Stretchable, Patch-Type, Wireless, 6-axis Inertial Measurement Unit for Mobile Health Monitoring


  • Jae Keun Lee Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea
  • Kangil Kim Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea
  • Sangmin Lee Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea



Bluetooth low energy (BLE), inertial measurement unit (IMU), epidermal electronics, serpentine-shaped interconnection


Wearable devices which measure and transfer signals from the human body can provide useful biometric data for various biomedical applications. In this paper, we present an implementation of the advanced Inertial Measurement Unit (IMU) with wireless communication technology for mobile health monitoring. The device consists of rigid silicon-based components on a flexible/stretchable substrate for applications in epidermal electronic devices to collect precise data from the human body. Using the Bluetooth Low Energy (BLE) System-on-a-chip (SoC), the device can be miniaturized and portable, and the collected data can be processed with low power consumption. The dimensions of the implemented system are approximately 40 mm × 40 mm × 100 mm. Also, the device can be attached closely to human skin, which results in minimized signal distortion due to body movements or skin deformations. In order to achieve device flexibility and stretch ability, the interconnection wires are designed as serpentine-shaped structures on a stretchable substrate. The previously reported “cut-and-paste” method is utilized to fabricate the device that produces complex, twisty interconnections with thin metal sheets. The implemented patch-type, wireless, 6-axis IMU is expected to have potential in various applications, such as health monitoring, dependency care, and daily lifelogging.


D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim, S. Wang, et al., “Epidermal electronics,” Science, vol. 333, no. 6044, pp. 838-843, August 2011.

H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, et al., “A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy,” Nature Nanotechnology, vol. 11, no. 6, pp. 566-572, 2016.

A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, et al., “Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes,” Nature Nanotechnology, vol. 12, no. 9, pp. 907-913, 2017.

P. Salvo, A. Pingitore, A. Barbini, and F. Di Francesco, “A wearable sweat rate sensor to monitor the athletes’ performance during training,” Science & Sports, vol. 33, no. 2, pp. e51-e58, October 2017.

W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, “Flexible electronics toward wearable sensing,” Accounts of Chemical Research, vol. 52, no. 3, pp. 523-533, 2019.

Y. Liu, J. J. S. Norton, R. Qazi, Z. Zou, K. R. Ammann, H. Liu, et al., “Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces,” Science Advances, vol. 2, no. 11, pp. e1601185, November 2016.

S. Huang, Y. Liu, Y. Zhao, Z. Ren, and C. F. Guo, “Flexible electronics: stretchable electrodes and their future,” Advanced Functional Materials, vol. 29, no. 6, pp. 1805924, 2019.

S. Lim, D. Son, J. Kim, Y. B. Lee, J. Song, S. Choi, et al., “Wearable electronics: transparent and stretchable interactive human machine interface based on patterned graphene heterostructures,” Advanced Functional Materials, vol. 25, no. 3, pp. 375-383, November 2014.

M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, et al., “An ultra-lightweight design for imperceptible plastic electronics,” Nature, vol. 499, no. 7459, pp. 458-463, July 2013.

Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, et al., “Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates,” Nature, vol. 454, no. 7203, pp. 495-500, July 2008.

B. Crone, A. Dodabalapur, Y. Y. Lin, R. Filas, Z. Bao, A. LaDuca, et al., “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, no. 6769, pp. 521-523, 2000.

W. Teufl, M. Lorenz, M. Miezal, B. Taetz, M. Frohlich, and G. Bleser, “Towards inertial sensor based mobile gait analysis: event-detection and spatio-temporal parameters,” Sensors, vol. 19, no. 1, pp. 38, 2019.




How to Cite

J. K. Lee, K. Kim, and S. Lee, “Stretchable, Patch-Type, Wireless, 6-axis Inertial Measurement Unit for Mobile Health Monitoring”, Proc. eng. technol. innov., vol. 14, pp. 16–21, Jan. 2020.