been a surge in research interest in behavioral pattern recognition.  

However, a solid deep learning-based model cannot be constructed without sufficient data or if the physical activity that 

needs to be identified has changed. In such an application, the research study by Ahmed et al. [12] develops a generic deep-

learning model that uses an input image along with heterogeneous acceleration sensor data. The residual neural network 

(ResNet10), bidirectional long short-term memory (BiLSTM), CNN, and convolutional block attention module (CBAM) 

models were all utilized to analyze accelerometer data. With accelerometer data and a skeleton image, the accuracy was 94.08%; 

with coordinates, accelerometer data, and a skeleton picture, it was 93.09%. The recommended model was reported to be 

robust during testing that included inversion and noise data, with a performance degradation of only about 1%. 

In a related study by Li and Wang [13], a deep learning model was suggested to retrieve spatial features from 

multidimensional signals using a residual block, obtain the dependencies of feature sequences through BiLSTM, and then 

complete HAR using a Softmax layer. In addition to two publicly available datasets, a locally constructed dataset encompassing 

six typical activities was created for evaluation. The experimental findings demonstrate that the suggested model, when applied 

to the local dataset and two public datasets, achieves accuracy levels of 96.95%, 97.32%, and 97.15%, respectively. 
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To identify specific kinds of physical activities using accelerometer data from a user’s cell phone, the two most typical 

phone placements (hand and pocket) have also been examined [14]. Human subjects were used to train and then test the system. 

With an accuracy rate of 91.15%, a set of classifiers was employed utilizing a variety of statistical features for identifying 

activities and determining how to integrate classifiers into an optimal set. Approaches to smartphone-based HAR are also 

reported in a review article by Straczkiewicz et al. [15], which focuses on extracting data related to smartphone location, 

number of sensors, and activity types, concluding that most research activities have been conducted in recent years. Much 

more needs to be done for actions related to anomaly detection and forecasting [16]. 

Machine learning is making strides beyond healthcare, transforming various industrial sectors, including manufacturing, 

maintenance, and predictive analytics. By integrating machine learning into industrial applications, systems are becoming 

more intelligent, efficient, and reliable. Innovations such as digital twin-driven assessments for real-time monitoring, physics-

informed residual networks (PIResNets) for enhancing fault diagnostics, and advanced data-driven approaches like multi-scale 

fused features and graphic recurrent units (GRUs) for comprehensive bearing health analysis are expanding the possibilities 

in predictive maintenance and fault detection. Despite the challenges of data quality, model complexity, and computational 

demands, these evolving technologies have the potential to significantly advance industrial processes and outcomes. 

Though the healthcare sector has emerged as a primary application, the models still need to improve accuracy and 

generalization. Most prior research has focused on either a single dataset or smaller datasets with limited human activity classes. 

Incorporating multiple datasets enhances the credibility of the outcomes and enables more unbiased and robust interpretations 

during data analysis. In essence, evaluating a classifier across multiple datasets allows for a better understanding of its strengths 

and weaknesses across different data distributions, leading to a more comprehensive evaluation of its performance. In Section 

3 below, a model development methodology is adopted that uses various classifiers and datasets to generate an optimized 

model with generalized performance. 

3. Proposed Approach 

The essential physical activities need to be identified to monitor wellness for post-treatment rehabilitation or fitness [17]. 

The important activities include walking, running, walking upstairs, and walking downstairs, among others. The benefits of 

these activities are summarized in Table 1. These activities, once measured as a ratio to all other activities, can be reviewed by 

the concerned physician to suggest further procedures for improvement in specific or overall healthcare. 

Table 1 Human activities and their importance to health 

Activities Healthcare indicator 

Walking 
cardiovascular fitness, strengthen bones, reduce excess body fat, boost muscle 

power and endurance, lower blood pressure, etc. 

Running 
helps improve blood pressure, HDL (good) cholesterol, and blood sugar sensitivity, 

lowers your resting heart rate, builds strong bones, strengthens muscles, etc. 

Walking 
upstairs 

enhances lung function, improves blood circulation, and reduces the risk of 
developing coronary heart disease, hypertension, diabetes, colon cancer, etc. 

Walking 
downstairs 

Increases muscle strength, tones muscles, and joints, improves balance and 
coordination, improves insulin sensitivity, and lipid profiles. 

In this research, accelerometer data taken from a smartphone is utilized for human activity recording. It is assumed that 

the smartphone is worn by the subject during these activities. The methodology adopted with two datasets is shown in Fig. 1, 

and the concept is illustrated in Fig. 2. Fig. 2 shows human activity data accumulated, pre-processed, and classified intelligently. 

The first stage in the methodology is dataset pre-processing, followed by feature extraction and feature selection. A set of 

approaches to predict current activity compared to trained results is adopted. The classifiers are built through training as models 

and reused for new activity prediction. Below, the details of each sub-process are presented. 
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Fig. 1 Proposed methodology 

 

 
Fig. 2 Intelligent lifestyle monitoring concept 

3.1.   Preprocessing 

Two data preprocessing steps, feature scaling, and labeling, were done before starting the training of feature vectors. 

Feature scaling prevented certain features from dominating the data analysis due to their variations in scale, thus ensuring that 

all features are treated equally in the analysis. Label encoding was implemented using LabelEncoder [18], which transformed 

categorized activity labels into numerical values to facilitate understanding and interpretation of the data. 

3.2.   Classifiers 

k-nearest neighbor (KNN) is one of the simplest supervised learning algorithms [19], where each new sample in the 

training set is predicted using the KNN. Similarity measures include Euclidean norms and Manhattan distance. The parameter 

k is usually determined using a grid-style search, where the lowest loss rate is identified. The SVM classifier is a well-known 

supervised learning algorithm [20]. The approach involves using a set of support vector instances to determine an optimal 

separating plane with maximum margin. Variants of this approach include non-linear kernel functions and multiclass 

classification to address various problems. Examples of kernel functions include linear, polynomial, or Radial basis function 

(RBF) kernels, while multiclass classification is achieved by treating several binary classification problems, for example, using 

a one-against-all strategy. 
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(1) Polynomial kernel is expressed as: 
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where � is the variance. 

Random forest (RF) [21] is also a supervised machine learning algorithm that involves building multiple decision trees 

during training. To determine the final result, RF predicts through bagging or bootstrap aggregating algorithms applied to these 

decision trees. The main steps of RF are: 

(1) Select the number of trees you want to create. 

a. Choose random samples from the training set, and generate a decision tree for selected samples. 

b. Continue 

(2) To test the new sample, find the prediction of each decision tree, and assign the new sample to the class that wins the 

majority votes. 

4. Experimental Results 

This section presents experimental details of all steps mentioned in Fig. 1. First, the evaluation protocol is presented that 

discusses how each experiment is conducted and evaluated. Next, three experiments are discussed each detailing what data 

was used along with classifier(s). The testing results of each experiment are tabulated. 

4.1.   Evaluation protocol 

To conduct a comprehensive investigation of the proposed approach, the following evaluation protocol was devised:  

(1) Specify classifiers for training and testing of extracted features of the datasets 

(2) For each model, do: 

a. Train each classifier by optimizing its parameters 

b. Apply the testing data on the optimized model, and tabulate the confusion matrix values 

c. Record the accuracy for each classifier from the confusion matrix 

(3) Compare results with other works. 

This protocol is graphically illustrated in Fig. 3. 

 
Fig. 3 Evaluation protocol 
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4.2.   Results 

After the evaluation protocol, three experiments were conducted to get HAR data. In the first experiment, the smartphone 

is attached to the waist of one person, and four different types of physical activity are monitored. The second experiment 

monitors the six daily activities from smartphone data attached to the waist of thirty individuals. In the third experiment, the 

results obtained are compared to recent research works found in the literature. Below, each experiment is discussed and 

corresponding results are plotted. 

Experiment 1: For this experiment, the smartphone was attached to the waist of one subject during four different types of 

physical activity. The resulting dataset consists of 7776 x-direction accelerometer data values, with each containing 44 samples 

(forming a 44 × 7776 matrix) corresponding to four human activities: sitting, standing, walking, and running, labeled as 1, 2, 

3, and 4 respectively [22]. The second stage involves feature extraction followed by feature selection, forming feature vectors 

for each signal instance. A high-pass filter is used to separate rapid variations from slower ones. To classify these features, a 

table is created with predictors and responses, size 7776 × 23, where 22 features are included and the last one represents 

activity ID. 

Once dataset 1 is loaded, the code sets up two time-feature extractor objects. The first extracts the mean of signals, while 

the second extracts various features from filtered signals such as shape factor, peak value, root mean square, crest factor, 

impulse factor, and clearance factor. The code extracts parameters for frequency-based features including band power, half 

power bandwidth, mean frequency, peak location, and peak amplitude. The calculation of spectral peaks is further refined by 

setting the maximum number of peaks to 6, with a minimum distance of 0.25 Hz between each spectral peak. The code utilizes 

transformed array datastores to enhance parallelization for computing features across all signals, which read each matrix 

column and perform feature extraction. A pool of eight processes is created for parallel execution. The resulting features are 

concatenated into sequences of 22 features for each of the 7776 signal observations. 

For feature classification, the dataset is split into training (75%) and testing (25%) parts ensuring similar activity label 

proportions. While many classifiers exist in the literature, this experimental study initially uses two well-known classifiers: 

the K-NN algorithm and SVM. For K-NN training, the parameter k is set to four (4) based on various trials, verified using the 

elbow method [23], as shown in Fig. 4. Euclidean distance measured the distance between input and class centroids, with 

training continued until no changes in the classification of training samples occurred. Once trained, the model is stored in a 

variable. An average testing (predicted) accuracy score of about 87% was achieved with K-NN (k = 4). These accuracy results 

in the form of a confusion matrix (false positive, false negative, true positive, and true negative) parameters are presented in 

Table 2. The last column in Table 2 shows that errors during K-NN classification are relatively higher during ‘Sitting (20.4%)’ 

and ‘Standing (12.8%)’, whereas these errors are down to 4.7% and 5.0% respectively when the SVM classifier was employed.  

 
Fig. 4 Choosing the value of k for better performance 
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Table 2 Confusion matrix values for dataset 1 

 

True class Accuracy Error 

Running 
KNN 487 58 3 0 88.9% 11.1% 

SVM 330 1 0 27 92.2% 7.8% 

Sitting 
KNN 115 453 1 0 79.6% 20.4% 

SVM 0 507 23 2 95.3% 4.7% 

Standing 
KNN 5 44 414 12 87.2% 12.8% 

SVM 0 28 537 0 95.0% 5.0% 

Walking 
KNN 0 0 39 313 88.9% 11.1% 

SVM 14 0 2 473 96.7% 3.3% 

Accuracy 
KNN 80.2% 81.6% 90.6% 96.3% - - 

SVM 95.9% 94.6% 95.6% 94.2% - - 

Predicted class Error 
KNN 19.8% 18.4% 09.4% 3.7% - - 

SVM 4.1% 5.4% 4.4% 5.8% - - 

For SVM-based classification, a multiclass SVM classifier [24] using a polynomial order of two is employed in one-on-

one mode for training. Testing accuracy is evaluated using a confusion matrix with parameters. The overall classification 

accuracy using SVM on the test partition is 95%, compared to 87% with the K-NN classifier. Most errors were observed in 

misclassifying similar activities, such as standing as sitting and running as walking. 

Thus, it is concluded from this experiment that the SVM using a multiclass SVM approach categorized the given data 

accurately, achieving approximately 95% accuracy. However, this dataset was generated using one subject wearing a 

smartphone during four (4) activity types. Results from a machine-based classifier using a single dataset can provide valuable 

insights, but they may be limited in scope and lack generalizability. While the model might perform well on that specific 

dataset, it may fail to capture the variations in different data sources. Using a variety of datasets helps mitigate the effects of 

bias or errors that could stem from a single source, as relying on just one viewpoint can skew the results. 

Measuring performance across a diverse population makes the data more reliable and reflects the classifier’s 

generalizability. This is essential because, in the real world, data varies and is rarely perfect. By learning from a broader range 

of examples, the model can capture more diverse patterns and reduce the risk of overfitting. The more data points considered, 

the closer the results will align with the true value. To generalize this accuracy, it seems necessary to involve multiple people 

wearing smartphones during an increased number of activity types. Additionally, another classifier was investigated as KNN 

performed poorly (with an average accuracy of 87%) during Experiment 1. 

Experiment 2: The second dataset is obtained from accelerometer data recordings of smartphone devices [25] attached to 

the waist of thirty individuals aged 18-45, who performed six daily activities. The dataset comprises 7352 rows and 563 

columns, with no missing values. The counts for each activity in the dataset are as follows: 1407 for Laying, 1286 for Sitting, 

1374 for Standing, 1226 for Walking, 986 for Walking downstairs, and 1073 for Walking upstairs. The activities monitored 

are now six compared to four in Experiment 1. From recorded videos, labeling was performed to train the classifiers on this 

data. The labeled data was later converted into numerical values using LabelEncoder. The data was then low-pass filtered with 

a cutoff frequency of 0.25 Hz. The dataset was partitioned into 70% for training and 30% for testing purposes. Instead of K-

NN, an RF classifier was employed to categorize the data in addition to SVM. 

For the SVM model, the “RBF” kernel was found to perform better during the training phase with the C parameter set to 

100. During testing, the SVM model achieved an accuracy score of approximately 99% on this dataset. As a secondary model, 

the RF model involved specifying crucial hyperparameters such as the number of trees (n_estimators), maximum tree depth 

(max_depth), and minimum samples per leaf (min_samples_leaf). The RF classifier performed multiple iterations across 

training data and achieved a maximum testing accuracy score of 98%. The confusion matrix results on the test data (from the 

second dataset) consisting of 1471 samples across six categories, for these classifiers are shown in Table 3.  
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The results shown in Table 3 suggest that ‘Standing’ and ‘Walking upstairs’ categories were classified 100% by both 

classifiers, ‘Walking downstairs’ and ‘Walking’ were classified 100% by SVM compared to RF with five and one 

misclassifications respectively, ‘Sitting’ activity was classified better by SVM (with five misclassifications) compared to RF 

(with twelve misclassifications), and ‘Lying’ was also classified better by SVM (with nine misclassifications) compared to RF 

(with twelve misclassifications). 

Table 3 Confusion matrix values for dataset 2 

Experiment 3: In this experiment, various approaches mentioned in recent literature involving different datasets are compared 

to the results achieved in Experiment 2. The resulting accuracy data are tabulated in Table 4. Based on the tabulated results, it 

is evident that the proposed approach employing the SVM classifier on the second dataset is optimal with 99% accuracy and 

is generalized as the dataset was generated by thirty individuals during six normal activities. Thus, it may be concluded that 

SVM may be efficiently applied across various emerging HAR datasets for wellness monitoring. 

Table 4 Comparative results 

Approach Accuracy Dataset Generalized 

HAR classification using 
random forest 

90% KU-HAR (Philip, et al., 2022) [27] No 

Ignatov, 2018 [11] 96.37% 
UCI machine learning repository 

(Reyes-Ortiz et al., 2012) [25] 
No 

Kang, et al., 2021 [12] 96.81% 
UCI machine learning repository 

(Reyes-Ortiz et al., 2012) [25] 
No 

Li and Wang, 2022 [13] 97.32% 
WISDM dataset (Sikder and Nahid, 

2021) [26] 
No 

The proposed approach 99% 
UCI machine learning repository 

(Reyes-Ortiz et al., 2012) [25] 
Yes 

The results in Experiments 2 and Experiment 3 are the main drivers for the viability of this research. The improved 

classification performance of SVM and its generalized performance led us to use the trained SVM-based model to monitor 

normal human activities inside the home, in the park, gym, etc. for wellness monitoring. 

5. Discussion 

There are numerous mHealth apps, each intended to serve distinct healthcare needs. Health tracking applications, for 

example, allow individuals to monitor their sleep habits, physical activities, etc. These apps motivate people to stay active and 

live a healthier lifestyle. The use of established profiles may expand the mHealth ecosystem and provide end users with more 

 

Predicted class No. of 
testing 

samples 
Standing Sitting Lying Walking 

Walking 
upstairs 

Walking 
downstairs 

True 

class 

Standing 
SVM 249 0 0 0 0 0 

249 
RF 249 0 0 0 0 0 

Sitting 
SVM 0 272 5 0 0 0 

277 
RF 0 265 12 0 0 0 

Laying 
SVM 0 9 284 0 0 0 

293 
RF 0 12 281 0 0 0 

Walking 
SVM 0 0 0 251 0 0 

251 
RF 0 0 0 246 1 4 

Walking 
upstairs 

SVM 0 0 0 0 186 0 
186 

RF 0 0 0 0 186 0 

Walking 
downstairs 

SVM 0 0 0 0 0 215 
215 

RF 0 0 0 0 1 214 

Total 1471 
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options. The low adoption rate of current apps that utilize built-in sensors suggests a need for further research into integrating 

sensors for data collection in fitness and healthcare apps, which could enhance the overall customer experience [27]. Despite 

the potential benefits of mHealth apps, there are several obstacles to their deployment and development. Protecting privacy 

and security is a top priority. To safeguard private information, developers must employ strong encryption techniques and 

comply with regulations such as the Health Insurance Portability and Accountability Act (HIPAA). Customer experience and 

cross-platform interoperability pose additional challenges. mHealth app developers need to ensure that their apps function 

seamlessly across a variety of devices as the app industry continues to grow. 

The reliability and expertise of application developers in sensor-based applications are crucial for the success of future 

healthcare solutions [28]. Integrating new sensors, such as those from the Internet of Things, could enhance the effectiveness 

of this approach by enabling the use of additional devices to further assess and develop practical, high-performance solutions 

for LM. Future research could advance activity recognition tasks by employing deep learning to automate the entire process 

for more accurate and faster predictions. 

6. Conclusions 

Smartphones provide real-time data that can be utilized for LM and developing healthcare applications. In this study, 

multiple open-access datasets from smartphone sensors were used to classify human activities using various models. A 

protocol-based methodology was adopted, involving multiple experiments to achieve generalized and improved performance. 

The machine learning approach, specifically the SVM, performed exceptionally well, with accuracy rates reaching 99%. This 

robust classification performance can be generalized, encouraging researchers in the medical field to develop applications for 

wellness monitoring among the elderly and adults during and after treatment procedures. Improving classification performance 

beyond 99% accuracy may not be a new direction of research. However, this accuracy needs to be robust across multiple 

datasets. A possible factor for improvement is the optimal extraction of features from human activities. Future research on 

wellness monitoring may involve deep learning-based techniques to optimally extract features for robustness, followed by a 

classification step. 
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