Effects of Bi3+ Ion-Doped on the Microstructure and Photoluminescence of La0.97Pr0.03VO4 Phosphor

  • Hao-Long Chen Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan
  • Hung-Rung Shih Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan
  • Sean Wu Department of Digital Game and Animation Design, Tungfang Design University, Kaohsiung, Taiwan
  • Yee-Shin Chang Department of Electronic Engineering, National Formosa University, Yunlin, Taiwan
Keywords: sol-gel method, Pr3 ion, sensitizer, phosphors, flux

Abstract

The objective of this paper is to enhance the emission intensity of La0.97Pr0.03VO4 single-phased white light emitting phosphor. The Bi3+ ion-doped La0.97Pr0.03VO4 single-phased white light emitting phosphors are synthesized using a sol-gel method. The structure and photoluminescence properties of (La0.97-yBiy)Pr0.03VO4 (y = 0-0.05) phosphor are also examined. The XRD results show that the structure of La0.97Pr0.03VO4 phosphors with different concentrations of Bi3+ ion doping keeps the monoclinic structure. The SEM results show that the phosphor particles become smoother when the Bi3+ ion is doped. The excitation band for La0.97Pr0.03VO4 phosphor exhibits a blue shift from 320 nm to 308 nm as the Bi3+ ion contents are increased. The maximum emission intensity is achieved for a Bi3+ ion content of 0.5 mol%, which is about 30% greater than that with no Bi3+ ion doped. The CIE chromaticity coordinates are all located in the near white light region for different Bi3+ ion-doped La0.97Pr0.03VO4 phosphors.

References

H. Yie, S. Kim, Y. Kim, and H. S. Kim, “Modifying Optical Properties of Phosphor-in-Glass by Varying Phosphor Size and Content,” Journal of Non-Crystalline Solids, vol. 463, pp. 19-24, May 2017.

W. Dai, J. Hu, S. Shi, J. Zhou, K. Huang, S. Xu, et al., “Optical Properties of Aluminosilicate Phosphor for Lighting and Temperature Sensing,” Journal of Luminescence, vol. 213, pp. 241-248, September 2019.

A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The Promise and Challenge of Solid-State Lighting,” Physics Today, vol. 54, no. 12, pp. 42-47, December 2001.

E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science, vol. 308, no. 5726, pp. 1274-1278, May 2005.

S. Nakamura, M. Senoh, and T. Mukai, “High-Power InGaN/GaN Double-Heterostructure Violet Light Emitting Diodes,” Applied Physics Letters, vol. 62, no. 19, pp. 2390-2392, May 1993.

B. Yang, Z. Yang, Y. Liu, F. Lu, P. Li, Y. Yang, et al., “Synthesis and Photoluminescence Properties of the High-Brightness Eu3+-Doped Sr3Y(PO4)3 Red Phosphors,” Ceramics International, vol. 38, no. 6, pp. 4895-4900, August 2012.

K. Toda, Y. Kawakami, S. I. Kousaka, Y. Ito, A. Komeno, K. Uematsu, et al., “New Silicate Phosphors for a White LED,” IEICE Transactions on Electronics, vol. 89-C, no. 10, pp. 1406-1412, October 2006.

Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material, U.S. Patent, 5,998,925, December 07, 1998.

Y. Y. Tsai, H. R. Shih, M. T. Tsai, and Y. S. Chang, “A Novel Single-Phased White Light Emitting Phosphor of Eu3+ Ions-Doped Ca2LaTaO6,” Materials Chemistry and Physics, vol. 143, no. 2, pp. 611-615, January 2014.

X. Liu, C. Lin, and J. Lin, “White Light Emission from Eu3+ in CaIn2O4 Host Lattices,” Applied Physics Letters, vol. 90, no. 8, 081904, February 2007.

W. Fan, X. Song, S. Sun, and X. Zhao, “Microemulsion-Mediated Hydrothermal Synthesis and Characterization of Zircon-Type LaVO4 Nanowires,” Journal of Solid State Chemistry, vol. 180, no. 1, pp. 284-290, January 2007.

W. Fan, W. Zhao, L. You, X. Song, W. Zhang, H. Yu, et al., “A Simple Method to Synthesize Single-Crystalline Lanthanide Orthovanadate Nanorods,” Journal of Solid State Chemistry, vol. 177, no. 12, pp. 4399-4403, December 2004.

A. B. Meggy, B. L. Tonge, and R. A. Williams, “Cobalt Complexes of Polyglycines,” Nature, vol. 198, pp. 1084-1085, June 1963.

Y. Terada, K. Shimamura, V. V. Kochurikhin, L. V. Barashov, M. A. Ivanov, and T. Fukuda, “Growth and Optical Properties of ErVO4 and LuVO4 Single Crystals,” Journal of Crystal Growth, vol. 167, no. 1-2, pp. 369-372, September 1996.

A. Huignard, T. Gacoin, and J. P. Boilot, “Synthesis and Luminescence Properties of Colloidal YVO4: Eu Phosphors,” Chemistry of Materials, vol. 12, no. 4, pp. 1090-1094, March 2000.

H. L. Chen, L. K. Wei, and Y. S. Chang, “Characterizations of Pr3+ Ion-Doped LaVO4 Phosphor Prepared Using a Sol-Gel Method,” Journal of Electronic Materials, vol. 47, no. 11, pp. 6649-6654, November 2018.

H. Terraschke and C. Wickeder, “UV, Blue, Green, Yellow, Red, and Small: Newest Developments on Eu2+-Doped Nanophosphors,” Chemical Reviews, vol. 115, no. 20, pp. 11352-11378, October 2015.

Y. S. Chang, H. R. Shih, M. T. Tsai, K. T. Liu, and L. G. Teoh, “Photoluminescence Properties of La3+-Doped BaY1.94Eu0.06ZnO5 Phosphor Prepared Using a Sol-Gel Method,” Journal of Luminescence, vol. 157, pp. 98-103, January 2015.

W. Dörr, H. Assmann, G. Maier, and J. Steven, “Bestimmung der Dichte, Offenen Porosität, Porengrössenverteilung und Spezifischen Oberflache von UO2-Tabletten,” Journal of Nuclear Materials, vol. 81, no. 1-2, pp. 135-141, April 1979.

C. H. Liang, Y. C. Chang, and Y. S. Chang, “Enhancement of Luminescent Properties by Sr2+ Substituting Ba2+ in Red-Emitting Phosphors: Ba1-ySryLa2-xZnO5: xEu (x=0-1, y=0-0.7),” Journal of the Electrochemical Society, vol. 156, no. 10, J303, January 2009.

G. Blasse and B. C. Grabmaier, Luminescent Materials, Berlin: Springer-Verlag Berlin Heidelberg, 1994.

S. Shionoya, W. M. Yen, and H. Yamamoto, Phosphor Handbook, 2nd ed. United States: CRC Press, 2006.

K. A. Gschneidner, J. C. G. Bünzli, and V. K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, United Kingdom: Elsevier B. V., 2011.

C. Hsu and R. C. Powell, “Energy Transfer in Europium Doped Yttrium Vanadate Crystals,” Journal of Luminescence, vol. 10, no. 5, pp. 273-293, June 1975.

H. Zhang, X. Fu, S. Niu, G. Sun, and Q. Xin, “Photoluminescence of YVO4: Tm Phosphor Prepared by a Polymerizable Complex Method,” Solid State Communications, vol. 132, no. 8, pp. 527-531, November 2004.

C. D. M. Donega, A. Meijerink, and G. Blasse, “Non-Radiative Relaxation Processes of the Pr3+ Ion in Solids,” Journal of Physics and Chemistry of Solids, vol. 56, no. 5, pp. 673-685, May 1995.

H. Hoefdraad and G. Blasse, “Green Emitting Praseodymium in Calcium Zirconate,” Physica Status Solidi (A), vol. 29, no. 1, pp. K95-K97, May 1975.

V. R. Prasad, S. Damodaraiah, S. N. Devara, and Y. C. Ratnakaram, “Photoluminescence Studies on Holmium (III) and Praseodymium (III) Doped Calcium Borophosphate (CBP) Phosphors,” Journal of Molecular Structure, vol. 1160, no. 15, pp. 383-392, May 2018.

X. Wang, J. Wang, X. Li, H. Luo, and M. Peng, “Novel Bismuth Activated Blue-Emitting Phosphor Ba2Y5B5O17: Bi3+ with Strong NUV Excitation for WLEDs,” Journal of Materials Chemistry C, vol. 7, no. 36, pp. 11227-11233, September 2019.

M. Puchalska, E. Zych, and P. Bolek, “Luminescences of Bi3+ and Bi2+ Ions in Bi-Doped CaAl4O7 Phosphor Powders Obtained via Modified Pechini Citrate Process,” Journal of Alloys and Compounds, vol. 806, no. 25, pp. 798-805, October 2019.

J. Zhong, W. Zhao, W. Zhuang, W. Xiao, Y. Zheng, F. Du, et al., “Origin of Spectral Blue Shift of Lu3+-Codoped YAG:Ce3+ Phosphor: First-Principles Study,” ACS Omega, vol. 2, no. 9, pp. 5935-5941, September 2017.

L. G. Teoh, M. T. Tsai, Y. C. Chang, and Y. S. Chang, “Photoluminescence Properties of Pr3+ Ion-Doped YInGe2O7 Phosphor under an Ultraviolet Irradiation,” Ceramics International, vol. 44, no. 3, pp. 2656-2660, February 2018.

Published
2021-05-19
How to Cite
[1]
H.-L. Chen, H.-R. Shih, S. Wu, and Y.-S. Chang, “Effects of Bi3+ Ion-Doped on the Microstructure and Photoluminescence of La0.97Pr0.03VO4 Phosphor”, Adv. technol. innov., May 2021.
Section
Articles