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Abstract 

This study proposes a β-variational autoencoder (β-VAE) method to address intensity inhomogeneity (IIH) in 

edible bird’s nest (EBN) images, which creates an uneven intensity that obscures fine impurity details and reduces 

segmentation accuracy. First, the β-VAE is used to learn the feature distribution of EBN images by mapping them 

into a latent space. This latent space is then disentangled through selective filtering and penalization of specific latent 

dimensions. This unsupervised learning approach effectively captures and isolates IIH in EBN images. Additionally, 

enabling precise segmentation of EBN and impurities without requiring annotated datasets. It also enhances 

robustness in handling unseen image instances. The proposed method achieves an intersection over union of 73.08% 

(equivalent to a Dice coefficient of 84.44%), surpassing existing segmentation techniques. By resolving IIH, this 

method improves the reliability and adaptability of automated EBN inspection systems for practical applications.  

 

Keywords: edible bird’s nest (EBN), impurity segmentation, intensity inhomogeneity (IIH), β-variational 

autoencoder (β-VAE), anomaly detection 

 

1. Introduction 

Edible bird's nest (EBN) is a nutrient-rich animal bioproduct secreted by swiftlets during the breeding season [1]. Its 

health benefits such as immunity boost, cell growth promotion, and bone strengthening, have popularized its consumption in 

Southeast Asia [2-3]. However, beyond its therapeutic advantages, the constituents of EBN which are primarily composed of 

solidified swiftlet saliva, exhibit diverse characteristics, including variations in thickness, density, and strand shapes. These 

variations contribute to complex light interactions when illuminated, impacting its optical properties, particularly when 

captured as a digital image. It thrives the occurrence of intensity inhomogeneity (IIH) which refers to a smooth varying bias 

field in an image, leading to fluctuations in pixel intensity that affect both contrast and semantic information [4]. IIH or bias 

field is a multiplicative component of an image as depicted in Eq. (1), which exemplifies v(x, y) as the intensity inhomogeneity-

corrupted image, u(x, y) as the intensity inhomogeneity-free image, b(x, y) represents the bias field (IIH) and n(x, y) are the 

noise components. 

( ) ( ) ( ) ( ), , , ,v x y u x y b x y n x y=  +   (1) 

In this context, when a different image with different object properties is examined, the multiplicative bias field will also 

vary. Thus, modulating the effects of IIH demands a robust modeling method to either filter its components independently or 

approximate its distribution in the original image to identify regions corresponding to the focused object. In either case, 
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determining an appropriate modeling method depends on the complexity and severity of the IIH component. In the EBN 

context, its overall constituents and optical properties can be considered as an IIH component whereby filtering it 

independently may result in omitting important features in the EBN region. Therefore, modeling IIH in EBN is a complex yet 

unresolved topic. It is essential to have a deeper understanding of the EBN inhomogeneous properties before applying any 

further analysis to the image.  

As discussed in [5-6], the surge in studies on EBN is notable due to its rarity and widely recognized health benefits. In a 

more particular area, many researchers have started to delve into resolving the automation of impurity inspection and cleaning 

for raw EBN. This is driven by the challenges associated with the current manual process, which requires staggering hours for 

skilled operators to inspect and remove the impurities [7-8], it is also susceptible to inconsistencies and heavily relies on the 

subjective judgment of human operators [9]. Impurities like feathers, eggshell debris, and droppings are commonly found in 

raw EBN, which need to be removed [10].  

The need to automate this process led to studies such as in [11] that apply color plane extraction and thresholding while 

the study in [12] employed fuzzy clustering (fuzzy C-mean, also known as K-mean) segmentation to detect the impurities 

respectively. These methods experienced significant drawbacks in locating the impurities that involved regions with IIH 

leading to a high misdetection rate. Work by [13-14] extended the impurity detection study by manipulating lighting setups, 

such as altering wavelength and projection angle to mitigate IIH artifacts. This approach enhanced the contrast ratio but the 

IIH persisted in corrupting the image and disrupting the detection performance. Additionally, these methods struggle as they 

rely solely on the pixel intensity values, without accounting for features and semantic information. 

Recent studies by [15-16] have employed deep learning models, such as U-net (a type of convolutional neural network) 

and hybrid autoencoder to extract semantic information from EBN images. In [15], the U-net model is trained in a supervised 

manner to output binary probability tensors for classifying the EBN and impurity regions. Meanwhile, in [16], an autoencoder 

stacked with a single convolutional layer is used to interpret residual maps generated by subtracting original annotated images 

from autoencoder-reconstructed images, which effectively localizes the impurity regions in EBN images. Both methods 

showcase the superior potential of deep learning in resolving the IIH issue as compared to conventional image processing 

methods. However, they require meticulously crafted annotated datasets, requiring significant effort to construct, and limiting 

adaptability to unseen impurity types in the diverse nature of EBN. Additionally, the learned parameters of both models are in 

a deterministic form whereby it does not have a continuous representation that may cluster related features together.  

Hence, employing a deep learning model that can interpret unseen examples and cluster similar features is crucial for 

modeling the specific distribution of EBN. This topic has become a research gap that is yet to be studied and unravel its 

potential. One of the prominent generative models which is the variational autoencoder (VAE) has the ability to undertake this 

task. Works in [17-20] demonstrated the capability of VAE in modeling the image distribution under undesired conditions and 

successfully handled tasks, including image denoising, low-light compensation, and image restoration. Therefore, modeling 

the IIH properties of EBN can be an additional prospect for VAE to solve. VAE can be leveraged for this purpose as it can 

approximate the image feature distribution, embed them in a simpler representation of latent space, and disentangle this space 

to identify specific features corresponding to impurities in EBN.  

Leveraging VAE's ability to model complex distributions, β-VAE stands out as a compelling choice for impurity 

segmentation in EBN. Introducing a β parameter to the VAE objective function minimally modifies the architecture, enhancing 

its tunability while maintaining structural simplicity and interpretability. The β parameter controls the trade-off between 

reconstruction quality and disentanglement of the latent variable, promoting a more interpretable latent space where impurities 

can be separated from other features. This enables β-VAE to generalize effectively to unseen impurities, addressing the 

limitations of complex models like U-net [15] and hybrid autoencoders [16]. This makes it an ideal option for automating the 
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impurity segmentation process, offering both flexibility in learning from diverse impurity types and robustness against imaging 

challenges. 

In brief, the challenge of impurity segmentation in EBN images is compounded by IIH, which distorts pixel intensity and 

hampers segmentation performance. Current methods are struggling to model IIH effectively while relying on labor-intensive 

annotated datasets and lacking generalization to unseen data. Thus, the purpose of this study is to utilize the β-VAE with a 

specific latent disentanglement method in an attempt to model EBN’s IIH properties and identify the impurity features to 

segment them from the overall EBN component. To the best of current knowledge, this is the first attempt to model the EBN 

feature distribution in an unsupervised manner. The contributions of this study can be summarized as follows: 

• Propose and implement an unsupervised approach for modeling EBN images that mitigates intensity inhomogeneity, 

reducing reliance on annotated datasets.  

• Introduce an effective disentanglement technique that improves the interpretability of latent space feature distributions, 

allowing the model to adapt to various impurity types. 

Section 2 provides a detailed explanation of the proposed methodology and framework, followed by results and discussion 

in Section 3. The study concludes with Section 4, summarizing the findings and making recommendations for future works. 

2. Background and Proposed Methodology 

In this chapter, the background and proposed methodology for impurity segmentation in EBN images are presented. The 

chapter begins with an overview of the β-VAE, which discusses its core principles and components. The image acquisition 

process and dataset preparation are then described to ensure the creation of a well-structured dataset for model training. 

Following this, the development and training procedures of the model are described in detail. The methodology is then focused 

on modeling EBN and segmenting impurities using the β-VAE. Finally, the performance evaluation metrics used to validate 

the model’s reconstruction capability and segmentation performance are outlined. 

2.1.   β-Variational autoencoder (β-VAE) 

VAE is composed of an encoder-decoder architecture with convolutional feature extractors that learn and embed image 

features into a simpler representation in its latent space. Unlike traditional autoencoders that deterministically map input data 

to fixed points in the latent space, VAEs introduce stochasticity in their latent representations [21]. This allows them to capture 

the underlying data distribution more effectively, leading to a more expressive and flexible latent space with powerful modeling 

capabilities.  

As demonstrated in Eq. (2), the loss function in VAE governs two major components which are the log-likelihood, which 

controls image reconstruction quality, and the Kullback-Leibler (KL) divergence, which acts as a regularizer to measure the 

divergence between the posterior prior distributions [22]. Based on the equation, p(z) denotes the prior distribution, pθ (x|z) is 

the probabilistic decoder parametrized by the neural network that generates data x based on the latent variable, z,q∅ (z|x) is the 

variational posterior which approximates the posterior distribution of the latent variable z given the data x and is parameterized 

by an encoder network. The training objective of VAE is to maximize LVAE over the training data, which optimizes the log-

likelihood and the KL divergence. 

( )
( )

( )  ( ) ( ) 
 

|

 
 likelihood

log |   | ||
KL

z x
q

KL divergence
Log

L ELBOVAE E p x z D q z x p z 



= − 

 

(2) 

Prior distribution p(z), is often referenced with normal Gaussian distribution as in G (0, 1) where it expected the mean (µ) 

and standard deviation (σ) to be zero and one respectively. Thus, the posterior distribution q∅ (z|x), which can be represented 
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as G (μθ (x),𝜎𝜃
2(x)), is regularized to be as close as G (0, 1) by the KL divergence. This regularization clusters related features 

in the latent space, making it more disentangled and interpretable. However, in the EBN scenario, the complexity of its optical 

properties poses significant challenges for reconstruction.  

While VAEs aim to learn disentangled representations by separating features in the latent space, reconstructing images 

from such representations becomes challenging when the clusters are widely separated [23]. This can result in excessive noise 

or smoothening effects which disregards the intricate details of EBN structure. According to [24], applying a smaller weightage, 

known as β value, to the KL divergence as outlined in Eq. (2) can control this behavior. This adjustment transforms the VAE 

into what is known as β-VAE. This reduces the emphasis on enforcing a strict prior distribution in the latent space, allowing 

for more flexibility and potentially capturing a wider range of features during reconstruction. However, this comes with the 

trade-off of difficulties in disentangling the latent space which can be a challenge in interpreting the learned feature 

distributions. Thus, this will be addressed through a novel disentanglement approach involving the filtering and penalizing of 

latent dimensions, as explained in subsequent sections. The latent dimension in this context refers to the compressed 

representations of individual data points within the latent space, where each element corresponds to a specific latent dimension. 

2.2.   Image acquisition and dataset preparation 

The raw EBN used in this study is made into “chips” with a size of less than 4 mm in thickness and a diameter of 

approximately 25mm. It is based on the common sizing of the EBN products for packaging [14]. Two categories of EBN are 

used which are raw clean (RC) which is free from impurities, and raw unclean (RUC) which contains impurities, as shown in 

Fig. 1. 

  

(a) Raw clean (RC) category which contains  

                   no impurities 

(b) Raw Unclean (RUC) category which contains  

multiple impurities 

Fig. 1 Chip-sized EBN used in this study 

 

Fig. 2 Image acquisition setup with a fixed working distance of 25 cm 
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An industrial-grade Basler acA2500-14uc camera with a resolution of 1942 pixels × 2590 pixels is positioned 25 cm 

above the EBN sample as shown in Fig. 2 for image acquisition, making one pixel equivalent to 0.019 mm × 0.019 mm. This 

setup suffices to match the minimum observable impurity by human inspectors which is approximately 0.075 mm [13]. Besides 

laboratory general lighting, backlighting with a parallel angle to the camera is used to enhance the contrast between EBN and 

the background. A total of 150 EBN samples are utilized, capturing both front and back parts for each sample, resulting in 300 

images for the overall dataset. Capturing both sides of the sample is a physical augmentation performed to cater to variations 

in structure, light penetration, and impurities on both sides. This increases the learning instances and facilitates the deep 

learning model learning a broader range of spatial information. This will also reduce the dependency on placement orientation 

during actual inspection. 

 
Fig. 3 The augmentation and division of the dataset 

The preparation of the entire dataset and an estimated data quantity are illustrated in Fig. 3. The ratio of RC to RUC 

samples is established at 1:2, signifying 50 samples for RC and 100 samples for RUC. This ratio arrangement is chosen to 

balance the instances between both categories since most of the EBN regions in RUC images that are free from impurities will 

be categorized as RC when the image is turned into patches. Even with this ratio, the instances of RC still outnumber RUC, 

but it is still acceptable as the primary focus is to determine the EBN distribution, which requires more RC EBN instances 

compared to the impurities. A total of 30 images are reserved as test datasets while the remaining are allocated for training.  

The raw training images will undergo further pre-processing, including rotational transformations at 90º, 180º, and 270º 

angles, making the quantity increase to 1080 samples in total for RC and RUC. This is performed to make the model 

rotationally invariant. Then, random cropping is applied to both the training and testing datasets to simplify the data loading 

process for model training and prediction. Eventually, the overall dataset will be in the form of patches with 256 x 256 pixels 

size. Out of all generated patches, 20 to 30 patches for each image containing only background without any EBN or impurities 

will be excluded. This results in approximately 28,800 and 14,400 patches for RC and RUC respectively in the training dataset. 

Meanwhile, the testing sample consists of approximately 700 and 1400 patches for RC and RUC respectively. 

2.3.   Model development and training 

In this study, a computer with Intel®  Xeon®  W-1370P at 3.60GHz, 8 Core(s) CPU, 16 GB NVIDIA RTX A4000 GPU, 

and 32 GB DDR4 RAM module is utilized to develop the deep learning model. The VAE model architecture, shown in Fig. 4, 

is configured based on the results of the hyperparameter tuning which are explained later in this section. The model is employed 

throughout this study to learn the EBN and impurity features. In brief, the model architecture consists of three main components 

Rotation  

(90º,180º, 270º) 

Random 
cropping 

150 

Samples 

• Each image generates 70 patches. 

• ± 20-30 background patches are removed per image.  

• ± 50% of RUC images contain RUC patches, while 

the remaining are categorized under RC patches. 

50 RC 

100 

RUC 

100 RC 

200 

RUC 

300 Images 

Testing 

Training 

10 RC 

20 RUC 

90 RC 180 

RUC 

360 RC 720 

RUC 

Training 

± 700 RC Patches 

± 1400 RUC Patches 

± 28800 RC Patches 

± 14400 RUC Patches 

Training 

Testing 

Captured front and back side 

1942 pixels × 2590 pixels 

1942 pixels × 2590 pixels 

256 pixels × 256 pixels 
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which are the encoder, latent space, and decoder. The encoder consists of a sequence of convolutional (Conv) layers that 

progressively reduce the spatial dimensions of the input while extracting its feature representations. It maps the input data to 

a compact representation in the latent space, which is parameterized by two convolutional layers: one for the mean (μ) and 

another for the standard deviation (σ) of the latent variables. The latent space represents compressed data formed by sampling 

latent variables using the reparameterization trick, z = µ+ σ ⋅ ϵ, where ϵ is random noise sampled from a standard normal 

distribution. This step enforces the probabilistic nature of latent space. The decoder, in turn, reconstructs the input data from 

this latent representation using transposed convolutional (TConv) layers and upsampling operations. This division of the model 

into encoder, latent space, and decoder components aligns with the general structure of VAE, where the latent space serves as 

the probabilistic bottleneck, enforcing a distributional prior during training. Based on the model architecture, Conva,b,c and 

TConva,b,c represent the convolutional and the transposed convolutional layers, respectively. In this context, "a" represents the 

number of input channels, "b" denotes the number of channels after convolution, and "c" specifies the dimensions of the c×c 

(width×height) of the convolution kernel, which determines the spatial extent of the filter applied to the input. 

 

Fig. 4 VAE model architecture used in this study 

Batch normalization is represented as bn, while the leaky rectified linear unit (LReLU) and hyperbolic tangent activation 

functions are denoted as LReLU and TanH respectively. The "Legends" in Figure 4 refer to the graphical symbols used to 

represent different operations in the model architecture: the yellow triangle indicates Max pooling₂,₂, which is a downsampling 

operation that reduces the spatial dimensions of feature maps by taking the maximum value within each 2×2 window, with a 

stride of 2 to ensure non-overlapping regions. The green triangle represents Upsample₂, which is an upsampling operation that 

increases the spatial dimensions of feature maps using bicubic interpolation, scaling them by a factor of 2 to restore the 

resolution. The latent dimension (DL) value will be determined based on the hyperparameter study. Throughout the training, 

early stopping is applied with the stopping criterion set to 10% of total epochs to avoid overfitting. Other general 

hyperparameters used are listed in Table 1. 

Table 1 General hyperparameter used throughout the study 

Hyperparameter Value 

Batch size 16 

Max epochs 100 

Initial learning rate 1e-4 

Optimizer Adam 

Weight decay 1e-4 
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To further optimize the model architecture, the hyperparameter tuning is conducted to examine a certain range of 

hyperparameter values namely β value, latent dimension, and layer depth. Table 2 demonstrates the range for these values 

which is experimentally examined to obtain the best combination. The best hyperparameter combination is evaluated based on 

its effect on the model in minimizing time and computational resources, optimizing VAE loss, and the ability to preserve the 

reconstruction quality. These factors are essential for selecting an effective feature extractor model. 

Table 2 Range values and variations for hyperparameter tuning 

Layer Depth Latent Dimension, DL β Value 

5 Layers 5, 10, 20, 30 3.0, 1.0, 0.1, 0.01, 0.001, 0.0001 

4 Layers 20 0.001 

6 Layers 20 0.001 

As explained in Section 2.1, the β value in VAE signifies the weightage of KL divergence from the overall VAE equation. 

A higher value forces the model to create a more disentangled distribution, improving representation [25]. However, this comes 

with the trade-off of the reconstruction quality, where lower values are preferable. The latent dimension value affects the 

capacity of latent space. Higher values allow for more learned features to be stored but it may reduce clarity when it is too 

large, making feature clustering less efficient [26]. This may cause the range of learned distribution to become wider and more 

difficult to modulate specific features during reconstruction. Layer depth influences the learning capability. A deeper network 

captures more underlying information contained in the image. However, it may consume significant computational resources 

and time and is more difficult to optimize [27]. Thus, the hyperparameter tuning is used to evaluate all these hyperparameter 

effects on the model and determine the optimal combination. 

2.4.   EBN modeling and impurity segmentation 

After training and identifying the optimal hyperparameter, the model's latent space comprising mean (µ) and standard 

deviation (σ) values in each latent dimension is flattened into a 1-D tensor to impose thresholds on each of the individual 

dimensions in the latent space. The threshold is initially set at approximately two-thirds of the highest mean value and is 

experimentally adjusted to optimize reconstruction quality and segmentation performance.  

 

Fig. 5 Proposed disentanglement learning which utilized threshold filtering of individual dimension in β-VAE latent space 

The two-thirds value follows the empirical rule which classifies normal data within the range of the overall distribution 

thus the abnormal data or anomalies lie further from this region [28]. It also aligns with the nature of VAE which follows the 

normal distribution which forces the mean value in each dimension to be close to zero [25]. Thus, the dimensions with higher 

values especially exceeding two-thirds of overall latent values, are considered anomalies. Therefore, this threshold is set to 
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categorize latent dimensions into two groups: one with mean values exceeding the threshold and another with values below it. 

To obtain a clean EBN without impurities, a binary condition is established. Dimensions with mean values exceeding the 

threshold are penalized and set to 0, while those with values lower than the threshold retain their original values. The process 

is reversed if the goal is to exclusively reconstruct impurities, as illustrated in Fig. 5. 

Meanwhile, Eq. (3) below illustrates how the mean value for each dimension is checked with the threshold value n, which 

is made as a condition to determine the resultant mean value, µ R that will be used to reconstruct impurities only: 

0,

,

R

R A A

A n

n

 

  

= 

= 



  

(3) 

A suitable threshold value is needed because setting it too low the model may fail to suppress some of the EBN regions 

during reconstruction. However, if the value is too high, impurities may not be able to be reconstructed and localized. Therefore, 

a range of thresholds is tested at 0.5 intervals (both increasing and decreasing) from the initial value to identify the optimal 

threshold based on performance evaluation metrics. Once the threshold is determined, the values in the resulting latent 

dimension, ZR, are obtained with a targeted distribution representing the impurity features. The resultant decoder, DecoderR, 

utilizes the filtered latent space to reconstruct and locate impurities. The reconstructed impurities then undergo adaptive 

thresholding with a window size of 11 to turn it into a binary mask before overlaying it with the ground truth to assess detection 

performance. 

2.5.   Performance evaluation 

The performance measurement for this study consists of both qualitative and quantitative evaluations. During training, 

qualitative evaluation assesses the visual quality of the image reconstruction to identify the best hyperparameter combination. 

It is complemented with the value of VAE loss to support the hyperparameter tuning process. Meanwhile, for testing, 

quantitative evaluation employs several metrics such as IoU and pixel-based classification derived from the confusion matrix 

are used to examine the impurities segmentation performance. The impurities reconstructed by the DecoderR are overlaid with 

the ground truth to identify intersecting, missed, or falsely detected regions. Fig. 6 shows how the IoU is computed for this 

study.  

Comparing reconstructed impurities with the ground truth determines the confusion matrix components. Based on this, 

the true positive values (TP) indicate the model predicting the correct impurities, the false positives (FP) specify the model 

misclassifies the false impurities in its detection and the false negatives (FN) point out the impurities have not been detected.  

 

Fig. 6 IoU metric derivation. It evaluates the intersection of predicted impurities with ground truth 
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by the model. The true negative value (TN) is not used in this study as no specific false impurities are annotated. The precision, 

recall, F1 score, and misclassification rate can be computed from the confusion matrix, as presented below 

Precision
F

TP

TP P
=

+
  (4) 

 Recall
TP

TP FN
=

+  
(5) 

  1    2F Score
Precision Recall

Precision Recall
−


=

+
 (6) 

 
 

FP FN
Misclassification rate

TP FP FN

+
=

+ +
 (7) 

3. Results and Discussion 

This chapter presents the results and discussion of the impurity segmentation in EBN images. Section 3.1 details the 

process of hyperparameter tuning for the VAE architecture, examining the configurations that optimize model performance. 

The segmentation results for EBN impurities are then presented in Section 3.2, discussing the model performance in modeling 

the IIH and segmenting the impurities.  

3.1.   Hyperparameter tuning for VAE architecture 

The hyperparameter combinations outlined in Table 2 of Section 2.3 are evaluated to see how they affect the model 

performance, especially the visual quality of reconstructed images and VAE loss value. The β value played a major role in 

tuning the image reconstruction quality. As depicted in Fig. 7, when the β value is set to 3.0, the image becomes smoothened 

and reconstructs only the background because the dominance of KL divergence suppresses the impact of the reconstruction 

loss in comparing the reconstructed image with the original image. As a result, the latent space becomes smoothly distributed 

and disentangled but possesses minimal capacity for interrelation among latent dimensions to be sampled, thus rendering it to 

reconstruct a meaningful image.  

As the β value decreases, the reconstruction quality improves, preserving more image details. A significant change in 

reconstruction quality from β equals 1.0 until 0.01 is observed while the difference is getting discrete between 0.001 to 0.0001. 

Moreover, the VAE loss as summarised in Table 3 shows a slight difference, decreasing from 0.032 at β = 0.001 to 0.028 at β 

= 0.0001. Thus, a β value of 0.001 is chosen to obtain a high reconstruction quality and at the same time, the latent 

disentanglement effect is still being preserved. 

 

Fig. 7 Different reconstructed image based on β values 

Original β = 1.0 β = 0. 1 β = 0.01 β = 0.001 β = 3.0 β = 0.0001 
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Table 3 VAE loss values in varying latent dimensions and β values 

Latent dimension, DL β =3.0 β =1.0 β =0.1 β =0.01 β =0.001 β =0.0001 

5 0.370 0.250 0.135 0.074 0.041 0.030 

10 0.370 0.216 0.113 0.061 0.035 0.029 

20 0.370 0.179 0.095 0.051 0.032 0.028 

30 0.370 0.160 0.085 0.045 0.031 0.027 

In terms of latent dimension, the changes in value which indicate the overall size of latent space, have minimal effect on 

reconstruction details except that higher dimensions exhibit better color contrast as presented in Fig. 8. A latent dimension of 

20 already shows the optimal details, sufficient to distinguish the contrast between EBN and impurities. The VAE loss also 

shows a minimal difference of only 0.001 between latent dimensions of 20 and 30. Thus, a latent dimension with a size of 20 

is chosen to avoid the complexity of interpreting higher latent dimensions. 

 

Fig. 8 Different reconstructed image based on latent dimension values 

The layer depth effect does not contribute significant changes in model performance, especially the reconstruction quality 

and the loss value. As shown in Fig. 9, the reconstruction quality is relatively similar and the VAE loss as in Table 4 indicates 

a minor difference between all of the layer configurations. The model with four convolutional layers achieves a slightly better 

image reconstruction quality and a lower VAE loss value than the five convolutional layers model. Meanwhile, the model with 

six convolutional layers obtains the lowest VAE loss and shows the most refined reconstruction image in terms of contrast and 

details. However, the training time is greatly affected by the changes in layer configuration. The model which consists of five 

convolutional layers required approximately 3.8 hours to finish training, while the models with four convolutional layers and 

six convolutional layers took around 3.6 hours and 12 hours to finish training, respectively.  

 

Fig.9 Different reconstructed images based on the depth of the convolutional layer  
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Table 4 VAE loss values and training time in different convolutional layers depth 

Convolutional layers VAE loss Training time 

4 0.030 3.62 hours 

5 0.032 3.83 hours 

6 0.029 12.08 hours 

With minimal differences between each other in terms of reconstruction quality and VAE loss, the four-convolutional-

layers configuration is the optimal choice as it requires less time and computational resources. The VAE model is finalized 

using these hyperparameters. 

3.2.   EBN impurity segmentation result  

To examine the impurity segmentation performance, the testing datasets that are not presented in the training and 

validation are used. The reconstructed impurities are compared with the ground truth to calculate several metrics including 

IoU, precision, recall, F1 score, and misclassification rate. This indicates how effectively the model reconstructs and pinpoints 

impurities based on the learned features. A range of threshold values is examined to analyze their impact on segmentation 

performance. The overall result is summarized in Table 5. 

Table 5 Overall result of the impurities segmentation based on different threshold values, n 

Threshold, n IoU Precision Recall F1 score Misclassification rate 

1.5 46.65 47.32 97.86 62.97 53.35 

2.0 68.05 73.84 90.08 80.64 31.95 

2.5 73.08 85.64 83.22 84.01 26.92 

3.0 62.62 94.14 65.75 76.16 37.38 

3.5 28.71 95.72 29.71 41.88 71.29 

In summary, the model attains its optimal performance with a threshold value set to 2.5 (two-thirds of the overall µ value), 

yielding scores of 73.08% IoU, 85.64% precision, 83.22% recall, 84.01% F1 score, and 26.92% misclassification rate. This 

model outperforms the highest IoU and F1 scores while exhibiting the lowest misclassification rate. The highest IoU value 

indicates the impurities segmented by this model have the highest frequency of correct overlapping with the ground truth. 

Moreover, the model's lowest misclassification rate signifies its minimal tendency to segment the FP or FN impurities. The 

precision and recall score of this model is not the highest. Higher threshold models achieve stricter filtering, reducing the FP 

value, while lower threshold value models reconstruct more regions, reducing FN values.  

 

Fig. 10 Simple impurities structure which have a continuous and solid region 
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Nonetheless, this model strikes a good balance between precision and recall, resulting in the highest F1 score. The F1 

score, the harmonic mean of precision and recall balances rigid and loose threshold tolerances. A deeper analysis revealed a 

few aspects that play a major role in these performance scores. The segmentation performs better when it is tested on a simple 

impurity type characterized by a continuous or solid region, as depicted in Fig. 10. The threshold value of 2.5 effectively 

segments the impurity features while suppressing the EBN region, resulting in fewer FP and FN in this impurity type.  

 

Fig. 11 Complex impurities structure which contained thin and interwoven branches 

 (a) Thin branches of impurities missed to be reconstructed 

 (b) The reconstruction of interwoven impurities becomes smoothen 

 (c) The thick EBN strand failed to be suppressed 

Meanwhile, when testing on a complex impurity structure with intricate details such as thin and interwoven branches, as 

depicted in Fig. 11(a), the segmentation performance significantly dropped as it failed to reconstruct these particular details. 

This limitation is attributed to the probabilistic nature of VAE latent space, which tends to force the distribution to be normally 

distributed. This smoothens the image, causing blurring effects in the reconstruction. Moreover, the blurring effects in VAE 

contribute to an increased occurrence of FP, where more regions are reconstructed as impurities as in Fig. 11(b). Table 6 

provides a detailed breakdown of impurity segmentation performance for respective impurity types, revealing higher 

performance metric scores in simple structure impurities compared to complex ones. The complex structure proved to be a 

pivotal factor influencing the overall model performance. Using a higher resolution camera could mitigate this issue as smaller 

details could be captured with a greater pixel representation.  

Another crucial factor in impurity segmentation via selective latent filtering is the dimension with borderline feature values. 

In this context, the feature encompasses values marginally higher or lower than the threshold, influencing either the occurrence 

of false positives (FP) or false negatives (FN). This scenario commonly involves thick EBN strands, exhibiting intrinsic similarity 

with the features of impurities, as illustrated in Fig. 11(c).  

Despite these drawbacks, the obtained score still demonstrates a noteworthy outcome. As indicated in [29], IoU and F1 score 

values exceeding 70% are considered satisfactory. This benchmark is surpassed with an overall IoU score of 73.08% and an F1 

score of 84.01%. Additionally, when converting IoU to a Dice coefficient, as outlined in [30], the model attains a Dice coefficient 

of 84.44%, surpassing values reported in [15] of 76.46% ± 2.4% and in [16] at 61.80%. However, comparisons with other metrics, 

such as F1 score, precision, recall, and misclassification rate, are not directly viable, as existing methods primarily focus on 

impurity detection, whereas this study concentrates on impurity segmentation. The former calculates scores based on the count of 

detected impurities, while the latter employs a pixel-wise calculation. Apart from that, the proposed method effectively deals with 

small β values, particularly in disentangling the VAE latent space. This is crucial for studying complex object composition like 

EBN, where higher β values are less effective.  
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Table 6 Result by impurity category which consists of simple and complex types 

Impurity type IoU Precision Recall F1 score Misclassification rate 

Simple 78.26 89.04 86.90 87.54 21.74 

Complex 66.17 81.11 78.31 79.30 33.83 

4. Conclusion  

In this study, the feature distribution of the inhomogeneous properties of EBN and its impurities has been successfully 

modeled using β-VAE latent space in an unsupervised manner. Selective filtering and penalizing of latent dimensions were 

successfully developed to distinguish EBN features from their impurities, enabling targeted reconstruction or suppression to 

highlight pure EBN regions or pinpoint the impurities. From the results, the conclusion can be drawn as follows: 

(1) Despite limitations such as blurring effects and smoothened reconstructions inherent in VAEs, this method surpasses the 

results of existing studies in [23] and [24], demonstrating its effectiveness. 

(2) The misclassification rate is mainly caused by the complex-type impurities, which lose fine details from the simplification 

of the β-VAE reconstruction. 

Therefore, future studies should focus on improving the β-VAE reconstruction quality which could have a high potential 

to improve the segmentation performance. Future improvements and major areas of focus are suggested as follows: 

(1) Use images with higher resolution so that the VAE feature extractor captures finer details. 

(2) Incorporation of more sophisticated encoding architecture to enable a more refined feature extraction and improve the 

segmentation performance. 

(3) Exploration of a more complex latent disentanglement method to further adapt with several limitations addressed in this 

study. 

(4) Implementation in other imaging domains to test the applicability and effectiveness of the method proposed in this study. 
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