A 2D GaAs-Based Photonic Crystal Biosensor for Malaria Detection

Authors

  • Manjunatha N Department of Electronics and Communication Engineering, Visvesvaraya Technological University, Centre for Post Graduate Studies, Muddenahalli, Chikkaballapur, India
  • Sarika Raga Department of Electronics and Communication Engineering, Visvesvaraya Technological University, Centre for Post Graduate Studies, Muddenahalli, Chikkaballapur, India
  • Sanjay Kumar Gowre Department of Electronics and Telecommunication Engineering, School of Electrical and Communication Sciences, JSPM University, Pune, India
  • Hameed Miyan Department of Electronics and Communication Engineering, Bheemanna Khandre Institute of Technology, Bhalki, Bidar, India

DOI:

https://doi.org/10.46604/ijeti.2023.11660

Keywords:

photonic crystal, biosensor, plasmodium falciparum, sensitivity, quality factor

Abstract

Gallium arsenide (GaAs) composite semi-conductive rods with an air background lattice act as the building blocks for the photonic crystal structure used of a biosensor. The study presents a biosensor of a two-rod nano-cavity for identifying distinct stages of plasmodium falciparum in red blood cells (RBCs) in the early detection of malaria. The proposed biosensor enables the creation of a label-free biosensing environment in which optical and dispersion properties are investigated using plane wave expansion (PWE) and finite-difference time-domain (FDTD) techniques. The biosensor, with a sensing region for an analyte, is utilized to detect a change in refractive index to differentiate between normal RBCs and plasmodium falciparum-infected cells. The results show that the biosensor has a high sensitivity of 798.143 nm/RIU, a high Q-factor of 9881.926, a low detection limit (δ) of 222.4 × 10-6 RIU, a high FOM of 4496.079 RIU-1, and a compact area of 46.14 µm2.

Author Biographies

Manjunatha N, Department of Electronics and Communication Engineering, Visvesvaraya Technological University, Centre for Post Graduate Studies, Muddenahalli, Chikkaballapur, India

 

 

 

 

 

Sarika Raga, Department of Electronics and Communication Engineering, Visvesvaraya Technological University, Centre for Post Graduate Studies, Muddenahalli, Chikkaballapur, India

 

 

 

 

 

 

Sanjay Kumar Gowre, Department of Electronics and Telecommunication Engineering, School of Electrical and Communication Sciences, JSPM University, Pune, India

 

 

 

Hameed Miyan, Department of Electronics and Communication Engineering, Bheemanna Khandre Institute of Technology, Bhalki, Bidar, India

 

 

 

References

J. Molina-Franky, L. Cuy-Chaparro, A. Camargo, C. Reyes, M. Gómez, D. R. Salamanca, et al., “Plasmodium Falciparum Pre-Erythrocytic Stage Vaccine Development,” Malaria Journal, vol. 19, article no. 56, 2020.

K. V. Ragavan, S. Kumar, S. Swaraj, and S. Neethirajan, “Advances in Biosensors and Optical Assays for Diagnosis and Detection of Malaria,” Biosensors and Bioelectronics, vol. 105, pp. 188-210, May 2018.

M. A. Agnero, K. Konan, Z. G. C. S. Tokou, Y. T. A. Kossonou, B. S. Dion, K. A. Kaduki, et al., “Malaria-Infected Red Blood Cell Analysis through Optical and Biochemical Parameters Using the Transport of Intensity Equation and the Microscope’s Optical Properties,” Sensors, vol. 19, no. 14, article no. 3045, July 2019.

K. Torres, C. M. Bachman, C. B. Delahunt, J. A. Baldeon, F. Alava, D. G. Vilela, et al., “Automated Microscopy for Routine Malaria Diagnosis: A Field Comparison on Giemsa-Stained Blood Films in Peru,” Malaria Journal, vol. 17, article no. 339, 2018.

C. T. Kozycki, N. Umulisa, S. Rulisa, E. I. Mwikarago, J. P. Musabyimana, J. P. Habimana, et al., “False-Negative Malaria Rapid Diagnostic Tests in Rwanda: Impact of Plasmodium falciparum Isolates Lacking Hrp2 and Declining Malaria Transmission,” Malaria Journal, vol. 16, article no. 123, 2017.

Z. A. Abdalla, N. E. A. Rahma, E. E. Hassan, T. M. Abdallah, H. E. Hamad, S. A. Omer, et al., “The Diagnostic Performance of Rapid Diagnostic Tests and Microscopy for Malaria Diagnosis in Eastern Sudan Using a Nested Polymerase Chain Reaction Assay as a Reference Standard,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 113, no. 11, pp. 701-705, November 2019.

S. L. R. Yan, F. Wakasuqui, and C. Wrenger, “Point-of-Care Tests for Malaria: Speeding Up the Diagnostics at the Bedside and Challenges in Malaria Cases Detection,” Diagnostic Microbiology and Infectious Disease, vol. 98, no. 3, article no. 115122, November 2020.

K. O. Mfuh, S. T. Yunga, L. F. Esemu, O. N. Bekindaka, J. Yonga, J. C. Djontu, et al., “Detection of Plasmodium falciparum DNA in Saliva Samples Stored at Room Temperature: Potential for a Non-Invasive Saliva-Based Diagnostic Test for Malaria,” Malaria Journal, vol. 16, article no. 434, 2017.

G. V. Soraya, C. D. Abeyrathne, C. Buffet, D. H. Huynh, S. M. Uddin, J. Chan, et al., “Ultrasensitive and Label-Free Biosensor for the Detection of Plasmodium falciparum Histidine-Rich Protein II in Saliva,” Scientific Reports, vol. 9, article no. 17495, 2019.

O. Rifaie-Graham, J. Pollard, S. Raccio, S. Balog, S. Rusch, M. A. Hernández-Castañeda, et al., “Hemozoin-Catalyzed Precipitation Polymerization as an Assay for Malaria Diagnosis,” Nature Communications, vol. 10, article no. 1369, 2019.

W. A. Oyibo, N. Ezeigwe, G. Ntadom, O. O. Oladosu, K. Rainwater-Loveth, W. O’Meara, et al., “Multicenter Pivotal Clinical Trial of Urine Malaria Test for Rapid Diagnosis of Plasmodium falciparum Malaria,” Journal of Clinical Microbiology, vol. 55, no. 1, pp. 253-263, January 2017.

F. Maurin, C. Claeys, E. Deckers, and W. Desmet, “Probability that a Band-Gap Extremum is Located on the Irreducible Brillouin-Zone Contour for the 17 Different Plane Crystallographic Lattices,” International Journal of Solids and Structures, vol. 135, pp. 26-36, March 2018.

H. A. Elsayed, F. A. Sayed, and A. H. Aly, “Graphene Deposited Liquid Crystal and Thermal Sensitivity Using Photonic Crystals,” Physica Scripta, vol. 96, no. 3, article no. 035503, March 2021.

S. Dinodiya and A. Bhargava, “A Comparative Analysis of Pressure Sensing Parameters for Two Dimensional Photonic Crystal Sensors Based on Si and GaAs,” Silicon, vol. 14, no. 9, pp. 4611-4618, June 2022.

Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, “Refractive Index Gas Sensor Based on the Tamm State in a One-Dimensional Photonic Crystal: Theoretical Optimisation,” Scientific Reports, vol. 10, article no. 9736, 2020.

S. Agarwal, J. K. Mishra, and V. Priye, “Highly Sensitive MOEMS Integrated Photonic Crystal Cavity Resonator for Nano-Mechanical Sensing,” Optics Communications, vol. 474, article no. 126150, November 2020.

J. N. Ansari, S. C. Gowre, M. V. Sonth, B. Gadgay, and A. S. Roy, “Photonic Nano Dielectric Crystal Cavity with Infiltrated Biosamples for Refractive Index Sensing Application,” Integrated Ferroelectrics, vol. 213, no. 1, pp. 93-102, 2021.

Ankita, S. Bissa, B. Suthar, C. Nayak, and A. Bhargava, “An Improved Optical Biosensor Design Using Defect/Metal Multilayer Photonic Crystal for Malaria Diagnosis,” Results in Optics, vol. 9, article no. 100304, December 2022.

B. M. H. Kumar, P. C. Srikanth, and A. M. Vaibhav, “A Novel Computation Method for Detection of Malaria in RBC Using Photonic Biosensor,” International Journal of Information Technology, vol. 13, no. 5, pp. 2053-2058, October 2021.

A. Rashidnia, H. Pakarzadeh, M. Hatami, and N. Ayyanar, “Photonic Crystal-Based Biosensor for Detection of Human Red Blood Cells Parasitized by Plasmodium falciparum,” Optical and Quantum Electronics, vol. 54, no. 1, article no. 38, January 2021.

H. Tayoub, A. Hocini, and A. Harhouz, “Malaria Diagnosis Using High Quality-Factor Photonic Crystal Biosensor,” 21st International Conference on Numerical Simulation of Optoelectronic Devices, article no. P13pd, September 2021.

N. A. Mohammed, M. M. Hamed, A. A. M. Khalaf, and S. El-Rabaie, “Malaria Biosensors with Ultra-Sensitivity and Quality Factor Based on Cavity Photonic Crystal Designs,” The European Physical Journal Plus, vol. 135, no. 11, article no. 933, November 2020.

Ankita, B. Suthar, and A. Bhargava, “Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis,” Plasmonics, vol. 16, no. 1, pp. 59-63, February 2021.

S. K. Saini and S. K. Awasthi, “Sensing and Detection Capabilities of One-Dimensional Defective Photonic Crystal Suitable for Malaria Infection Diagnosis from Preliminary to Advanced Stage: Theoretical Study,” Crystals, vol. 13, no. 1, article no. 128, January 2023.

M. N, S. Raga, S. K. Gowre, H. Miyan, and P. Sharan, “Two-Dimensional Photonic Crystal Biosensor Based on Gallium Arsenide Composite Semi-conductive Material for Diabetes Detection,” Plasmonics, vol. 18, pp. 1429-1440, May 2023.

H. Miyan, R. Agrahari, S. K. Gowre, M. Mahto, and P. K. Jain, “Computational Study of a Compact and High Sensitive Photonic Crystal for Cancer Cells Detection,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3298-3305, February 2022.

L. S. Puumala, S. M. Grist, K. Wickremasinghe, M. A. Al-Qadasi, S. J. Chowdhury, Y. Liu, et al., “An Optimization Framework for Silicon Photonic Evanescent-Field Biosensors Using Sub-Wavelength Gratings,” Biosensors, vol. 12, no. 10, article no. 840, October 2022.

H. Miyan, R. Agrahari, S. K. Gowre, P. K. Jain, and M. Mahto, “Computational Study of 2D Photonic Crystal Based Biosensor for SARS-COV-2 Detection,” Measurement Science and Technology, vol. 34, no. 7, article no. 074004, July 2023.

M. G. Daher, “Supersensitive Biosensor Based on a Photonic Crystal Nanostructure for Blood Sugar Level Monitoring with Ultra-High Quality Factor and Low Detection Limit,” Optik, vol. 275, article no. 170581, March 2023.

Downloads

Published

2023-09-28

How to Cite

[1]
Manjunatha N, Sarika Raga, Sanjay Kumar Gowre, and Hameed Miyan, “A 2D GaAs-Based Photonic Crystal Biosensor for Malaria Detection”, Int. j. eng. technol. innov., vol. 13, no. 4, pp. 328–336, Sep. 2023.

Issue

Section

Articles