Simple Communication Interface for a Radar Detector in the Moments Space

  • Camilo Guillén Department of Telecommunication and Telematics, Technological University of Havana ; José Antonio Echeverría, CUJAE, La Habana, Cuba
  • Greysi Casas Department of Telecommunication and Telematics, Technological University of Havana ; José Antonio Echeverría, CUJAE, La Habana, Cuba
  • David Frómeta Department of Telecommunication and Telematics, Technological University of Havana ; José Antonio Echeverría, CUJAE, La Habana, Cuba
  • Nelson Chávez Department of Telecommunication and Telematics, Technological University of Havana ; José Antonio Echeverría, CUJAE, La Habana, Cuba
Keywords: DRACEC method, radar, communication interface, UART

Abstract

The method of Radar Target Detection by Analysis and Statistical Classification of the Cellular Emission (DRACEC) can be functionally divided into three fundamental stages: Acquisition, Adaptation, and Detection. During Acquisition it is required to continuously exchange information between the hardware in FPGA and the software, without affecting the performance of the latter. This paper proposes the simplest communication interface that satisfies these requirements when DRACEC is applied to a small searching window. The solution is implemented on the serial port and ensures that samples stored in FPGA are available at the computer for the remaining processing stages. One fundamental characteristic of the proposal is a protocol designed to control the communication flow, which is implemented through a dedicated program thread. This allows software performance to not deteriorate during communication and lays the foundations for using multithreading techniques to develop the stages of DRACEC.

References

N. Chávez and C. Guillén, “Radar detection in the moment's space of the scattered signal parameters,” Digital Signal Processing, vol. 83, pp. 359-366, 2018.

N. Chávez, “Detección y alcance de radar: la alerta temprana de blancos en fondos enmascarantes y una solución al problema,” Ph. D. dissertation, Instituto Técnico Militar “José Martí”, La Habana, 2002.

C. Guillén, “Formación de la muestra aleatoria y cálculo de los momentos estadísticos para un detector DRACEC,” M.Sc. dissertation, Universidad Tecnológica de La Habana “José Antonio Echeverría”, CUJAE, La Habana, 2018.

C. Guillén, C. L. Marcos, and N. Chávez, “Variantes de sistema de almacenamiento para un detector de radar en el espacio de los momentos,” Revista de Ingeniería Electrónica, Automática y Comunicaciones, RIELAC, vol. 38, pp. 65-71, 2017.

L. A. Miller, “The role of FPGAs in the push to modern and ubiquitous arrays,” Proceedings of the IEEE, vol. 104, no. 3, pp. 576-585, 2016.

Qt Creator Manual: Vers. 4.3.1, The Qt Company Ltd., 2017.

L. Zhi, Qt 5 C++ GUI programming cookbook, Birmingham, UK., Packt Publishing Ltd., 2016.

Cyclone II FPGA Starter Board Schematic Diagram: Rev. 1.1A, Altera Corporation, 2006.

Cyclone II FPGA Starter Development Board Reference Manual: Vers. 1.0, Altera Corporation, 2006.

NAVI-RADAR 4000 Technical Reference: Vers. 1.11.002, Transas Ltd., 2007.

Scanner Unit 25 kW with Serial Control SU70-25H: Rev. 0, GEM Elettronica, 2007.

M. I. Skolnik, Radar handbook, 3ra ed. New York: MacGraw-Hill, 2008.

G. Casas and D. Frómeta, “Implementación de una interfaz de comunicación por puerto serie para un detector DRACEC,” B.Sc. dissertation, Universidad Tecnológica de La Habana “José Antonio Echeverría”, CUJAE, La Habana, 2018.

ADS5500 14-Bit, 125 MSPS, Analog-To-Digital Converter, Texas Instruments, Austin, Texas, 2008.

M. I. Skolnik, Introduction to radar systems, 3rd ed. New York: McGraw-Hill, 2001.

E. Conte, A. De Maio, and C. Galdi, “Statistical analysis of real clutter at different range resolutions,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 3, pp. 903-918, 2004.

N. Pallavi, P. Anjaneyulu, P. B. Natarajan, V. Mahendra, and R. Karthik, “Design and interfacing of T/R modules with radar system through TR module controller using FPGA,” Proc. IEEE Symp. International Conference on Electronics, Communication and Aerospace Technology (ICECA 17), IEEE Press, 2017, pp. 231-233.

M. Palanza, S. Petillo, and P. Matthias, “Ocean observatories initiative coastal surface mooring technology,” Proc. IEEE Symp. OCEANS 2017, IEEE Press, 2017, pp. 1-4.

J. P. Taylor and J. G. Hoole, “Robust protocol for sending synchronization pulse and RS-232 communication over single low quality twisted pair cable,” Proc. IEEE Symp. International Conference on Industrial Technology (ICIT), IEEE Press, 2016, pp 684-689.

M. Chizh, A. Pietrelli, V. Ferrara, and A. Zhuravlev, “Development of embedded and user-side software for interactive setup of a frequency-modulated continuous wave ground penetrating radar dedicated to educational purposes,” Proc. IEEE Symp. International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS 17), IEEE Press, 2017, pp. 1-5.

D. Tyagi, K. V. Krishnan, and R. Tyagi, “Digital redesign of analog search radar,” Proc. IEEE Symp. International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), 2017, pp. 27-31.

W. Shang, Z. Dou, W. Xue, and Y. Li, “Digital beamforming based on FPGA for phased array radar,” Progress in Electromagnetics Research Symposium (PIERS), 2017, pp. 437-440.

P. Prabhakar, R. Rao, S. Panbude, A. Kulkarni, and A. Khandare, “SFCW ground penetrating radar for soil profile measurement simulation mode user interface,” Proc. IEEE Symp. International Conference on Trends in Electronics and Informatics (ICEI 17), IEEE Press, 2017, pp. 1106-1108.

M. Summerfield, Advanced Qt programming, Upper Saddle River, NJ: Addison-Wesley, 2011.

J. Thelin, Foundations of Qt development, New York: Springer-Verlag, 2007.

A. Kumar, S. Kumar, and K. Harlalka, “Optimization of the performance of high-speed serial communication,” Proc. IEEE Symp. International Conference on Power, Control, Signals, and Instrumentation Engineering (ICPCSI 17), IEEE Press, 2017, pp. 1693-1697.

L. L. Peterson and B. S. Davie, Computer Networks: a systems approach, 4th ed. San Francisco, CA: Elsevier, Inc., 2007.

Interface Circuits for TIA/EIA-232-F, Texas Instruments, Austin, Texas, 2002.

C. Guillén, C. Hernández, and N. Chávez, “Graphical user interface to show the results of the adaptation algorithms in the DRACEC method,” VIII Simposio Internacional de Telecomunicaciones, Informática 2018, La Habana, Cuba, 2018.

C. Guillén and N. Chávez, “Two-dimensional determination of the decision boundary for a radar detection method in the moment space,” Journal of Aerospace Technology and Management, in press.

P. P. Chu, RTL Hardware Design using VHDL, Hoboken, NJ: John Wiley & Sons, 2006.

Published
2019-09-10
How to Cite
Guillén, C., Casas, G., Frómeta, D., & Chávez, N. (2019). Simple Communication Interface for a Radar Detector in the Moments Space. International Journal of Engineering and Technology Innovation, 9(4), 314-326. Retrieved from http://ojs.imeti.org/index.php/IJETI/article/view/3815
Section
Articles