The Effect of the Curvature-Rate on the Response of Local Sharp-Notched SUS304 Stainless Steel Tubes under Cyclic Bending
Keywords:
local sharp notch, SUS304 stainless steel tubes, notch depth, curvature-rate, cyclic bending, moment, curvature, ovalizationAbstract
In this study, the response of local sharp-notched SUS304 stainless steel tubes with different notch depths of 0.2, 0.4, 0.6, 0.8 and 1.0 mm subjected to cyclic bending at different curvature-rates of 0.0035, 0.035 and 0.35 m-1s-1 were experimentally investigated. The tube bending machine and curvature-ovalization measurement apparatus, which was designed by Pan et al. [1], were used for conducting the curvature-controlled cyclic bending. For a constant curvature-rate, the moment-curvature curve revealed that the cyclic hardening and became a steady loop after a few bending cycles; the notch depth had almost no influence on the curves. Moreover, the ovalization-curvature curve increased in an increasing and ratcheting manner with the number of bending cycles. Large notch depths resulted in larger ovalization of the tube cross-section. In addition, for a constant notch depth, higher curvature-rates led to larger cyclic hardening and faster increasing of ovalization.
Published
How to Cite
Issue
Section
License
Submission of a manuscript implies: that the work described has not been published before that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication. Authors can retain copyright in their articles with no restrictions. is accepted for publication. Authors can retain copyright of their article with no restrictions.
Since Jan. 01, 2019, AITI will publish new articles with Creative Commons Attribution Non-Commercial License, under The Creative Commons Attribution Non-Commercial 4.0 International (CC BY-NC 4.0) License.
The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.